Global 21cm Signal Estimation Using Neural Networks

Abhirup Datta

Madhurima Choudhury, Arnab Chakraborty

Discipline of Astronomy, Astrophysics and Space Engineering Indian Institute of Technology Indore

Choudhury, M. et al. (2018, 2019) Chakraborty, A. et al. (2019a, 2019b)

The story of the universe until now...

A MODEL 21CM GLOBAL SIGNAL

- We use the Accelerated Reionization Era Simulations (ares) code was designed to rapidly generate models for the global 21-cm signal (Mirocha et al, 2012, 2015).
- We have used the tanh model for parametrising the global signal, where the parameters, A(z) are the parameters for the global signal.

$$\boxed{\mathbf{A}(\mathbf{z}) = \frac{\mathbf{A_{ref}}}{2} \{1 + tanh[(\mathbf{z_0} - \mathbf{z})/\Delta \mathbf{z}]\}}$$

Parameters evolve according to a tanh <u>model</u> → J(z)—Lyman-alpha background (which determines the strength of W-F coupling) → Xi(z)— Ionized fraction of hydrogen → T(z)—temperature of the IGM

A MODEL FOREGROUND

- A Lypical foreground $ln T_{FG} = \sum_{i}^{n} a_{i} \left[ln(\nu/\nu_{0}) \right]^{i}$
- Where, all temperatures are in K, and , is an arbitrary reference frequency, which is chosen to lie in the middle of our band.

The foreground parameters

 $\mathbf{a_0}, \mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}$

Extracting the HI 21cm Global signal

Basic architecture of the network

The ANN constructs functions, which associates the input with the output data.

The basic neural network model is described by a series of functional transformations

The training algorithm

The training algorithm continued

Two more steps are involved in this process.

- o Optimization
- Back-propagation

Choudhury et al (2018)

 An error/cost function is computed at the end of one feed-forward process.

- The idea is to minimise this error function by assigning suitable weights and biases at every step (Optimizing the weight and bias parameters).
- This process repeated till the error function is minimum. (This is called back-propagation)

Flowchart

<u>Building the training dataset</u>

An Instrument model

The training dataset, for the perfect instrument

- The training dataset is constructed and the network is trained.
- We choose the optimum number of neutrons in the hidden layer and the number of iterations, till the error function is minimum.
- The network is tested and validated

Network is ready to be used!

The training dataset, when modified by a instrument model

$$T_{tot} = (T_{21} + T_{FG}) * G(\nu)_{sim}$$

$$T_{tot} = (T_{21} + T_{FG}) * G(\nu)_{mod}$$

Case 1: Perfect Instrument

- A known input signal, along with foreground and noise is fed into the network, for different observation periods.
- The signal parameters are estimated and the signal is reconstructed
- Note that the reconstructed signal is very close to the original input signal
- The residual signal is the difference

$$res = (T_{21})_{org} - (T_{21})_{recon}$$

Training RMSEs

- A set of 90 test
 data is taken and
 is fed into the
 network
- The original vs the predicted values of the parameters are shown in this plot for the perfect instrument case.
- RMSE values are noted.

Choudhury, M et al. 2018

Tabulating the RMSE's

Parameters	Perfect Instrument	Fixed(1sine) Instrument	Varying(1sine) Instrument	Fixed(2sine) Instrument	Varying(2sine) Instrument
J_{ref}	0.0245	0.0705	0.0702	0.0616	0.0642
dz_J	0.0209	0.0575	0.0581	0.0502	0.0765
dz_T	0.0230	0.0668	0.0599	0.0531	0.0794
dz_X	0.0207	0.0709	0.0684	0.0614	0.0796
$z0_J$	0.0216	0.0550	0.0730	0.0607	0.0672
$z0_T$	0.0194	0.0650	0.0840	0.0535	0.0642
$z0_X$	0.0278	0.0739	0.0809	0.0556	0.0784

RMSE increases with more complexity of the dataset, but is still considerably small. In other words, we get very good prediction of the parameters.

Choudhury et al, 2019 (under review)

Un-parametrized models

Choudhury, M. et al. (in prep)

Recent detection from EDGES experiment

Foregrounds from EDGES results

Choudhury, M. et al. (in prep)

Models with excess radio backgrounds

The flux from high z sources is converted into a radio brightness temperature T_{R_1} resulting in a total background temperature given by:

$$T_{\gamma}(z) = T_R(z) + T_{CMB}(z)$$

- In each panel the black curve shows the EDGES result. The grey lines in each panel show models that satisfy the ARCADE-2 limits and where the signal is limited to $z \sim 14$.
- The red lines show models consistent with the EDGES result, both in terms of the redshift range of the signal as well as its amplitude ($\delta Tb =$ -500±75mK).
- As shown, the inclusion of an excess radio background results in free parameter combinations (fR and fX,h) yielding results in agreement with the EDGES data for the CDM and 5 keV WDM models.

• The dark-shaded areas show parameter combinations that, additionally, match the brightness temperature measured by EDGES $(-500 \pm 75 \text{mK})$.

Ref: Chatterjee et al 2019

In this work, the authors have ruled out the 3keV WDM models using EDGES data

New training dataset

21cm Signals in the training dataset

Choudhury, M. et al. (in prep)

EDGES DATA AS INPUT, WHEN TRAINED WITH ONLY EXOTIC MODELS + FOREGROUNDS (AS IN BOWMAN2018)

EDGES DATA AS INPUT, WHEN TRAINED WITH ALL MODELS + FOREGROUNDS (AS IN BOWMAN2018)

 $f_X \to 0.35$ $f_X \to 0.26$ $f_{esc} \to 0.40$ $f_{R} \to 0.42$ $N_{\alpha} \to 0.38$ $f_R \to 0.36$

Extracting the HI 21cm Power Spectra

Flowchart

Power Spectrum Detection – Using ANN

Reconstruction of 21cm Power spectra without any foregrounds

Reconstruction of 21cm Power spectra in presence of foregrounds

Work in progress - further optimization of the network is underway

	GWB	GSB
Working antennas	28	28
Central Frequency	400 MHz	325MHz
Bandwidth	200 MHz	32MHz
Visibility integration time	2 sec	8 sec
Number of Channels	8192	512
Total Observation time	25 hours	25 hours

Project code Observation date	32_120 5, 6, 7 May 2017 27 June 2017
Bandwidth Frequency range Channels Integration time Correlations Total on-source time Working antennas	200 MHz 300-500 MHz 8192 2s RR RL LR LL 13 h (ELAIS N1) 26
Pointing centres	$\begin{array}{r} 13^{h}31^{m}08^{s} + 30^{d}30^{m}32^{s} & (3\text{C}286) \\ 15^{h}49^{m}17^{s} + 50^{d}38^{m}05^{s} & (\text{J}1549 + 506) \\ 16^{h}10^{m}01^{s} + 54^{d}30^{m}36^{s} & (\text{ELAIS N1}) \\ 01^{h}37^{m}41^{s} + 33^{d}09^{m}35^{s} & (3\text{C}48) \end{array}$

 $RMS \sim 15 \mu Jy/beam$

 $Dynamic\ range \sim 18,000$

Foreground Power Spectra-Taper Grided Estimator

Data = DGSE + residual point sources + artefacts

Chakraborty, A. et al. (2019a)

Euclidian-normalized differential source counts

Spectral Behaviour of Foreground

$$\mathcal{C}_{\ell=1200}(
u) = egin{cases} A\Big(rac{
u}{
u_{break}}\Big)^{-2lpha_1}, ext{for}
u <
u_{break} \ A\Big(rac{
u}{
u_{break}}\Big)^{-2lpha_2}, ext{for}
u >
u_{break} \end{pmatrix}$$

$$lpha_1=2.1\pm0.2$$

$$lpha_2 = 4.8 \pm 0.4$$

$$\chi^2_{red}=0.3$$

Chakraborty, A. et al. (2019b)

Conclusions

- ANN as an alternate to the Bayesian Framework for 21cm signal extraction.
- Preliminary Results shows agreement with EDGES results • Foregrounds can be interesting as well!