
Solutions to Peskin and Schroder – Chapter 15 Andrzej Pokraka

Problem 15.1: Brute-force computations in SU(3).

The standard basis for the fundamental representation of SU(3) is
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a) Explain why there are exactly eight matrices in the basis.

b) Evaluate all the commutators of these matrices, to determine the structure constants of SU(3). Show that,
with the normalization used here, fabc is totally antisymmetric. (This exercise is tedious; you may wish to
check only a representative sample of commutators.)

c) Check the orthogonality condition (15.78), and evaluate that constant C(r) for this representation.

d) Compute the quadratic Casimir operator C2(r) directly form its definition (15.92), and verify the relation
(15.94) between C2(r) and C(r).

Part (a)

The group SU(N) is a subgroup of U(N). Specifically, SU(N) is equal to U(N) with U(1) removed. Since the
generators of SU(N) must be orthogonal to the U(1) generator (which is proportional to the identity matrix), the
SU(N) generators must satisfy tr [ta] = 0. In general, the number of N ⇥N traceless matrices is N2 � 1. Thus, for
SU (N = 3), the number of traceless 3⇥ 3 matrices is 9� 1 = 8.

Part (b)

Using a simple Mathematica script is is easy to generate the all the commutators of the Gell-Mann matrices
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where we only show the upper triangle since the commutator is antisymmetric. The generators t1, t2, t3 form an
SU (2) subgroup of SU (3)
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as expected for SU (2). Since the generators are orthogonal, setting a, b 2 {1, 2, 3} and c = 4, 5, 6, 7, 8 results in
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with all others not related to these by permutations zero. Some examples:
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Part (c)

One can easily see that the inner product of these matrices satisfy
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Part (d)

Using Mathematica,
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Problem 15.2: Adjoint representation of SU(2).

Write down the basis matrices of the adjoint representation of SU (2). Compute C (G) and C2(G) directly from
their definitions (15.78) and (15.92).

The basis matrices for the adjoint representation are defined by the structure constants
�
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where a, b, c 2 {1, 2, 3}. Explicitly,
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These satisfy the orthogonality relation
tr
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with tr
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= 2. The quadratic Casimir is
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where C2 (G) = 2.

Problem 15.3: Coulomb potential.

a) Using functional integration, compute the expectation value of the Wilson loop in pure quantum electrody-
namics without fermions. Show that

hU
P

(z, z)i = exp

(

�ie2
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)

with x and y integrate around the closed curve P .

b) Consider the Wilson loop of a rectangular path of (spacelike) width R and (timelike) length T , T � R.
Compute the expectation value of the Wilson loop in this limit and compare to the general expression for the
time evolution

hU
P

i = exp {�iE (R)T} ,
where E (R) is the energy of the electromagnetic sources corresponding to the Wilson loop. Show that the
potential energy of these sources is just the Coulomb potential, V (R) = �e2/4⇡R.
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c) Assuming that the propagator of the non-Abelian gauge field is given by the Feynman gauge expression
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compute the expectation value of a non-Abelian Wilson loop to order g2. The result will depend on the
representation r of the gauge group in which one chooses the matrices that appear in the exponential. Show
that, to this order, the Coulomb potential of the non-Abelian gauge theory is V (R) = �g2C2 (r) /4⇡R.

Part (a)

The Wilson line for an Abelian gauge group is defined to be
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where we have included the gauge fixing piece in the action.
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To perform the functional integration, we must put hU
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(x, x)i into a Gaussian form. We rewrite the line integral
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where Jµ

(y) is a unit vector that restricts the integral over all space to that over the path P . Then hU
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To calculate the position space representation of the Green’s function, we rewrite the denominator in the integral
as

ˆ 1

0
ds eis(k

2+i✏

)

=

lim

s!1 eis(k
2+i✏

) � 1

i (k2 + i✏)
=

i

k2 + i✏
,

so that
Gµ⌫

⇠

(x, y) = �i

ˆ 1

0
ds

ˆ
d4k

(2⇡)
4

✓

gµ⌫ � (1� ⇠)
kµk⌫

k2

◆

e�ik·(x�y)eis(k
2+i✏

).

5



Solutions to Peskin and Schroder – Chapter 15 Andrzej Pokraka

Setting ⇠ = 1 and defining ⇣ = x� y, the Green’s function becomes
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where we have set ✏ ! t✏/4 in the third last line since the ✏ is only there to tell us how to deform the contour, only
its sign matters. Substituting this expression for the Green’s function into the expression for hU
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Part (b)

This part of the problem asks us to perform the path integration in the exponential of hU
P

(x, x)i for a rectangular
path of spacelike width R and timelike length T where T � R. A convenient parameterization for this path is

(0, 0, 0, 0) ! (T, 0, 0, 0) ! (T,R, 0, 0) ! (0, R, 0, 0) ! (0, 0, 0, 0) .

That is we sit at the origin for time T , move in the 1-direction a distance R, move backwards in time for a length
T and then move back a distance R to the origin. In the limit T � R the largest contributions come from the
timelike paths. We also ignore the self-energy contributions – when the y and z paths end and begin at the same
points. Thus,
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Taking the limit T ! 1 this is approximately˛
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Thus, the expectation value of the Wilson loop becomes
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4⇡R
T

�

= exp {�iV (R)T}
where

V (R) =

e2

4⇡R

is the Coulomb potential.

Some comments: (it would be nice to work these out)

• The divergences from when x ! y are of the form e�iT⇤ and renormalize the probe particle Lagrangian by a
linear divergence ⇤ (remember that a Wilson line is generated by a heavy probe quark). This divergence is
present because we are treating the probe particle as a classical point particle – the divergence comes from
the energy contained in the electric and magnetic fields of the classical point particle.

• At the cusps of the rectangle, there is an IR divergence which depends on the angle that the Wilson lines
make at the cusp. This divergence should reproduce the IR divergence calculated in chapter 6 of Peskin.

Part (c)

The non-Abelian Wilson line is
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Due to the path ordering, the above it is hard to calculate the expectation value of the Wilson loop. However, we
only need the result to lowest order in g to extract the potential. To see how this works, note that the potential is
the order e2 term of the Abelian Wilson loop expectation value is
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In the non-Abelian case we have
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The non-Abelian case is the same as the Abelian case except with A
µ

! Aa

µ

ta. Since the propagator at lowest order
in g is
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the exponent is proportional to �abtatb = C2. Therefore, we can simply replace e2 in part (b) by g2C2 to get

V (R) = �g2C2

4⇡R
.
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