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A Guitarist's Guide to Optomechanics

Introduction
● Membranes are tuning forks
● Optical cavities are guitar strings
● Mechanical damping is annoying

Optomechanics Experiments
● Laser cooling
● Current goal: optically-levitated 

membranes, sorta



  

Why am I Interested?

Exquisite Force Detection (?): The 
best detectors see the best stuff.

New Knob to Turn: Optically tune a 
solid object's mechanical properties

“Quantum” Stuff: Lasers Can Make 
Motion of Solids “Quantum”

Grütter Lab measuring forces of individual atoms



  

Penrose: “Gravity might ruin quantum 
mechanics for heavy objects.”

Quantum Properties of Massive Objects?



  

Membrane Basics: Frequency

=

Mechanical Resonator: 1,000,000 Hz
0.00000005 grams (50 nm thick)

Mechanical Resonator: 440 Hz
about 50 grams

=



  

Membrane Basics: Damping

=

Rings for a few seconds
(about a million cycles)

Rings for a few seconds
(about a thousand cycles) 

=

energy



  

Membrane Basics: Damping
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=

energy

LIES and HALF-TRUTHS



  

“Thermal Fluctuations”: Damping is a Two-Way Street

=

Rings for a few seconds
(about a thousand cycles) 

=

energy

Rings for a few seconds
(about a million cycles)



  

“Thermal Fluctuations”: Damping is a Two-Way Street

Simulation:



  

“Thermal Fluctuations”: Damping is a Two-Way Highway

Simulation:



  

Implications for Technology

Mechanical Force Detectors: minimize 
noise from environment

Minimize me!

Minimize me!



  

Implications for Technology

Quantum Information Storage: Minimize 
randomization from thermal noise

Minimize me!

photon

information transfer

Problem

“superposition”



  

Why is There Damping?

Drumhead Vibrations

Limits of Mechanical Devices
● Connection to frame (& earth)
● Pushing air molecules (sound)
● Flexing materials generates heat



  

Solutions to Damping

Drumhead Vibrations

Connection to frame (& earth)
● Traditional engineering / black magic

Pushing air molecules (sound)
● Remove air (vacuum)

Flexing materials generates heat
● Traditional engineering / black magic
● Replace materials with laser light

predicted to ring for weeks!
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Optomechanical Systems Are Guitars: Same Physics

Electric Field ~ Zero (i.e. “clamped”)

String Motion ~ Zero (clamped) 

Single Frequency:
200,000,000,000,000 Hz

Speed of Light: 
300,000,000 m/s

Speed of Sound: 
500 m/s Embarrass self...

(sorry)

Single Frequency: 
440 Hz



  

Optomechanical Systems Are Guitars: Same Physics

Electric Field ~ Zero (i.e. “clamped”)

String Motion ~ Zero (clamped) 

Single Frequency:
200,000,000,000,000 Hz

Speed of Light: 
300,000,000 m/s

Speed of Sound: 
500 m/s Embarrass self...

(sorry)

Single Frequency: 
440 Hz

Both “Cavity” Systems: 
● mostly-clamped ends, one clamp's position can change
● resonant or “preferred” cavity frequency depends on length
● driven by single-frequency

input
resonant standing wave

movable



  

When the Input Frequency Matches the Cavity Frequency
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Mirror Position

combined force of 
10,000,000,000,000,000,000,000 
photons striking the mirror each second

~milliwatt input
(weak laser pointer)

= 5 micronewtons
= weight of 100 grains of salt
= push a paper clip 1 cm in 2 seconds (in space)

= 5 micronewtons
= weight of 100 grains of salt
= push a paper clip 1 cm in 2 seconds (in space)

more light = more force

less light = less force

a spring! (plus “wind”)

~ kilowatt  
 circulating



  

● Optical cavity

● One gram-scale mirror is free to 
swing (~170 Hz)

● “Optical spring” stiffens these 
vibrations to 5,000 Hz

● Column of light is stiffer than 
diamond (but brittle, “windy”)

Driven 
Motion

T. Corbitt et. al., PRL (2007)

Surprisingly Stiff Photons



  

Laser Engines
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Mirror Position

Takes time for light
to leak in and out

cavity light pumps mirror motion



  

“Damping” for this Optical Spring
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Power takes time to 
ramp up and down

mirror motion pumps cavity light
“Laser Cooling”

Motion can be very 
close to absolute zero!
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At Yale: Laser Cooling in Cryogenic Environment

motorized 
membrane mount

cavity

3He fridge
membrane

free-space laser
● 50 nanometer thick membrane, 1.5 x 1.5 

mm2, 261 kHz drumhead, Q = 5 Million

● System starts at 0.4 oC  above absolute 
zero (i.e. 0.4 “Kelvin”)

● Shoot laser down a tube.



  

Test: Laser Cooling to Very Low Temperature

(Preliminary) Laser Cooling
Laser cooling to 0.0002 K (~factor of 
40 above quantum minimum energy)

Next: vibration isolation, smaller 
membrane 

● Should achieve < 0.0000001 K: 
motion limited by laws of 
quantum mechanics

● “fun”, also a milestone toward:

photon

information transfer

“superposition”
Membrane Motion: 
~ 0.00000000000002 meters
~ the width of a fat nucleus



  

Complete Analogy: “Tuning Fork Cooling” of Fingers

Motion could be cooled by a tuning fork.
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Caltech

Not affected
by laser
cooling

Options:

● Continue Traditional Materials / Geometry Engineering

● Replace material with photons (main goal in ERP B024)

Options:

● Continue Traditional Materials / Geometry Engineering

● Replace material with photons (main goal in ERP B024)



  

Direct Optical Levitation

D.E. Chang et. al. PNAS (2010)
O. Romero-Isaart et. al. NJP (2010)

        ?

science 
laser

trap laser

T. Lee et. al. Science (2010)

Using light as a “material” support

● Circumvents traditional 
material limitations

● Predicted to rings for weeks 
when struck.

proof-of-principle experiment

...also A. Ashkin (1976)



  

Another Solution: Make Radiation the Dominant Force

● Create weakly-tethered, 
lightweight, floppy trampolines

● Add a very strong optical spring 
(with no “wind” or engine problem)

● Predicted to achieve similar 
performance (but no launching 
required)

Bouwmeester Group
UC Santa Barbara

balanced



  

Optomechanics Lab at McGill



  

Goals that Fit in a Storage Closet

Christoph
● Design and fabricate lightweight, 

floppy objects
● Assemble new UHV optical 

trapping system

Alexandre, Chris, Perry
● UHV rapid device characterization 

interferometer

Xinyuan, Julian
● Mechanical simulations
● Photonic crystal simulations



  

Additional Directions

Develop Practical Force Sensors

Cryogenic System to Reduce Thermal Noise

Compact Optical Fiber Packages

Diamond Mechanical Elements

Hybrid Quantum Systems

Fiber Cavity (or On-Chip) Miniaturization

● 100 x smaller: lighter MEMS & higher 
per-photon impact, stronger coupling

● Higher frequencies: less laser noise, 
fewer thermal phonons

● No free-space optics (good for cryostat!)Reichel-Style Cavity

cleaved, coated optical fiber

250-micron membrane

Harris Lab



  

Summary
Basically I study slide guitars

● Laser springs
● Laser cooling

Research agenda 
● Optically-supported objects with 

very low dissipation
● Sensing applications
● Hybrid quantum systems

McGill Optomechanics Lab                                      
Christoph Reinhardt, Alexandre Bourassa
Xin Yuan Zhang, Julian Self, Chris McNally

Perry Phillipopoulos, Jack Sankey
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