

Bayesian Data Analysis for REACH 2nd Global 21cm Workshop 2019

Dominic Anstey PhD Student

PolyChord – Bayesian Nested Sampling Algorithm (Handley, Hobson & Lasenby 2015)

- Model comparison through Bayesian Evidence
- Ranking parameter evaluation speeds

Varying B sky model

$$\ln(T_{foreground}(\nu)) = \sum_{i=0}^{4} a_i \left(\ln\left(\frac{\nu}{\nu_0}\right) \right)^i$$

- Remazeilles et al. 2015
- de Oliveira-Costa et al 2008

Elliptical Dipole Antenna

Antenna designs not finalised

Antenna patterns and images provided by John Cumner and Quentin Gueuning

Log Spiral Antenna

Antenna patterns and images provided by John Cumner and Quentin Gueuning

Conical Sinuous Antenna

Antenna designs not finalised

Antenna patterns and images provided by John Cumner and Quentin Gueuning

Narrow Frequency Band

- Generate a parameterised model of the entire sky across the whole frequency range
- Generate a parameterised model of the antenna pattern

- Fit a foreground model of the convolution of the pattern model with the sky model

Sky Division

Foreground Model Function

$$K_{i}(\nu) = \frac{1}{4\pi} \int_{sky} G(\theta, \phi, \nu) M_{i}(\theta, \phi) \int_{time} [T_{base}(\theta, \phi) - T_{CMB}] dt d\Omega$$

$$T_{foreground}(\nu) = A \sum_{i=1}^{N} K_i(\nu) \left(\frac{\nu}{\nu_{base}}\right)^{-\left(B_i + C_i ln\left(\frac{\nu}{\nu_0}\right)\right)}$$

Chromatic Functions

Foreground Model Function

$$K_{i}(\nu) = \frac{1}{4\pi} \int_{sky} G(\theta, \phi, \nu) M_{i}(\theta, \phi) \int_{time} [T_{base}(\theta, \phi) - T_{CMB}] dt d\Omega$$

$$T_{foreground}(\nu) = A \sum_{i=1}^{N} K_i(\nu) \left(\frac{\nu}{\nu_{base}}\right)^{-\left(B_i + C_i ln\left(\frac{\nu}{\nu_0}\right)\right)}$$

Results

Elliptical Dipole

Log Spiral

Anstey et al. 2019, in prep.

Inefficiencies

Conical Sinuous Antenna

Numbers of sky regions

4 Regions

5 Regions

Log Spiral Antenna

Inefficiencies

4 Regions

8 Regions

11 Regions

Conical Sinuous Antenna

- Even smooth, simple antennae produce enough chromatic distortion to conceal the 21cm signal when the spectral index varies
- The proposed method of fitting the foregrounds via modelling can correct for this distortion sufficiently for the 21cm signal to be identified, provided the antenna is quite smooth.
- Increasing the number of regions the sky model is divided into improves the quality of the chromaticity correction
- The distortion cannot be accurately modelled if too few regions are used

Acknowledgements

Eloy de Lera Acedo Will Handley John Cumner Quentin Gueuning Nicolas Fagnoni Nima Razavi-Ghods Anastasia Fialkov Richard Hills Paul Alexander

Plots produced using fgivenx tool: Handley, 2018