Making EDGES Bayesian

Steven Murray, for the EDGES team.

21cm Global Workshop, Montreal, Oct 2019.

Outline

- A Bayesian computational framework for EDGES
- Dual-Band analysis
- Bayesian Calibration

Overall Motivation

- EDGES 2018 result is surprising.
- Rigorous confirmation of derived absorption feature is very important.
- There are a number of ways in which the data analysis component of the EDGES results can be improved (cf. HIIIs et al. 2019, Singh+Subrahmanyan 2019 etc.).

A Bayesian Model-Maker for EDGES

- New Bayesian models (likelihoods, priors, derived parameters...) implemented using <u>https://github.com/steven-murray/yabf</u>
- Defines a Python $\leftarrow \rightarrow$ YAML "standard" for specifying computable hierarchical Bayesian models.
- All current models for EDGES implemented in <u>https://github.com/edges-collab/edges_estimate</u>

Dual Band Analysis

- Desire to use multiple antennas' data in simultaneous constraint.
- High-band data could possibly provide better handle on foregrounds.
- Difficulty arises due to differences in absolute calibration between instruments

Dual Band Analysis

• We use a flexible model to capture the relative miscalibration:

Evidence

High-Band not well-modeled enough to improve constraints!

Low-Band data also shows the same trend

Bayesian Calibration

Motivation:

- Current method uses "best fit" calibration parameters -- no uncertainty.
- Accounts for uncertainties in the calibration, and propagate to final analysis.
- Consistently includes the implicit **covariance** of the calibrated spectrum.
- Can use Bayesian Evidence to compare calibration **and** analysis parameters.

Calibration Framework (Monsalve 2017)

Stored every 39 seconds.

Calibration Framework (Monsalve 2017)

What We Do Now

Fully Bayesian Approach

Conceptually...

Bayesian Calibration Framework

Gaussian likelihood for each "calibrator" relating measured Q_p to model, with extra (optional) simultaneous likelihood for sky data:

$$\ln \mathcal{L} = -\sum_{\nu} \sum_{s=A, H, O, S, sky} \ln \sigma_{s,\nu} + \frac{(\mathbf{Q}_{P}^{s,\nu} - Q_{P}^{s,\nu})^{2}}{2\sigma_{s,\nu}^{2}}$$

Covariance is diagonal in frequency and sources, but model temperatures are **not**.

Uncertainty Model

What is the variance, as a function of parameters?

Assume each term is uncorrelated Gaussian with noise given by radiometer equation, use approximate variance of ratio of independent variables, and assume distribution is Gaussian, to find

$$\sigma^{2} = \frac{Q_{P}^{2}}{N_{\rm samp}\tau\Delta\nu} (1 + \mathcal{Q}) \longrightarrow \boxed{\substack{\mathsf{Q} > 0\\ \mathsf{Q} < 1 \text{ if } (\mathsf{T}_{\rm cos},\mathsf{T}_{\rm sin}) \text{ small.}}$$

Uncertainty Model

Histogram of Q_p for "ambient" calibrator in one frequency bin.

Non-gaussian distribution means this simple model will be inaccurate. However... Histogram of mean Q_p for "ambient"

Sky Model

For simplicity, use parameterized sky model:

$$T'_{\rm sky} = \int d\theta A(\theta) T_{\rm sky}(\theta)$$

$$\approx \bar{A} \left(T_{21} + c(\nu, t) T_{\rm FG} \right)$$

Flattened Gaussian Chromaticity Correction Polynomial (eg. LinLog)

Summary

- Progressively moving EDGES analysis to a purely Bayesian framework.
- Simultaneous analysis of multiple bands is not very promising without more robust calibration.
- Work has begun on Bayesian calibration, starting with the most uncertain calibration parameters.
- Future work includes consistent LST-binned analysis.