Shooting lasers at diamonds

Quantum Pi

Mmm...Qubits!

Classical bit

0 or 1

Quantum bit

States that are both |0> and |1>

$$0\rangle$$
 or $|1\rangle$

or
$$|0\rangle + |1\rangle$$

$$|0\rangle$$
 or $|1\rangle$ or $|0\rangle + |1\rangle$ or $a|0\rangle + b|1\rangle$

It's not just a "probability" to be a 0 or a 1, these states really are both at the same time

And there's more:
$$\left|0\right\rangle + \left|1\right\rangle$$
 is different from $\left|0\right\rangle - \left|1\right\rangle$

An analogy to directions:

point wherever they want!

Two bits?

10 Four options: 01 11

Two quantum bits could be in all four states at once
$$|00\rangle + |01\rangle + |10\rangle + |11\rangle$$

...an example to give you a flavor...

Suppose you wanted to know who had crank called you, and all you had was caller ID

"Moe" = 00010110000011

"Homer"= 10000110100000

"Marge"= 01100110000100

•••

And 9,996 more possible names

"Bart" = 01100110000111

...an example to give you a flavor...

SPRINGFIELD BELL L

Suppose you wanted to know who had crank called you, and all you had was caller ID

and a phone book with 10,000 people in it

"Moe" = 00010110000011

"Homer"= 10000110100000

"Marge"= 01100110000100

_

And 9,996 more possible names

"Bart" = 01100110000111

But what if you could do this with quantum bits?

...an example to give you a flavor...

Suppose you wanted to know who had crank called you, and all you had was caller ID

and a phone book with 10,000 people in it

"Moe" = |00010110000011>

"Homer"= |10000110100000>

"Marge"= |01100110000100>

And 9,996 more possible names

...an example to give you a flavor...

Suppose you wanted to know who had crank called you, and all you had was caller ID

and a phone book with 10,000 people in it

Use a superposition state!

+

+

And 9,996 more possible names

A "picture" of the algorithm in terms of the amplitudes of different quantum states:

...after 100 repetitions:

Only 100 tries to search 10,000 entries!

1100110000111>

The Quest for Quantum Computation

The Quest for Quantum Computation

• Solid state quantum systems

The gate gate gate gate substrate atoms

Stanford

Stanford

Oscillating microwave current

- → oscillating magnetic field
- → torque on the spin

✓ Single-defect isolation Look at one bit

- ✓ Optical qubit detection
 Read it out
 - ✓ Optical qubit preparation Initialize it (write)
 - ✓ Fast qubit manipulationControl it

Oscillating microwave current

- → oscillating magnetic field
- → torque on the spin

Reading Writing and arithmetic √ Sin

Optica

✓ Optical green

quantum coherence

Possible to maintain coherent operation for milliseconds!

(and longer at low temperatures)

But what about

scalability ?

Auxiliary qubits: nuclear spins

But what about

Could we use light to create effective interactions over long distances?

Auxiliary qubits: nuclear spins

A single photon

An individual defect

Is this all really going to happen?

