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How accurately do we need to be able to model the instrument
during calibration to achieve an unbiased detection of the 21 cm
absorption trough at Cosmic Dawn?
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Answer depends on:

Beam chromaticity

Foreground model accuracy
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Figure credit: Bowman et al. (2018),
Nature volume 555, pages 67–70
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‘Adjustment for beam chromaticity’ in EDGES data calibration
(Mozdzen et al. 2017, 2019):

divide out the effect of beam chromaticity in the measured
spectra using electromagnetic simulations of the beam and
a model for the sky

Beam correction factor:

Bfactor(ν) =

∫
Ω Tsky-model(ν75 ,Ω) ∗ B(ν,Ω)dΩ∫
Ω Tsky-model(ν75 ,Ω) ∗ B(ν75 ,Ω)dΩ

. (1)
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Mock mis-calibration
scenario

Assume perfect model for
smooth component but
1% uncertainty on
amplitude of undulating
component of gain model

Perfect sky model

Result: ∼ 200 mK

structure in the data
(statistically significant
relative to order 10 mK

noise level)
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Are there calibration systematics of this type in the publicly avail-
able EDGES low-band data?
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Are there calibration systematics of this type in the publicly avail-
able EDGES low-band data?

Answer:

Use Bayesian model selection to choose between models
with components designed to model systematics and those
that exclude systematic model components

Bayesian evidence automatically implements Occam’s
razor: a simpler theory with a compact parameter space
will have a larger evidence than a more complicated one,
unless the latter is significantly better at explaining the
data.

If there are not systematic effects in the data, Bayesian
evidence will favour simpler models
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Model components:

δTb (4 models) - no detectable global signal, or one of the
three global signal parametrisations: a flattened Gaussian,
Gaussian or ARES simulation

T̄Fg (8 models) - log-polynomial models between 3rd and
10th order. 3rd order = minimum complexity model for
the intrinsic foregrounds and negligible calibration errors.
higher orders = intrinsic foregrounds + contamination by
certain classes of calibration systematics

Tcal (2 models) - we consider models both with and
without the inclusion of an explicit damped sinusoidal
systematic component.

N (2 models) - generalised radiometric + white noise
covariance model of flat noise model
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Model Global signal Log-poly. Systematic, Noise model, log(evidence) Residual
number model, δTb order, T̄Fg Tcal N RMS [mK]

111 flattened Gaussian 6 Y R+W+w 332.17 ± 0.24 20.4
112 Gaussian 6 Y R+W+w 332.21 ± 0.24 21.0
113 flattened Gaussian 8 Y R+W+w 332.37 ± 0.22 19.7
114 flattened Gaussian 5 Y R+W+w 332.63 ± 0.24 20.4
115 Gaussian 8 Y R+W+w 332.81 ± 0.23 20.7
116 flattened Gaussian 9 Y R+W+w 333.58 ± 0.22 19.6
117 ARES 10 Y R+W+w 334.07 ± 0.20 20.7
118 - 9 Y R+W+w 334.08 ± 0.24 20.8
119 - 10 Y R+W+w 334.08 ± 0.23 20.7
120 Gaussian 5 Y R+W+w 334.18 ± 0.24 21.1
121 ARES 9 Y R+W+w 334.25 ± 0.21 20.8
122 ARES 7 Y R+W+w 334.28 ± 0.22 20.9
123 ARES 8 Y R+W+w 334.40 ± 0.21 20.8
124 - 8 Y R+W+w 334.48 ± 0.25 20.7
125 - 7 Y R+W+w 334.64 ± 0.26 20.9
126 flattened Gaussian 10 Y R+W+w 334.97 ± 0.22 19.7
127 Gaussian 7 Y R+W+w 335.09 ± 0.23 20.9
128 flattened Gaussian 7 Y R+W+w 336.17 ± 0.23 19.8

model number in ascending order of evidence
∆ log(E ) = 3 constitutes strong evidence for one model
over another (rel. probability 20:1; Kass & Raftery (1995))
Tcal and high order poly. decisively preferred;
RMS > theoretical noise estimate
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Global signal parameters

Gaussian
(circles) and
flattened
Gaussian
(squares)
MAP
paramater
values
(amplitude,
central
frequency,
flattening
factor, width)
as a function
of model
evidence
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Conclusions

The publicly available EDGES low-band data is not well
described by models for foreground emission and a global
signal, alone

Models including Tcal and high order polynomials (greater
than 5th order) decisively preferred by Bayesian evidence
relative to those excluding them

Residual RMS significantly in excess of theoretical thermal
noise estimate

Covariance between model component limits constraints
on shape of global 21 cm signal (width, flatness). The
best constrained parameter is the absorption depth with
the highest evidence models favouring A < 209 mK,
consistent with standard cosmological expectation
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MAP global signal realisations
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