On the contamination of the global 21 cm signal from polarized foregrounds

Marta Spinelli in collaboration with G. Bernardi and M.G Santos

Global 21cm workshop McGill 7-9 Oct 2019

Prelude

Single-polarization antenna: inevitably measures polarized emission from the sky

• Q maps: diffuse polarized synchrotron

Spinelli, Bernardi, Santos MNRAS 479, 275–283 (2018) Study the bias in the analysis that could come from this contamination in two bands:

- Low Frequency (LF): 50-100 MHz
- High Frequency (HF): 100-200 MHz

Spinelli, Bernardi, Santos MNRAS 489,(2019)

Caveat:

limited validity of the assumptions of our model

Mimicking global signal observations

$$T(\hat{\boldsymbol{r}}_{0},\nu,t) = \frac{\int_{\Omega} A(\hat{\boldsymbol{r}}',\nu) T_{\rm sky}(\hat{\boldsymbol{r}}',\nu,t) d\hat{\boldsymbol{r}}'}{\int_{\Omega} A(\hat{\boldsymbol{r}}',\nu) d\hat{\boldsymbol{r}}'} + T_{N}(\nu,t)$$

- $\hat{\boldsymbol{r}}_0$: EDGES location
- Frequency resolution: 1 MHz
- Data taking: 0 < LST < 8every 10 mins
- Gaussian noise with *std* considering 400 h integration time
- Need a beam model $A(\hat{\boldsymbol{r}}, \nu)$

Mimicking global signal observations

$$T(\hat{\boldsymbol{r}}_{0},\nu,t) = \frac{\int_{\Omega} A(\hat{\boldsymbol{r}}',\nu) T_{\text{sky}}(\hat{\boldsymbol{r}}',\nu,t) d\hat{\boldsymbol{r}}'}{\int_{\Omega} A(\hat{\boldsymbol{r}}',\nu) d\hat{\boldsymbol{r}}'} + T_{N}(\nu,t)$$

- $\hat{\boldsymbol{r}}_0$: EDGES location
- Frequency resolution: 1 MHz
- Data taking: 0 < LST < 8every 10 mins
- Gaussian noise with *std* considering 400 h integration time
- Need a beam model $A(\hat{\boldsymbol{r}}, \nu)$

A model for the beam

$$A(\nu, \theta, \phi) = \sqrt{[p_E(\nu, \theta)\cos\phi]^2 + [p_H(\nu, \theta)\sin\phi]^2}$$

Taylor et al. (2012), Ellingson et al. (2013), Dowell (2011)

$$p_i(\nu, \theta) = \\ [1 - (\frac{\theta}{\pi/2})^{\alpha_i(\nu)}](\cos\theta)^{\beta_i(\nu)} + \\ \gamma_i(\nu)(\frac{\theta}{\pi/2})(\cos\theta)^{\gamma_i(\nu)}$$

- α, β, γ, δ interpolated from Dowell (2011) measurements and extrapolated up to 100 MHz
- From 100 MHz to 200 MHz we use a simple scaling of the 100 MHz beam

A simple sky model

The **unpolarized** foreground contamination is modeled with a 5-term log polynomial *Bernardi et al. 2015* Main component: synchrotron

Synchrotron generalities

- Depends on B_{\perp} to the LOS modulated by the density of cosmic electrons
- Diffuse polarized emission:

$$\begin{split} P &= \Pi_0 I e^{2i\phi} \text{ with } \phi = \phi_0 + \psi \lambda^2 \text{ faraday rotation} \\ \text{given by } B_{\parallel} \text{ and the presence of } thermal \ electrons \\ \psi &\propto \int_{\text{LOS}} n_e B_{\parallel} dr \end{split}$$

At low frequencies P simulations are difficult:

- lack of correlation with total intensity
- not a lot of polarized data at low frequencies
- depolarization effects prevent extrapolation from higher frequencies

Polarization simulations

Use RM-synthesis framework (ψ and λ^2 as a Fourier pair) Bretjens& Bruyn (2005) Heald, Brown & Edmonds (2009):

• full-sky gaussian Q,U maps in ψ space with specific power spectrum:

$$\hat{Q}(\psi, \hat{\mathbf{n}}) = \sum_{\ell m} \tilde{q}_{\ell m}(\psi) Y_{\ell m}(\hat{\mathbf{n}})
\langle \tilde{q}_{\ell m}(\psi) \tilde{q}^*_{\ell' m'}(\psi) \rangle = (2\pi)^2 A(\psi) \ell^{-\alpha(\psi)}
\langle \tilde{q}_{\ell m}(\psi) \tilde{q}^*_{\ell m}(\psi') \rangle \propto \rho(\Delta \psi, \ell)$$

We use MWA data to constrain free parameters (from Bernardi et al 2013 but we can use other data)

 $\bullet\,$ transform back to frequency space using the Fourier relation between ψ and λ^2

$$Q(\lambda^2, \hat{\mathbf{n}}) = \int \tilde{Q}(\psi, \hat{\mathbf{n}}) e^{2\pi\lambda^2\psi} d\psi$$

Polarization simulations

- code on GitHub: CRCosmo/PolSynch
- spatial structure statistically reproducing the data (extrapolated to larger scales)
- no ionosphere
- a *worst case* scenario for depolarization (MWA @189 MHz)

Faraday structure \Rightarrow Complex frequency behavior

Polarization spectra: $T_Q(\nu)$

 $\forall f, \forall t$ we integrate the visible polarized sky seen through the beam

Average over time get a mean polarized spectra

$2~{\rm sets}$ of 100 simulations:

- the full Faraday structure (all- ϕ)
- only small ϕ values ($\phi < 5 \text{rad}/\text{m}^2$)

Contamination

 \forall realization of the simulations we evaluate the rms of the resulting polarized spectrum

- all-φ peaks at 250 mK with a long tail to higher values
- less contamination for the case $\phi < 5 \text{rad}/\text{m}^2$

• opposite situation for the high frequency case

Extracting the signal

- Gaussian likelihood with flat priors
- Consistency check: no contamination case is unbiased (for both LF and HF case)
- Foreground fitting model: 5-term log polynomial
- Signal fitting model as in input (LF: Gaussian, EDGES HF: hyperbolic tangent)

What is the impact on the reconstructed signal if there is a polarized component that is not modeled?

Low frequency: Gaussian-like case

- all- ϕ contamination prevents proper reconstruction of fiducial signal
- extraction possible for the $\phi < 5 \text{rad/m}^2$ case
- polarization contamination introduce a bias
- tension at the $\sim 1.5\sigma$ level only

Low frequency: EDGES-like case

- **flattened Gaussian** profile as both input and output
- amplitude bias at the $\sim 20 - 30\%$ level that changes with the polarization orientation (qualitatively comparable with Fig. 2 of Bowman et al. 2018)
- enhanced signal may mitigate the need for exotic physics

Reducing the contamination

- full contamination prevents the extraction of the 21 cm *standard* signal both in HF and LF band.
- 10% Q (rms ≤ EDGES and mimic subtraction of the two orthogonal polarizations)
- LF band: amplitude bias
- HF band: z_r biased up to the 10%, Δz underestimated

Conclusions

- we have investigated the impact of a (unaccounted for) polarized sky component in global-signal analysis for EoR and Cosmic Dawn
- we used full-sky polarized synchrotron simulations based on MWA data covering the 50 200 MHz band
- we tested different scenarios:
 - 1. our contamination is too pessimistic to reconstruct standard models (for both LF and HF). Reduced to 10% still gives biased results
 - 2. an enhanced absorption signal could appear if fitting a flattened Gaussian in presence of polarization (only weak tension)
 - 3. assuming the EDGES signal, polarization can still bias the reconstruction

Backup

Spectra

Rotation Measure (RM) synthesis Bretjens& Bruvn (2005) Heald, Brown & Edmonds (2009)

Use Fourier relation between polarised surface brightness (P) and surface brightness per unit of Faraday depth (F)

$$P(\lambda^2) = \int_{-\infty}^{+\infty} F(\psi) e^{i2\psi\lambda^2} d\psi$$

Inverting this formula:

- only positive λ have physical meaning
- incomplete sampling in λ^2

Need to define a RM transfer function (RMTF) that gives the resolution in Faraday depth:

FWHM ~ $(\Delta \lambda^2)^{-1}$ total bandwidth lack of sensitivity to structures extended in Faraday depth

MWA data

G. Bernardi et al. 2013

- MWA 32 element 2400 degrees
- RM synthesis

cube of polarised images at selected faraday depth

-50 < RM < +50 rad m^-2 in step of 1 rad m^-2 RMTF 4.3 rad m^-2

describe MWA statistical behaviour and extend it to full-sky

- CONs: fine and local structures impossible to catch
- PROs: using genuine polarisation data instead of intensity

Characterization of MWA data

- At fixed ψ, the data can be approximated with a Rayleigh distribution R(σ(ψ))
- retain only maps with S/N > 2: the interval $-18 < \psi < +23$
- Power Spectrum reconstruction with HEALPIX (Gorski et al. 2005) and MASTER (Hivon et al. 2002)
- Fit a power law considering cosmic variance on large scale and noise on small scales (Tegmark 1997)

Mimicking the correlations

- Correlation decresses with ℓ
- No dependecy on $\Delta \psi$
- Residual correlation still present at high ℓ

In the simulations:

$$\begin{aligned} \vec{q}_{\ell m} &= \frac{1}{\sqrt{2}} N(0, \Sigma_{\ell}) + \frac{i}{\sqrt{2}} N(0, \Sigma_{\ell}) \\ & \text{with} \\ \Sigma_{\ell}^{ij} &= \rho(\ell, \Delta \psi) (\ell^{\alpha(\psi_i) + \alpha(\psi_j)})^{1/2} \end{aligned}$$

- $N_{\psi} \times N_{\psi}$ matrix $\forall \ell$
- the model reproduce the data well for ℓ > 200.
- At lower ℓ more complex situation (demasking?)