Solutions to Peskin and Schroder — Andrzej Pokraka

Problem 10.1: One-loop structure of QED

In Section 10.1 we argued form general principles that the photon one-point and three-point functions
vanish, while the four-point function is finite.

(a) Verify directly that the one-loop diagram contributing to the one-point function vanishes.
There are two Feynman diagrams contributions to the three-point function at one-loop order.
Show that these cancel. Show that the diagrams contributing to any n-point photon amplitude,
for n odd, cancel in pairs.

(b) The photon four-point amplitude is a sum of six diagrams. Show explicitly that the potential
logarithmic divergences of these diagrams cancel.

10.1 part (a)

The one-point function is given by the diagram

iy () = P M;]V‘O (1)

Applying the Feynman rules we have
'k, i(k + me
1—pt(q2) =Tr [/ (—26)7“7) =0. (2)

e
! (2m)* k2 —m2 + ie

The trace of mey* and the integral [ d%% vanish giving the result (2).
At one-loop, the three-point function is

k+p2 pg

ng'_f)'g: a k 1+«

where the momentum flow in the loop is counter-clockwise and the momentum of the external
photons is directed inward towards the loop. The first graph in equation contains electrons while
the second graph contains positrons. In the second graph we use minus the momentum of the first
graph so that k is the same for both graphs — this is due to the fact that the momentum flow is
in the same direction as in the first diagrams and that the trace is taken against the fermion flow,
which is reversed relative to the first diagram.

Applying the QED Feynman rules we find

oA d*k (—ie)3i
Hapt = / (2m)* ((k +p2)? = mg) (k* — mZ) ((k — ps3)* — mg)
x Tr [y* (lé-i-ﬁz—i-me)vﬁ (lé—i-me)v" (lé—ﬁg—i—me)
=7 (K —pa —me) 7" (K —me) v (F+pa —me)] - (4)
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The first term in the trace of is
Tr [y (k + p2)V Ky (K — p3)] +m2Tr [v* (K + p2)v° " + 929k + Py (k= ps)] ()
while the second term is
=Tr [y (K = pa)V K7 (K + p)] = mTr [7 (K — pa)y "y + 79Ky + 92977 (K + pa)]
= =T [(K+ PV Ky (K = pa)y®] = m2Te [V7 (K = pa)y® + 7 Ky + (K + )77
= —Tr [y*(k + p2)y" Ky (K — p3)] — mZTr [y (k — ps) + YKy + (K + p2)v°y] . (6)

Since ((6)) is the exact negative of , the three-point function vanishes. Note that in the second
line of (6)) we have used the fact that the trace of a product of gamma matrices is the same as the
trace of the reversed product: Recall that the charge conjugation matrix, C' = %2, satisfies

C?=1 and Cy"C=—(v)T. (7)
Therefore,
Tr [y*1y*2 ... 4] = Tr [CCy CCy*2CC ...CCr*CC)|
= ()T [CH)TGT  (7)TC
= —()" T [(7% ...y 2y)T]
=—(1)"Tr [y ... y*2y™]
=Trpy* .. y*y™] (8)

where in the last line we have used the fact that n must be even to get a non-zero trace.
The n-point function for n odd is given by

il = + (9)
where k, =k and k; = k + E§:1 p; for 1 <4 <n—1. Applying the Feynman rules we obtain
e / d'k (—ie)i"

e ) @m)t (R - m?) . (k2 - m2)
X Tr [(Kn +me)y™™ o (k1 4+ me)y™ + 7 (=K1 +me) .. A (=K +me)] + ...
(10)

We can show, for odd n, that the trace from the second diagram of @[) is the negative of the trace
from the first diagram in @D:

Tr [y (<F1 4 m0) . A (o + me)] = Tr [CCr1 CC(—F1 +me)CC ... COYn CC(—F + me)CC]
=Tr [C(—=")T (k] +me) ... (=y*")T (K, +me)C]
= (1" (K +me)y™ o G+ me)y™) ]
= —Tr [(Kn +me)y™ ... (K1 +me)y™ ] (11)
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Therefore the first two terms in the n-point function vanish for odd n.

There are more diagrams other than those shown explicitly in equation @ However, each
diagram has a pair where the particles in the loop are antiparticles and vice versa. In exactly the
same way that the first two diagrams of @ cancel, each other pair of diagrams cancel. Thus, the
n-point function for odd n vanishes.

10.1 part (b)

The diagrams for the 4-pt function are given in Fig. To calculate the divergent part of each
diagram we only need to retain the terms in the numerator with highest power of loop momentum,
k. Furthermore, the trace of the diagram with particles in the loop is the same as the trace for
antiparticles in the loop and therefore add. Therefore, the total amplitude is

M= 2<M1 + M3 + M5) (12)
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Figure 1: Diagrams contributing to the 4-pt function. To keep track of the diagrams let us label
them by M; wherei=1,...,6.

We begin by evaluating the divergent part of M; by series expanding the denominators and
keeping the O(k~*) term

4 T y asg Qg (e%1
M,y :e4/ (d BT [y ey ey + finite terms. (13)

2 (P —md)!

Note that because we know that there will be no divergence we can work in 4 dimensions to make



Solutions to Peskin and Schroder — Andrzej Pokraka

the Dirac algebra in the trace simpler

]{54
Tr [y iy oy 2 iyt — 21 (98:5298385 + 951 839828 T 9812 982,) Tt [¥17 74 Poy 8y P22 Pryen]
k4
= 3 (Try®ty®eq®ea®] — gt Tr [y*q ™))
4k4 g3 oy g2 31 g0 X302
=7(9 gt — 2gUia g 4 gt gz ) (14)

The trace in M3 is the same as the trace in M7 with a4 <+ ag and the trace in Mj is the same
as the trace in M; with ag <> as. Therefore,

M x ga4a39a2a1 _ 290440429043011 +goc404190430¢2
+ gOé4flagOé2041 _ 29a3a29a4a1 + gaaalga4a2
+ ga4a2‘ga30‘1 _ 2ga4a39a20¢1 + ga4alga2a3
—0 (15)

Problem 10.2: Renormalization of the Yukawa Lagrangian

Consider the pseudo scalar Yukawa Lagrangian,

1 1 . .
£ = 5(0u0) = 5mE0* +B(ip — mu) — ighe v (16)
where ¢ is a real scalar field and 1 is a Dirac fermion. Notice that this Lagrangian is invariant under
the parity transformation ¥ (t,x) — Y°9(t, —x), é(t,x) — —¢(t, —x), in which the field ¢ carries

odd parity.

(a) Determine the superficially divergence amplitudes and work out the Feynman rules for renor-
malized perturbation theory for Lagrangian. Include all necessary counter term vertices. Show
that the theory contains a superficially divergent ¢*. This means that the theory cannot be
renormalized unless one includes a scalar self-interaction,

5L = 2o (17)

and a counter term of the same form. It is of course possible to set the renormalized value
of this coupling to zero, but that is not a natural choice, since the counter term will still be
nonzero. Are there any further interactions required?

(b) Compute the divergent part (the pole as d — 4) of each counter term, to the one-loop order
of perturbation theory, implementing a sufficient set of renormalization condition. You need
not worry about finite parts of the counter terms. Since the divergent parts must have a
fixed dependence on the external momenta, you can simplify this calculation by choosing the
momenta in the simplest possible way.
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Part (a)
The Feynman rules for the pseudo scalar Yukawa theory are listed in Figs. 2] and [3]
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Figure 2: Feynman propagators for the Lagrangian .
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Figure 3: Feynman vertices for the Lagrangian .
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Figure 4: All one-loop diagrams along with their superficial divergence.

Our first task is to determine all the superficially divergent diagrams at one-loop (Fig. 4). Note
that since the Lagrangian is invariant under parity, the interaction cannot change the parity of the
initial state. This means that scattering amplitudes with an odd number of external pseudo scalars
and no external fermions must vanish. Furthermore, since there is a divergent ¢* diagram in Fig.
we must include a ¢* interaction,

Ay
oL =~ o', (18)
and a corresponding counter term to renormalize the theory. The new Lagrangian becomes

L= L0000 — gm36® + 0l —my)o — igi o — 2 6% (19)
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Next, we rescale the fields by the field strength

=/ Zyih
b=\ Zyo (20)

to get

L= 32,040 — 5 Zomid? — 2 736" + 20— mu) — igZu/Zyin vo. (1)
Defining
Zy=1+06gz,
Zy=1+0g,
m?pr — mfb + Omy,
miZ(z, — mi + Om,
ZIXN = A+ 0,
9\ ZsZy — g+ dg. (22)
where m.;, mg, A and g are now the physical masses and coupling constants, the Lagrangian becomes

L=Ly+L,
) ] A
Lo = 5040 — 3% + 0if — ma)b — igin®6 — 301,
0L = 202, (0u0)’ — 50, 6" — 10D+ D PN — S, D — 07", (23)

In addition to the Feynman rules of Figs. [2] and [3] the counter term Lagrangian adds the vertices of

Fig. [f
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Figure 5: Counter term vertices.

Part (b)

Now we compute the infinite part of the counter terms. We will use an on-shell scheme. We rescale
the of the fields by the field strength in such away that we set the reside of the Fourier transformed
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propagator to 1. Furthermore, to give meaning to the mass and coupling counter terms we must
define the physical mass and physical coupling constants. The physical mass is defined as the location
of the pole of the Fourier transformed propagator and the physical coupling constants are defined
to the magnitude of the scattering amplitude at zero momentum

“““ @' -—— - + terms regular at p? = mi, (24)

p? —my

1
—b—@—b— = + terms regular at g = My, (25)
p—my ’

amputated

@ = —i\ ats:4m35,t:u:0. (27)

amputated

The renormalization conditions and can be stated more clearly by defining the self

energies
..... ---- — i), (28)
= —iX(p). (29)

Then the full two-point function is given by the geometric series

___ . ------ +o (30)

1
P2 — m?b — M2(p?)’

_____ @."_- _ --- + ------ ... (32)

{

pP—my—X(p)

®
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The renormalization conditions and can then be stated as

MQ(p2)|p2:mi =0, (34)
Sy, = 0. (35)
dM?(p?)
dp? - =0, (36)
M =0 37
TR (37)

Computation of §z, and d,,,,

At one-loop the scalar self-energy is

We evaluate the first two diagrams above, keeping only the divergent terms, and then determine the
divergent parts of the counter terms. The first diagram is

I VA /ddk iy
p p (2m)4 k2 —m?2

B A/ % 1
B 2
(2m)4 k2 —m]

v (1)
= || ra-d2
TEE: <m¢> (1-d/2)

fi)\m; 30
~ 16en? (39)
where ~ denotes the equality of the divergent terms. The second diagram is
-_— - — / ddk Tr (g’}’5>i(lé+mw>(g’75)i((%+%)+m¢)
P P 2 P (k¥ p)?—m2
p dp. k2 4+ k-p—m3
- / / 2m)d (k% + 2zk - p + ap? — m7)?
ate 2 — (1 — z)p® — m2
dg? v 4
= ag fan [ GG (40)
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where A = —x(1 — 2)p® + m?/). Performing the momentum integration yields

2 2
—2A 4+ 2(1 — 2)p* + my,

€

idg?
4m2

- 2
__ Y
- 167r2/dx

X

A

9 9 dme™E
— A+ (—2A 4+ z(1 — 2)p* + m3,) log + O(e)

2 2
—2A +2(1 — x)p* +my,

€

+3A = 2z(1 — 2)p® — 2m.,

Amre  VE
+(—2A +2(1 —2)p® + mi) log < WGA ) + (9(6)]
2
g
~ /dx (3z(1 — 2)p® — m3)

;2 2
L9 p 2

_ = _ 41
4m2e (2 mw) (41)

Therfore, the self energy is

’L‘)\’I”I’L2 zg p2 .
B 1667:; T 42 <2 N mi) T (p26Z</) - 67%) . (42)

4m2e

—iM?*(p?) ~

Next we evaluate the derivative of the self-energy
M2 (p?) ig?
_Z ~

dp? gaZe T 0% (43)
Then, the renormalization conditions imply
2
g
770 S
2
Omy ~ ~Toer? ()\m¢ + 442 ( mw)) . (44)

Computation of §z, and 6.,

At one-loop the fermion self-energy is
—i%(p) = —>—m—>— + — (45)

We start by evaluating the first diagram

_,_m_,_ _ /(ddk gy i (K + P+ my)gy®

2m)* ((k + p)* — m3) (k* — m3)

dp,
gz/dx/ Ak Ftp—my
2m)? ((k +2zp)? + 2(1 — 2)p? — xmy, — (1 — z)m})?

d
— gz/dx lfas}é md,]/(;iﬂ_)gd(p_lA/)Q (46)
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where A" = —z(1 — z)p* + xm?, + (1 — x)m?. Performing the momentum integral we obtain

129;2 <4A7:> I'(e) /dx [(1—2)p — my]
- 1?;2 (g - mw) (1 +log (Mz_,w) + (’)(e))

i (tw)

Therefore, up to finite terms, the fermion self energy is

‘ ig®> (p :
712(}%) ~ Toe2 \ 9~ My | +1 (p(;Zw - 57%) . (48)
Its derivative is then
_,E@ ig® .
dp Spen? T 0% (49)

The renormalization conditions then imply

g
)
Zv 32em?’
2
g my
O, ~ .
Y 16em? (50)

Computation of ds,

Since the tree level amplitude already satisfies the renormalization condition, we require the one-loop
contribution to the 3-point ¥¢ amplitude to vanish

|
]y@\\p/ /1'\\ A
one-loop, amputated

We start by evaluating the following loop diagram

_ —M/ A% K4t moy (kg ma )y
A T ) @ (4 p2 = mE) (k= p)? — mE) (k2 —m2)

= —2932‘/dm/dy/ %%Jr%?é Wéﬂf‘% *27711/)}6 mw}?‘ }”

((k+xp—yp')? — Alp,p52,9))3

(52)
where A(p,p’;2,y) = —2zyp - p' — 2(1 — 2)p? —y(1 —y)p? + (z + y)ma +(1-—2z- y)mi Shifting
the loop momentum to £ = k + xp — yp’ we obtain

€2 -
gt /dx/dy/ + f(p,0';2,y) P (53)
Alp,p's,9))?

10
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where f(p,p; ,y) = x(14+2)p* +y(14+y)p"* +2zyp-p’ + (1 —x—y)pp +my (22— 1)p—my (2y—1)p —m3,.
Since the renormalization conditions are specified for on-shell fermions, f is to be sadwitched between
the fermion spinors,

a(@) (o, 0’52 y)ulp) = alp') (x4 +2) +y* = 2) mi +2(1 -z —y +ay)p-p)ulp).  (54)

Furthermore, we are only interested in the limit where p = p’. Therefore, we take

u(p') f(p,ps x, y)u(p) — a(p) f(p, p; z, y)u(p)
=a(p) (x(2+z) — y(2 — y)) mu(p) (55)

and

A(p,p'sz,y) = Alp,p; 7, y)
= (x— y)2mw + (1 -z —y)ml. (56)

With these considerations we obtain

oo ] G

=2 [0 y[ s ( 1)2 d/2r<2—d/2>—(473d/2 (Z)Bde(i%—d/?)f] )
=2 /dx/dyr((iw j//22 (A)2 " [;i—i(?—d/?)} 7

e 2/dx/dy{i+2l (4”2715) ,i“g( )]

—47r2€'y5/dx/dy

g 5
T Tanze o7

Thus, the divergent part of the one-loop contributions to the total amplitude, evaluated for
on-shell fermions at zero momentum, becomes

! 9> 5 5
Iy@\\ﬂ Y TaeE T (58)
one-loop, amputated
The renormalization conditions then imply
3
g
dg ~ 1nZe (59)

Computation of 5,

Since the tree level amplitude already satisfies the renormalization condition, we require the one-loop
contribution to the 4-point scalar amplitude to vanish

11
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b2 b3
\ , \ ’ \ / \ ’
N ’ \ / \ / \ Vi
N 4 v\ \ /
N (R N2
% = + A A + *
/7 7 /7 N\
N / \ / \
’ \ ’ \ / \ / \
’ N / \ / \ / \
I 4one—loop, amputated
=0 (60)

D _ o 4/ A%k Tr [Y° (k4 my)y° (K + pr + po + Ps + my)y* (k4 p1 + pa + my)y® (F+ pr + my)]
J 9| @ w2k Tt pat pa)? ) ot pa)? Rt ) m2)

_ 94/ A%k Tr [(—f + my) (k4 pr + po + Ps + my) (—F — pr — pa + my) (K + p1 +my)] (61)
(

2m) (K2 —m2)((k + p1 + pz + p2)® — m2) ((k + pr + p2)® — m2)((k + p1)? — m2)

Following the advice given in the question we specify to a specific frame to simplify the momentum.
Let us choose p; + p2 = 0 = p3 + p4. Then this diagram becomes

4/ A% T [(—F + my) (K + g5 +my) (=K + my) (K + pr +my)]
@m®  (k*—m])? ((k+ps) —my)((k+p1)? —m])

kaplap?))
43!/dx /d / 7
I Y T2+ 2(yps + ( — y)p1) -k + ypi + (@ — y)pi — m2)*
T
(06 +ums + (- ) — Alp1,psi,))
where
f(k,p1,ps) = 4k* + 4k (k- (p1 + p3) — p1 - ps — 2m3)
+ 8k - pik - ps — 4m3, (k- (p1 + ps) — p1 - ps) + my, (63)

and

Alpy,psiz,y) = —y(1 —y)p3 — (z —y) (1 — (z — y)) pT + 2y(z — y)ps - p1 + M., (64)

Shifting the loop-momentum to £ = k + yps + (x — y)p1, imposing the on-shell condition, and setting
p3 = p1 as required of the renormalization condition, we obtain

f(t
6g /dl‘ 1_$ / / yP1,P1; T, y) (65)
(php?n:lj y))
where
— 16 + 1622 f
F(6,p1,p1; 2, y) = 404+ m2 2 (86‘”;6‘” 128+ 8x2) +m (54 8z — 4o — 8% + 4

(66)

12
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Only the first term of f contributes to the divergent part of the amplitude,

ot B e 5

249 /dm a x)/dy/(%)d (2 — Alpr,ps; ,y)’
i B d%e s

= 24g /dz (1 z)/ (2m)* (2 — A(py,ps; @, y)"

_ 24g4/dx 1- x)w (i)zd/z (2 - d/2)

3ig?

4m2e (67)
Next we evaluate the scalar bubble diagram
\ ’
\ /
\,"\I/ B / a%k (—iA)i(—iN)i
AT (2m)® (k2 = mZ)((k + p1 + p2)* — m3)
/ \
d’k 1
= X /dx/ d (12 2 2 2)2
(2m)® (k* + 22k - (p1 + p2) + xpi + xp3 — M)
_ e / e / 4’k 1
(2m)® (k% + 2(p1 + p2))? + 2(1 — 2)(p} + p3) — 2%p1 - p2 — m)?
ae 1
= X /dx/ d 2 .2 2
(2m)® (2 + (1 — 2)(p1 + p3) — 22%p1 - p2 — m)?
. 2-d/2
= £ /dx k ! T(2 - d/2)
(4m) @2 \ —a(1 = 2)(p} +p3) + 22%py - p2 +m3
iz
~ — 68
1672 (68)
Finally, the di\;)ergent part %f the full one-loop contribution to the amplitude is
2 3
N ’
\\\ /! 3ig* iA?
~ — 16 69
,/@\ inZe 1602 (69)
Y \
i / A 4one—loop7 amputated
The renormalization conditions then imply
3g* A2
Sy~ 2 (70)

™ 4n2e T 1672
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