# Dark Matter and the 21-cm Global Signal



# Julian B. Muñoz

Based on arXiv:1509.00029 arXiv:1802.10094 arXiv:1804.01092 arXiv:1904.07868 arXiv:1904.07881

with Yacine Ali-Haimoud Cora Dvorkin Avi Loeb Ely Kovetz

# Outline

 How DM can change the depth (exotic millicharged DM and EDGES)

 How DM can change the location (standard DM-baryon relative velocities)



A typical 21-cm profile



# A thermostat at cosmic dawn











#### What does the thermostat say?



Bowman+ 2018

## What does the thermostat say?





# **Can DM explain EDGES?**

#### Requirements

$$n_\chi \ge n_b \quad 
ightarrow \quad m_\chi \le 6 \, {
m GeV}$$
 (6 proton masses)



**JBM**, Kovetz, Ali-Haimoud PRD 2015

# **Can DM explain EDGES?**

#### Requirements

$$n_{\chi} \ge n_b \quad \rightarrow \quad m_{\chi} \le 6 \,\mathrm{GeV}$$

$$\sigma_{\chi b} \propto v^{-4}$$

#### A fifth-force?



## A fifth-force?



# **Can DM explain EDGES?**

#### Requirements





Millicharged DM JBM and Loeb 2018







**JBM** and Loeb 1802.10094

#### The take-home message:



**JBM** and Loeb 1802.10094

## How DM affects the timing



## How DM affects the timing



## DM-baryon relative velocities

Tseliakhovich and Hirata 2010



Fialkov+  $2014 \dots$ 

## What is commonly done:



## How DM affects the timing



# Summary















Thanks!

# The 21-cm fluctuations

#### 21-cm Global Signal

Age of the Universe (Myr) 200 250 150 300 0.2 Brightness temperature,  $T_{21}$  (K) -0.2 —H1 -H2 -0.4 -H3 —H4 —H5 -0.6 —H6 ---- P8 20 14 24 22 20 16 18 Redshift, z .





#### 21-cm Global Signal







#### 21-cm Fluctuations = CMB Anisotropies





# Is this observable?



#### 1 antenna ~100 hours



~100 antennae ~1000 hours

# Is this observable?

HERA (Hydrogen Epoch of Reionization Array): 350 antennas, 14-m in diameter



# Foreground "wedge"



Foregrounds swamp the signal. Avoid the "wedge"

> Pober 2014, PAPER Coll. Parsons+ 2011

## Fifth-force



### Fifth-force constraints



Knapen, Lin, Zurek 2017

 $m_{\phi}$ 

## Fifth-force constraints



Knapen, Lin, Zurek 2017

 $m_{\phi}$ 

## Can you test this?

Essig et al. 2012

 $\sigma_{DD} \sim 10^{-27} \,\mathrm{cm}^2$ 



# Can you test this?

![](_page_52_Figure_1.jpeg)

# Can you test this?

![](_page_53_Figure_1.jpeg)

SHiP @ CERN + others

LDMX ~ SLAC mQ/10

$$\epsilon > 10^{-3}$$

![](_page_55_Figure_0.jpeg)

![](_page_56_Figure_0.jpeg)

**JBM**, Kovetz, Ali-Haimoud PRD 2015

![](_page_57_Figure_0.jpeg)

JBM, Dvorkin and Loeb 2018

![](_page_58_Figure_0.jpeg)

![](_page_59_Figure_0.jpeg)

## 21-cm fluctuations

![](_page_60_Figure_1.jpeg)

JBM, Dvorkin and Loeb 2018