

β - v angular correlation measurement in the decay of ⁸Li

The 49th Winter Nuclear and Particle Physics Conference

Mont Tremblant, Quebec February 23-26, 2012

Gang Li McGill University

Symmetry breaking

T. D. Lee

1956, First symmetry broken

Chien-Shiung Wu

Beta decay in Standard model

Decay rate:

$$dW = dW_{o} \varepsilon \left[1 + \frac{\vec{p}_{e} \cdot \vec{p}_{v}}{E_{e} E_{v}} a + \frac{m_{e}}{E_{e}} b + \frac{\vec{I}}{I} \cdot \left(\frac{\vec{p}_{e}}{E_{e}} A + \frac{\vec{p}_{v}}{E_{v}} B + \frac{\vec{p}_{e} \times \vec{p}_{v}}{E_{e} E_{v}} D \right) + \dots \right]$$

$$a: \beta - v \text{ correlation} \qquad b: \text{ Fierz interference term}$$

$$\dots$$

$$a: |M_{F}|^{2} \left[-|C_{S}|^{2} + |C_{v}|^{2} - |C_{S}^{'}|^{2} + |C_{v}^{'}|^{2} \mp 2 \frac{\alpha Zm}{p_{e}} mI(C_{S}C_{v}^{*} + C_{S}^{'}C_{v}^{*}) \right]$$

$$+ \frac{|M_{GT}|^{2}}{3} \left[|C_{T}|^{2} - |C_{A}|^{2} + |C_{T}^{'}|^{2} - |C_{A}^{'}|^{2} \pm 2 \frac{\alpha Zm}{p_{e}} mI(C_{T}C_{A}^{*} + C_{T}^{'}C_{A}^{*}) \right]$$
pure Fermi transition: pure Gamow-Teller transition

$$a_F \cong 1 - \frac{|C_S|^2 + |C_S|^2}{C_V^2} \xrightarrow{\text{V-A only}} 1 \qquad a_{GT} \cong -\frac{1}{3} [1 - \frac{|C_T|^2 + |C_T|^2}{C_A^2}] \xrightarrow{\text{V-A only}} -\frac{1}{3}$$

Required by Lorentz invariance, Beta interaction operator can only be Scalar (S), Pseudoscalar (P), Vector (V), AxialVector (A), Tensor (T)

How to measure?

Bypass measuring neutrino, measure recoil Difficulty: low recoiling energy, ~1 keV

How to measure?

C.H. Johnson *et al*. Phys. Rev. **132**, 1149

N. D. Scielzo *et al.* PRL.**93**,102501, 2004

E.G. Adelberger *et al.* PRL.**83**, 1299 (1999).

World Status

Why ⁸Li a promising candidate?

Advantages:

- proper life-time: 0.8 s
- almost pure GT decay
- large *Q*-value: 16MeV
- small nuclear mass:
 →10keV recoil
- Break up to two α 's

How to measure?

C.H. Johnson *et al*. Phys. Rev. **132**, 1149

N. D. Scielzo *et al.* PRL.**93**,102501, 2004

E.G. Adelberger *et al.* PRL.**83**, 1299 (1999).

CPT and BPT(Beta decay Paul Trap) system

Beta-decay Paul-Trap

• Axial Direction (DC potential)

DC (V): 60 -50 60

Radial Direction (PseudoPotential Well)

Detector

First result

•DSSD upgrade: $\begin{cases}
16x16 \text{ strip} \rightarrow 32x32 \text{ strip:} & \text{better angular resolution} \\
\text{thickness } 0.3 \text{ mm} \rightarrow 1.0 \text{mm: record } \beta & \text{direction in DSSD} \\
\text{deadlayer: } 0.6 \mu \text{ m} \rightarrow 0.1 \mu \text{ m: better energy calibration}
\end{cases}$

•Plastic scintillator detector to record β energy

Collaborator

F. Buchinger, J.E. Crawford, S. Gulick, J.K.P. Lee, G.Li

R. Segel, D. Lascar

N.D. Scielzo

Berkelev

G. Savard, J. Clark, A.F. Levand, B.Z. Zabransky P. Wilt, J.P. Greene, T. Sun, A. Chaudhuri, C. Deibel M. Alcorta, P. Bertone, D. Seweryniak

M. Sternberg, J. Van Schelt S. Caldwell

R. Yee

This work is supported by: NSERC application number 216974 U.S. Department of Energy contract No. DE-AC02-06CH11357