EDGES Mid-Band Analysis

Raul Monsalve on behalf of the EDGES team

Motivation for EDGES Mid-Band

- Contribute to verifying the Low-Band detection by measuring with an antenna 25% smaller than Low-Band and a recalibrated receiver.
- This would test for antenna effects that scale with antenna size.
- This might **not test for all** antenna effects, or effects from the ground plane that are independent from the antenna.

EDGES Instruments

Mid-Band Block Diagram

Mid-Band Antenna

Low-Band

Antenna size: Length: 2 m Width: 1.25 m Height: 1 m

Mid-Band (~25% smaller)

Antenna size:Length:1.5 mWidth:0.95 mHeight:0.79 m

Same Receiver as Low-Band 1

Same Ground Plane as Low-Band 1

Central Square: 20m x 20m 16 Triangles: 5m-long

Instrumental Calibration

- 1) Instrument gain and noise offset.
- 2) Impedance mismatch between receiver and antenna.
- 3) Antenna and ground losses.
- 4) Antenna beam chromaticity.

Field Relative Calibration

3-position switching removes time variable instrument gain + noise offset.

In each 3-position switching cycle we measure **power spectral density** from:

- 1) Antenna
- 2) Ambient Load
- 3) Ambient Load + Noise Source

Lab Absolute Calibration

Receiver parameters are obtained measuring calibration standards in the lab.

We measure with high precision and accuracy the spectrum, reflection, and temperature of the standards.

Mid-Band Receiver Parameters

Mid-Band Receiver Parameters

Mid-Band Receiver Cross-Check

Mid-Band Antenna Reflection

Mid-Band Antenna Loss

Monsalve et al (2019, in preparation)

Mid-Band Beam FWHM Projected onto Sky

Beam Chromaticity

Antenna to Sky Temperature

 $T_{\text{ant}}(v, \text{GHA}) = \int T_{\text{sky}}(v, \text{GHA}; \theta, \varphi) \cdot D(v, \text{GHA}; \theta, \varphi) \, d\Omega$ $T_{\text{ant}}(v, \text{GHA}) = C(v, \text{GHA}) \cdot T_{\text{sky}}(v, \text{GHA})$

Chromaticity Correction

 $C(\boldsymbol{v}, \text{GHA}) = \frac{\int T_{\text{sky}}(\boldsymbol{v}_{\text{ref}}, \text{GHA}; \theta, \varphi) \cdot D(\boldsymbol{v}, \text{GHA}; \theta, \varphi) \, d\Omega}{\int T_{\text{sky}}(\boldsymbol{v}_{\text{ref}}, \text{GHA}; \theta, \varphi) \cdot D(\boldsymbol{v}_{\text{ref}}, \text{GHA}; \theta, \varphi) \, d\Omega}$

Antenna Directive Gain from Simulation

Mid-Band Chromaticity Correction

Mid-Band Chromaticity Correction

Monsalve et al (2019, in preparation)

Sample of Daily Mid-Band Residuals for 1hr Integrations

May-August 2018

Integrated Mid-Band Spectrum

Monsalve et al (2019, in preparation)

Model of the Spectrum

$$m(\nu) = m_{21}(\nu) + m_{fg}(\nu)$$

Absorption Model: "Flattened Gaussian"

$$m_{21}(\nu) = -\mathbf{A} \left(\frac{1 - e^{-\tau} e^B}{1 - e^{-\tau}} \right)$$

$$B = \frac{4 \left(\nu - \nu_0\right)^2}{w^2} \quad \ln\left[-\left(\frac{1}{\tau}\right)\ln\left(\frac{1 + e^{-\tau}}{2}\right)\right]$$

- **A** : absorption amplitude
- $\boldsymbol{\nu_0}$: center frequency
- **W**: width
- *t*: flattening parameter

Extended "Flattened Gaussian"

Foreground Models

PowerLog:

$$m_{\rm fg}(\nu) = \boldsymbol{a_0} \left(\frac{\nu}{\nu_0}\right)^{\sum_{i=1}^{N_{\rm fg}-1} \boldsymbol{a_i} \left[\log\left(\frac{\nu}{\nu_0}\right)\right]^{i-1}}$$

LinLog Model:

$$m_{\rm fg}(\nu) = \left(\frac{\nu}{\nu_0}\right)^{-2.5} \qquad \sum_{i=0}^{N_{\rm fg}-1} \boldsymbol{a_i} \left[\log\left(\frac{\nu}{\nu_0}\right)\right]^i$$

Smooth sets of basis functions that model well, with few terms, the spectrum over wide frequency ranges.

Preliminary Mid-Band Results

- Not identical but consistent with Bowman et al (2018).
- Rising slope less steep than Bowman et al (2018).

Preliminary Mid-Band Results

- Using Polychord Nested Sampling algorithm
- PowerLog foreground model
- Extended flattened Gaussian

Monsalve et al (2019, in preparation)

Preliminary Mid-Band Results

Current Efforts

1) Data selection:

- Relatively **small dataset**, with **low-foreground region available during daytime**. Ionosphere and ambient temperature **less stable than at night**. Data selection is important.
- Working on **developing robust filters** that select for analyses the most representative observations.

2) New lab receiver calibration:

- Evaluating the **sensitivity** of the integrated spectrum to the **receiver calibration** solution.
- In **2018** we carried out the nominal receiver calibration, **before observations**.
- In **2019** we carried out a receiver calibration **after observations**.
- Currently carrying out a second receiver calibration after observations.

3) Beam models:

- To determine correctly the antenna beam chromaticity, the **antenna gain** has to be computed **over the full sphere**, and not only above the horizon.
- The gain below the horizon is very hard to compute reliably when including a realistic model of the soil below the ground plane.
- Currently computing antenna gain using **different software packages** for comparison.

Summary

- Nominal analysis of Mid-Band observations yield an absorption feature consistent with Bowman et al (2018).
- Currently we are:
- 1) refining the **data selection**,
- 2) evaluating the **receiver calibration stability**, and the **sensitivity** of the spectrum to small variations, and
- 3) verifying our antenna beam model over the full sphere using several software packages.