Dark Matter throughout cosmic history

Vera Gluscevic

University of Southern California (USC)

2nd Global 21cm Workshop - McGill University - October 7, 2019.

Cosmic direct detection

Cosmological probes of DM-baryon scattering

Cosmological probes of DM-baryon scattering

Cosmological probes of DM-baryon scattering

Dark matter interactions suppress structure on small scales.

Dark matter interactions <u>suppress structure on small scales</u>.

Observables

arxiv:1903.05140

CMB power spectrum

Planck limits on DM-proton scattering

[velocity-independent spin-independent interaction]

VG and Boddy, PRL (2018)

See also: Boehm+ (2002), Chen+ (2002), Dubovsky+ (2004), Sigurdson+ (2004), Dvorkin+ (2014), etc.

Planck limits on DM-proton scattering

[velocity-independent spin-independent interaction]

VG and Boddy, PRL (2018)

See also: Boehm+ (2002), Chen+ (2002), Dubovsky+ (2004), Sigurdson+ (2004), Dvorkin+ (2014), etc.

And beyond...

And beyond...

Age of the Universe ~1000 years: less than 1 in 100 000 scatterings is with DM.

What about millicharge?

Boddy, VG, + 2018

Kovetz, Poulin, VG, + 2018

(see also Slatyer+ 2018, Xu+ 2018)

What about millicharge?

Boddy, VG, + 2018

Kovetz, Poulin, VG, + 2018

(see also Slatyer+ 2018, Xu+ 2018)

Planck is inconsistent with EDGES, if more than 0.5% of DM is millicharged.

What about millicharge?

Boddy, VG, + 2018

Kovetz, Poulin, VG, + 2018

(see also Slatyer+ 2018, Xu+ 2018)

Planck is inconsistent with EDGES, if more than 0.5% of DM is millicharged.

NB: Bulk relative velocity matters at late time!

Next-generation ground-based CMB (Simons Observatory, CMB-S4)

DM interactions do NOT look like other science targets, given well-measured CMB lensing.

11

Next-generation ground-based CMB (Simons Observatory, CMB-S4)

CMB: independent of cosmology, robust to confusion with other physics.

Near-field cosmology

Galaxy surveys: SDSS, DES; Upcoming: LSST, DESI,...

Bullock and Boylan-Kolchin (2017)

Near-field cosmology

Galaxy surveys: SDSS, DES; Upcoming: LSST, DESI,...

Big Question:

Can we use small-scale structure to study fundamental physics?

M ∗=3x10⁹ M ⊚	M _★ =4x10 ⁷ M _☉	M _★ =2x10 ⁷ M _☉ —
Pegasus	Sculptor ,	Phoenix
		•
M -6-408 M	M -4400 M	10
M*=0X10° M⊚	M*-4X10° M⊚	M*=2X10- M©
Draco	Eridanus II	Pictoris I
M _★ =4x10 ⁵ M⊚	M _★ =6x10 ⁴ M _☉	M _★ =3x10 ³ M _☉ 200 pc

Bullock and Boylan-Kolchin (2017)

Near-field cosmology

Galaxy surveys: SDSS, DES; Upcoming: LSST, DESI,...

Big Question:

Can we use small-scale structure to study fundamental physics?

 $M_{\star}=3x10^{9} M_{\odot}$ _ $M_{\star}=4x10^{7} M_{\odot}$ — $M_{\star}=2x10^{7} M_{\odot}$ Challenges:

- Observational: smaller halos host fainter galaxies [completeness correction]
- Theoretical: baryonic physics and non-linear evolution [galaxy-halo connection]

Limits from Milky Way Satellites

Limits from Milky Way Satellites

Caveats: holds for velocity independent scattering, cosmology-dependent,

How does 21-cm fit here?

VG+, Astro2020 (2019)

arxiv:1903.05140

How does 21-cm fit here?

VG+, Astro2020 (2019)

arxiv:1903.05140

How does 21-cm fit here?

Key points

- CMB already probes new parameter space and new paradigms; near-field cosmology is messier, but very promising [e.g. satellites].
- <u>Key for discovery</u>: comprehensive searches and joint analyses of all available data.
 - <u>To address</u>: non-linearities in non-standard cosmologies, frameworks for joint analyses of multiple observables, assessment of limitations and degeneracies in new data sets.