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Introduction

Nuclear β Decay

• Two types of β decay, β− (electron)
and β+ (positron).

• Nuclear β− decay occurs when a
neutron decays into a proton, electron
and anti-neutrino.

• Mediated by the weak nuclear force.
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Introduction

Hamiltonian

In the Standard Model, the β decay Hamiltonian has the V − A form

H =
GF√

2
[ēγµ(1− γ5)νe ūγµ(1− γ5)d ] + H.c.

The most general form of the effective Hamiltonian describing n→ pe−ν̄e
(β− decay) is

Hβ ' HV,A +HS +HT ,

where HV,A is the vector and axial-vector term,
HS is a scalar contribution term, and
HT is a tensor contribution term.
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Introduction

Scalar Currents

The Standard Model of particle physics is an incomplete theory, thus we
look to extensions of the SM. In particular, to set limits on the existence
of fundamental or induced scalar interactions we turn to the ft values for
superallowed Fermi β decays.

Definition

Superallowed Fermi β decays are beta decays between isobaric analogue
states (ie. Ti = Tf ) where the parent and daughter nuclei have Jπ = 0+.
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Introduction

Why ft Values?

• Have confirmed the CVC hypothesis at the level of 1.3× 10−4

• Provide the most precise value for Vud to date

• After making theoretical QCD and QED corrections, corrected ft
values, denoted Ft, are expected to be nucleus independent

• Set limits on the existence of a fundamental or induced scalar
interaction in the Standard Model

To place further constraints on possible extensions of the Standard Model:

ft value precision ≤ 0.1% → β decay half-life precision ≤ 0.05%.
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Introduction

Corrected ft values
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Introduction

How do we measure ft Values?

In order to measure ft values, we must measure:

• Q-value, the total transition energy

• T1/2, the half-life of the parent

• β branching ratios

If the primary β branch emits a characteristic γ-ray we may measure the
half-life via:

• direct β counting

• γ photopeak counting
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Introduction Motivation

10C and 14O

One of the most precisely measured superallowed half-lives known is 14O.
An unsettling systematic effect arises when comparing the results from the
two experimental methods.

• T1/2(γ) = 70.616(13) s

• T1/2(β) = 70.696(52) s
] differ by 1.3σ, or 0.11%

Similarly, a systematic bias occurs with the 10C half-life where the precise
β counting experiment disagrees at a level of 3σ, or 0.10% with the γ
counting method.

These discrepancies provide the motivation for a simultaneous direct β and
γ-ray counting experiment.
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Introduction Motivation
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Experiment & Facilities

TRIUMF & Superallowed Program

A strong superallowed program is in place at TRIUMF’s Isotope Seperator
and Accelerator (ISAC) facility, where the primary driver is a 500 MeV
cyclotron which provides intense beams of up to 100 µA of protons to
thick layered-foil targets which produce radioisotopes through spallation.
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Experiment & Facilities

Proposed Experiment

• A simultaneous γ and β counting experiment for 14O was run at
TRIUMF in November 2011.

• The 8π facility was used to make the measurements.

• A new detector set-up, including the 8π Gamma-Ray Spectrometer,
Scintillating Electron-Positron Tagging Array (SCEPTAR), and
Zero-Degree Scintillator (ZDS), is in place and it is being investigated.

• In follow-up experiments, the General Purpose Station (GPS) will be
used for both 10C and 14O measurements.

• The half-life of 10C will also be measured at 8π in a simultaneous β-γ
experiment.
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Experiment & Facilities Detectors

8π Spectrometer

• Spherical array of 20
Compton-supressed
HPGe detectors

• Covers approximately
13% of the 4π solid
angle

• Detects γ-rays emitted
from excited daughter
states
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Experiment & Facilities Detectors

Alex Laffoley (University of Guelph) Half-life Measurement of 14O February 24, 2012 13 / 22



Experiment & Facilities Detectors

SCEPTAR

• Spherical array of 20
thin plastic scintillating
β detectors (10 per
hemisphere) surrounding
the implantation point of
the radioactive ion beam
inside the central
vacuum chamber of 8π

• Each scintillator sits in
front of a HPGe detector
to provide β-γ
coincidence information
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Experiment & Facilities Detectors

Zero-Degree Scintillator

• Fast plastic scintillator
behind implantation site,
replacing the back half
of SCEPTAR

• Detects β particles
directly

• Beam is implanted onto
tape, data is recorded,
tape is moved once
nucleus of interest has
decayed

• It has never been used
for high-precision
half-life measurements
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Experiment & Facilities S1140

Experiment Overview

• Experiment run in November 2011 using the 8π, SCEPTAR & ZDS

• 95 runs were performed where each run consisted of:
1 min background — 3 min beam on — 23 min decay

• Beam of 12C14O with 26Na contaminant

• Various settings such as deadtime and shaping time were varied
run-by-run to investigate systematics
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Analysis

Deadtime Corrections

• Five multichannel scaler modules were used to independently record
the ZDS decay data.

• Fixed, nonextendable deadtimes (chosen to be longer than the series
deadtimes of the system) were applied to each MCS.

• The deadtimes were measured via the source-plus-pulser method to
be 1.981(3) µs, 5.002(4) µs, 10.001(4) µs, 20.006(7) µs, and
29.991(9) µs.

• To correct the data for the deadtime effects, the following equation
was used:

yi =
ni

1− ni (
τ
tb

)
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Analysis

Fit Function

The data was then fit with a two exponential decays, a contaminant of
26Na (with a half-life fixed at its central value of 1.07128 s) and the 14O,
plus a constant background. The fit function, of four free parameters, can
be expressed as:

yfit(t) =

tf∫
ti

a1 exp

(
− ln 2 t

a2

)
︸ ︷︷ ︸

14O

+ a3 exp

(
− ln 2 t

a4

)
︸ ︷︷ ︸

26Na

+a5 dt

The level of contamination of the 26Na was relatively large (&10%), but
by waiting several seconds after the beam turned off most of the sodium
decayed leaving a relatively pure (≥99.9%) sample of 14O.
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Analysis Direct β Counting — ZDS
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Analysis Direct β Counting — ZDS
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Summary & Future Work

Results & Conclusions

• The feasibility of the Zero Degree scintillator for high-precision
half-life measurements is being investigated.

• The analysis is still in preliminary stages and more in-depth work must
be done in the coming months.

• We are preparing for the rerunning of this experiment in Fall/Winter
and the 10C superallowed Fermi β decay experiments in the future.

• After obtaining high statistics experiments at 8π and GPS we will be
able to address the current systematic bias existing from experimental
method used.

• These experiments will help test the limits of induced and
fundamental scalar interactions and extensions of the Standard Model.
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Summary & Future Work
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Appendix Fermi’s Golden Rule

Determining the ft Values

From Fermi’s Golden Rule, we have that

ft =
K

|Mf ,i |2G 2
v

Assuming isospin is a perfect symmetry, |Mf ,i |2 for β± decay from 0+ → 0+

states is the expectation value for the isospin lowering (raising) operator.

|Mf ,i |2 =
∣∣〈T ,T3 ∓ 1|τ̂∓|T ,T3

〉∣∣2
= (T ± T3)(T ∓ T3 + 1)

Specifically, both 10C and 14O are T = 1, Tz = −1 β+ emitters. Thus, we clearly
see

|Mf ,i |2 = (1 + 1)(1− 1 + 1) = 2 .
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Appendix Fermi’s Golden Rule

The phase space integral, f , is defined as

f =

W0∫
1

p W (W0 −W )2 F (Z ,W ) S(Z ,W ) dW ,

where W is the electron total energy in electron rest-mass units, W0 is the
maximum value of W , p is the electron momentum, Z is the charge number of
the daughter nucleus, F (Z ,W ) is the Fermi function, and S(Z ,W ) is the
shape-correction factor.

The partial half-life, t, is defined as

t =
ln 2

λi→f
=

T1/2

Bf
.

Combining all of this we have that

ft =
2π3~7 ln 2

|Mf ,i |2 G 2
V m5

ec4
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Appendix Source-Plus-Pulser

To measure the deadtime (τ) of a system we use two sources, A and B, that we
count independently and in combined form C . Generally, we use artificial periodic
pulses (of frequency n0

p) for one of the random sources and a random source of
rate nr when counted alone.

Once combined, the recording rate for periodic pulses is

np = n0
p(1− nrτ) ,

while the random rate is

n′r = nr (1− npτ) = nr [1− n0
p(1− nrτ)τ ] .

The total combined counting rate, nrp, is just the sum of the np and n′r

nrp = n0
p(1− nrτ) + nr [1− n0

p(1− nrτ)τ ]

= n0
p + nr − 2n0

pnrτ + n2
r n0

pτ
2 ,

or

τ =
n0
p + nr − nrp

2n0
pnr (1− nrτ/2)

which can be solved by iteration.
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Appendix Deadtime

Deadtime Effects
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Appendix Chop Plot
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