Measuring the 21cm Power Spectrum at Low-z with CHIME

Seth Siegel Postdoctoral Researcher McGill University

Photo Credit: Sasse

Baryon Acoustic Oscillations (BAO)

- Measure power spectrum of the 21cm emission from neutral hydrogen between redshift 0.8 and 2.5
 - Corresponds to radio frequencies between 800 and 400 MHz
- Extract the scale of the BAO in the angular and line of sight direction.
 - $\Delta heta_{\scriptscriptstyle \mathrm{BAO}}(z) = r_s/D_M(z)$
 - $\Delta z_{\rm bao}(z) = r_s H(z)/c$
- Constrain the distance-redshift relation over period of universe's history not accessible by current spectroscopic galaxy surveys
- Learn something about dark energy

Instrument Considerations

- Map a large volume
- Choose angular and frequency resolution to measure third BAO peak
- Maximize sensitivity to these scales
- Limit cost

a collaboration between

THE UNIVERSITY OF BRITISH COLUMBIA

Dominion Radio Astrophysical Observatory

with partners at

Drone Flight Over CHIME

Dominion Radio Astrophysical Observatory

 \mathcal{E} + $\longrightarrow \mathcal{W}$

Movie by Peter Klagge

- Cylinder focuses light only in EW direction
- Gives us large FOV

- FFT telescope in NS direction
- 256 beams per cylinder

Haslam 408 MHz Map

CHIME Science Objectives

CHIME Science Backends

- Cosmology
 - Full N² visibility matrix
 - 10 sec cadence
 - 210 TB/day
 - Real-time flagging and gain calibration
 - Data compression through redundant baselines (1.0 TB/day)
- Fast Radio Bursts
 - 1024 stationary beams
 - 1 msec cadence
 - 16k frequency bins
- Pulsar timing
 - 10 steerable beams
 - 2.56 µs cadence

Status (Cosmology Backend)

- September 7, 2017: First light ceremony
- September 2018: Reached full capacity
 - Compression through averaging redundant baselines.
- Since then we have been writing data to disk roughly 75% of the time. Downtime primarily due to software upgrades.

Next steps

- Mask RFI, calibrate instrument transfer function, and characterize systematics
- Remove foregrounds
 - Pursue methods that do not require a beam model to start
 - Delay space filtering (remove low delay modes or "foreground wedge")
 - SVD (remove the modes that are most correlated in frequency-pixel basis)
- Measure the cosmic 21cm signal in cross-correlation with quasar catalogs from the Sloan Digital Sky Survey

Results from CHIME/FRB

Early results from commissioning (CHIME/FRB Collaboration 2019ab):

20

- 13 new FRBs
- 1 new repeating FRB
- More recently •
 - Detection of original repeater (Josephy et al. 2019)
 - Detection of 8 new repeaters _ (CHIME/FRB Collaboration 2019c)

•

In progress: Catalog of hundreds of new FRBs

naure THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

SPACE AND CHIME

First observations by Canadian telescope capture a slew of fast radio bursts PAGES 230 & 235

ARCHAEOLOGY **HOW THE** MAYA LIVED Meet the bioarchaeologist reshaping views of the past **PAGE 168**

RESEARCH INTEGRITY QUALITY CONTROL Time to set up a US research policy board **PAGE 173**

➔ NATURE.COM 14 February 2019 £10 VIRTUAL DRUG ol. 566. No. 7743

DRUG DISCOVERY

SCREENING

A rapid route to viable

candidate compounds

PAGES 193 & 224

February 14 2019

Radio Sky as Seen by CHIME

"Dirty" map of the northern sky at 670 MHz (0.39 MHz wide channel). Constructed from YY visibilities collected over single day (2018-12-21/22).

Averaging ~50 Nights of Data

"Dirty" maps of the northern sky between 800 and 400 MHz. Constructed from YY visibilities, averaging each LST bin over 50 nights.

Calibration Challenges

- Instrument chromaticity converts spatial variations in the bright, spectrally smooth foregrounds into spectral variations.
- CHIME plans to characterize the transfer function of the instrument and construct optimal Karhunen-Loève (KL) filter that rotates measured data into signal/foreground modes. (Shaw et al. 2014/15)
- Beam calibration:

$$V_{ij}(t) = \langle E_i(t)E_j^*(t) \rangle = g_i(t)g_j^*(t) \int d^2 \mathbf{\hat{n}} A_i(\mathbf{\hat{n}})A_j^*(\mathbf{\hat{n}}) e^{2\pi i \mathbf{\hat{n}} \cdot \mathbf{u}_{ij}} T(\mathbf{\hat{n}};t)$$

Need to measure FWHM of primary beam pattern to better than 0.1%

Complex gain calibration:

$$V_{ij}(t) = \langle E_i(t)E_j^*(t) \rangle = g_i(t)g_j^*(t) \int d^2 \mathbf{\hat{n}} A_i(\mathbf{\hat{n}})A_j^*(\mathbf{\hat{n}})e^{2\pi i \mathbf{\hat{n}} \cdot \mathbf{u}_{ij}} T(\mathbf{\hat{n}};t)$$

Need to measure complex gain to better than 0.3% on timescales > 1 minute

Beam Calibration via Holography

- Point Source Holography
 - Track radio-bright point source with John Galt 26m telescope as it drifts through the beam of the CHIME feeds
 - Correlate signal from 26m with signal from every CHIME feed
 - Extracts point source signal modulated by CHIME beam (plus any common background sky)
- Pulsar Holography
 - Subtract pulsar ON pulsar OFF to remove common background sky
 - Implemented in GPU. Can gate on 30 msec cadence.
 - Characterize polarization response

Newburgh et al. 2014 Berger et al. 2016

Example Holographic Beam Measurement

Figure courtesy of Laura Newburgh

Holographic measurement of a Cyg A transit between the 26m at DRAO (tracking) and CHIME at 717 MHz. Shown is the median amplitude over all Y polarisation feeds on each of the 4 cylinders. Left is co-polar, right is cross-polar. Data is normalized by the peak co-polar response.

Currently have in hand 10-100 observations of each of the 10 brightest radio point source and 1-20 observations of each of the 10 brightest pulsars.

Modelling the North-South Beam

- The north-south beam of CHIME is the response of a single feed alone on the cylinder (base beam) modulated by an interference pattern caused by coupling between feeds
- Base beam obtained from CST+GRASP simulation of single feed + cylinder
- Assume 4 coupling paths with known delay
- For each path, parametrize:
 - Dependence of coupling on frequency
 - Dependence of coupling on feed separation
- ~25 model parameters
- Fit to spectrum of ~35 radio-bright sources.

Obtained by beamforming visibilities to source location and dividing by the expected source flux from literature.

Modelling the North-South Beam

Data in **blue**. Current best-fit model in **black**.

Figure courtesy of Saurabh Singh

Left: Peak response as a function of zenith angle for 2 frequencies. *Right:* Peak response as a function of frequency for 2 zenith angles.

Complex Gain Calibration

Figure courtesy of Mateus Fandino

Common mode amplitude stability. Raw, after daily calibration, and after daily calibration and correction based on outside temperature.

Cosmology Forecast

Figure courtesy of Kevin Bandura

Cosmology Forecast

Figure courtesy of Richard Shaw

Thank you! Check out our website at: <u>www.chime-experiment.ca</u>

Additional Slides

Reflector

Analog Receiver Chair

Global 21cm Workshop

FPGA Digitizer and Channelizer (F-Engine)

Bandura et al. 2016, JAI

10 Gbit/s Link over Optical Fiber (x1024)

GPU Correlator (X-Engine)

