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1 The Dirac Equation

1.1 Lorentz group v

The Lorentz commutation relations are

[JHV JP7] =i (gVPJHT — ghP JVT — gV7 JHP 4 gh TPy

(a) Define the generators of rotations and boots as

A ) )
L' = et g% and K' = J,

where ijk is a permutation of (123). An infinitesimal Lorentz transformation can then be written
®—(1-i0-L—iB-K)o.

Write the commutation relations of these vector operators explicitly. Show that the combinations

1 1
o= (L+iK) and I = 3 (L - iK)



commute with one another and separately satisfy the combination relation of angular momentum.

Proof: The L operator commutation relations are
L', L] = L'L’-LL

— i [eik:l(]k:l, ejanmn]

_ ieiklejmn [J}’cl7 Jmn]
_ ieiklejmn [glkan _ gkaln o gankm + gknJlm}

_ i [eiklejmnglmjkn _ eiklejmngkmjln _ eiklejmngankm + eiklejmngkn(]lm}
for the second and last term k < [

_ % [eiklejmnglmjkn _ eilkejmnglmjkn _ eiklejmngankm + eilkrejmngln‘]km}

Z. [eiklejmnglmjkn + 6iklejmnglmjkn _ 6iklejmngankm _ 6iklejmngankm}
for the third and last term m < n

— i [eiklejmnglmjkn 4 6iklejmnglm(]kn _ 6iklejnmbglmLJkn _ eiklejnmglm‘]kn}

= i [eiklejmnglmjkn + eiklejmnglmjkn + 6i}’clejmnglkan + Eiklejmnglmjk"}
Z'eiklejmnglmjkn
—  jetklegmn (_6lm) Jkn
— Rl iln gkn
_ etk gind phn
= i (8Ygkn — gingks) gkn
i (5iijk _ in)

= iJ¥
= icdkpk
where
T = (s - g
= 0
and
dikpk leijkeklm(]lm

1 ...
_eklj 6klmLJlm

2
— % (5il5jm o 5im5jl) Jlm
ST
= JY.



The K commutation relations are
(K", K] = K'K’-K'K'
_ JOiJOj _ JOjJOi
Z-(giOJOj _ QOOJij _ gijJOO + ngJiO) '

This is simplified using properties of the metric ¢g®° = 0, g°° = —1, g% = —1 and the generators J° = 0
(K", K7 = —iJ¥
= —iedkLk,

Next, we need

1, .
56 kl I:Jkl7']0]:|

_ %Eikl (_glijO + gijm)

(L', K7]

= %eikl (617750 — §*7.710)
= % (Eikjjko _ EilelO)
= % (EiijOk + eiijOk)
= 'K

Lastly we compute the angular momentum commutators

.0 = %(L—l—z’K),%(L—iK)
= (L)L K] 4 [K L+ K K])
= LK
= %[Ki,Lj}éi-éj

;[Kl L]

0

(L7 +iK7)

l\D|P—‘

2.9

Il
— | =
l\D|P—‘

{[L", 7] £i[L",K7] +i [K',L7] — [K',K']}

1 {iezgkLk + i (i K F i (i K + ie7k LF)
= {ZeljkLk :Feilel ieilel +Z€”kLk}
% {ieijkLk == eilel}
= %eijk {LF +iK*}
)

_ ijk 7k
= =]
2 :l:



(b) The finite-dimensional representations of the rotation group correspond precisely the to the allowed values for angular
momentum: integers or half-integers. The result of part (a) implies that all finite-dimensional representations of the
Lorentz group correspond to pairs of integers or half integers, (j4,j—), corresponding to pairs of representations of the
rotation group. Using the fact that J = o/2 in the spin-1/2 representation of angular momentum, write explicitly the
transformation laws of the 2-component objects transforming according to the (%, O) and (O, %) representations of the
Lorentz group. Show that these correspond precisely to the transformations of vy, and i giving in (3.37).

Proof: The representations of the Lorentz group are denoted by (m,n) = m,, where m,n are either half-integers or
integers. The irreducible representations are given by

Tm,n (Ll) = ]I(2m+1) ® Ji(n) + Ji(m) & H(2n+1)
T (K7) i (]I(Qerl) ®J™ = J™ @1, +1>) ,

With J = /2 the (%, 0) representation is found to be

, o’ o’ ot o
mn (L) = el — L = (I — I =—&L =—
T (L) c@li+ S oh <2+2)®1 7 ®h =3
N~ o) mi (-2 ol = —i% o1, — i
7Tm7n(K) = Z(Hg@ﬂl 5 ®]11> Z(]Ig 2)@]11 22 ® Iy 22.
Thus, with L! = ¢¢/2 and K = —ic*/2 the transformation law becomes

- (1-iB-K-i0-L)®,

1

1
= (1gpe507) e

where we have defined 8¢ = wg; = —wjo and 6% = wijeijk.
Now for the (O, %) representation we have
- o o ol
mn (L) = Lo —+LH I, =1 — 41 ) =—
7T() 1®2+1®2 1®<2+2> 5
T (KP) = i (111 ®5-h @112) —i (% —112> ®L =iz ol



Thus, with L? = ¢¢/2 and K* = io?/2 the transformation law becomes

_i(w L JHY
By e TR
= (1-iB-K—i0-L)&,,)

2
= 1 L Z.(9 i3]
- P m3® ) ey
Upon comparison with equation (3.37) we identify

‘I)(l 0) = ’(/JL and @(07

)=¢R-

Nl

Thus, the left- and right-handed spinor transform according to separate representations of the Lorentz group.

|
(c) The identity o7 = —o2?a0? allows us to rewrite the v, transformation in the unitarily equivalent form
W —=' (1+i0-0/2+B-0/2),
where ¢/ = 502. Using this law, we can represent the object that transforms as (%, %) as a 2 X 2 matrix that has the ¥p

transformation law on the left and simultaneously, the transposed ¢y, transforms on the right. Parametrize this matrix as

L N A
Vigiv? vo-v?

Show that the object V* transforms as a 4-vector.

Proof: Left-handed spinors transform according to
L g g I -

With ¢ = T o? we verify the transformation law

P = <<1—lﬁ-a—£0-a)1/)L)T02
2 2
T 2 2 1 i ’ 2
= Yoo <1—§,8~0'—§0-o'> o
= 1//02(1—1,8~0'T—£0~0'T>02
2 2

= W(l—i—lﬁ-a—i—iH-a).

2 2
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Now we are interested in the transformation properties of a (5, 5) object. We parameterize the (%, %) object as the matrix

(VO VE Vv
®( )_<V1+z’V2 yo_ys )= Vi

11
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where it will be shown that V# is a 4-vector. Applying the transformation to ® (1.3) We get
272

®(

[N

1
2

(S

1
2

1 7

_ <1+%(ﬁ—i0)-o’>V“U# <1+%(5-a+¢0).a)

1 7
) — <1+§ﬁ'0'—§0-0')‘1>(

= Vto, + % (B—i0) - oV'a, + %V“U,u (B+1i6) -0+ 0 (6% 5°)

= Vto,+ %ﬁ ooy +o,0) — %i@ (oo —o,0)

= Vo, + %BZ Ao, ou} — gi@i oi, 04]

= Vto,+ V?Oﬁl Aoi, 00} + %ﬁl Ao, 05} — V?Owi - oi, 00] — V?jwi o, 0]

= Vto,+ V?Oﬁi Ao, I} + %ﬁ {o/,0/} — %019 [0, 1] — %19 [0i, 0]

= Vhio, + V?Oﬁi (20;) + %ﬁ (20;5) — %26‘ (2ie;jn0™)

= V', + VB, — VB + Ve no”
where {0;,I} = 20%, [0,1] = 0, {04,0;} = 28;5, [04,1] = 2ie;jp0". Also note that B°V7d;; = —B'V; because g;; = —d;;.
Recall that we have defined the anti-symmetric tensor wg; = B; and w;; = eijkt?k. Inserting these expressions into the

above, we have

Vi, +VOBia; — VB + Vigie o = Vie, + V0w — Viwg + Viwjpo®
= Vv‘uJH + Vow()iO'i + Viwiodo + wijViO'j
= Vto, +wuo’VH*

= (5Z + w’;) V,ot.

We would like to show that this is identical to equation (3.19) in P&S. P&S assert that a 4-vector V# transforms as follows
ve o (85 — Lo (7)) VP
— 95— oW ( )ﬁ

for (J") 5 = 040 — 04,0;. With this definition of (j‘“’)g the transformation condition becomes

i o3 (6% i v «
52)‘ — 5(&1#1} (j'mj),@ = 55 — Eww (j'u )’YB g’Y
« Z. 174 v (o7
= 05— s (0405 - 5504 ) g7

7
= 5% ) (wyp — wpy) g7
= 5;‘ —iwypg””

= 05 —iwg.
This is the identical result obtained from transforming V*o,. Thus, we see that V* is indeed a 4-vector.




1.2 Gordon Identity v

Derive the Gordon identity,

a(p") v u (p) =u (p')

/ -
u ’;:;p - w;mq” u(p),
where ¢ = (p' — p).
Proof:
The computation is straightforward:

i

aq, = D) [7”7 FYU] (pi/ - pu)

% (' =) — % (y"p — ")

% (29" p;, — P — ") — % ("' — 29" Dy +4"P)

= i(@" =Py —i(yp—p")

[ +p = " = pP") + (Yp - p")
2m

pr+pt i
+
2m 2m

a(p') u(p) = a(p) u (p)
= @(p/) -M} u(p)

2m

[mAy* + yHm
2m

Juw)

= a()v"u(p)

where we have used the Fourier transformed Dirac equation and it’s adjoint equation

(¥ —m)u(p) =0and u(p)(p—m)=0.

1.3 Spinor products v

Together is Problems 5.3 and 5.6 we develop an efficient computational method for processes involving massless particles.

Let kb, k%' be fixed 4-vectors satisfying k% = 0, k¥ = —1, ko - k1 = 0. Define basic spinors in the following way: Let uro
be the left-handed spinor for for a fermion with momentum kq. Let ugo = f1uro. Then, for any p such that p is lightlike
( 2 = 0) define
p

ur (p) = g puro  and  ugr (p) = Zs==puro .
This set of conventions defines the phases of spinors unambiguously (except when p is parallel to ko).
(a) Show that Fouro = 0. Show that, for any lightlike p, pur (p) = 0.

Proof:

Fouro = KokKiuro

kgklll"Y#'YuuLO

= kgki/ (29;“/ - ”Yv'Yu) uro
2k - kyuro — Fikouro
0



where we have used the Dirac equation for a massless particle fouro = 0 and the dot product kg - k;. Now for any lightlike
4-momentum p the definition of the spinors above satisfy the massless Dirac equation

1
pur (p) = m]f urLo

|
(b) For the choices ko = (E,0,0,—F), k1 = (0, 1,0,0), construct urg, uro, ur, (p), and ug (p) explicitly.
Proof: For this problem we will need the operator ¥ which in the Chiral or Weyl basis is given by

- 0 K~k o
- (ko—i-k-a 0 )
0 0 -k — (k' —ik?)
B 0 0 — (k' +ik?) KO+ &
B KO+ k3 k' —ik? 0 0
k' +ik? KO — k3 0 0

From equation (3.50) in P&S the Dirac spinors for are given by
wky) = ( Vko - o€ )
Vo€

B E (o9 + 03
N E (o9

|
Q
w
S— | —
Iy Iy
N———

Il
=
/N |~/
o O [l V]
N O o O
"
TN

N——
I

— o O O
Iy Iy

oo o

where & € {( 10 )T (01 )T} and 6 = (0" — o). Taking = (1 0 )T the left-handed spinor is

10 1 1
wo—va| §0 0N o (0
0 1 0 0
while the right-handed spinor is given by taking £ = ( 0 1 )T
10 0 0
) PR A I
0 1 1 1



The chiral spinors for any momentum p are then given by

1
ur (p) = m}ﬁum

0 0 pO _ p3 _ (pl _ ,L-p2) 0
_ V2E 0 0 —(p*+ip?) PO +p? 0
2E@ +p3) | PP P P —ip? 0 0 0
pt +ip? p¥ —p? 0 0 1
_pl +’Lp2
VP 0
0
1
ug(p) = 7\/m}m¢L0
0 0 P’ =p* = (p'—ip?) 1
_ V2E 0 0 —(p*+ip?) P’ +p? 0
2E(O +p3) | PO P p—ip? 0 0 0
1 2 . 0_ .3
p-+ipc p’ —p 0 0 0
0
B ] 0
S Vo3 | P+
pl +’Lp2

|
(¢) Define the spinor products s (p1,p2) and ¢ (p1p2), for p1, pa lightlike, by
s(p1,p2) = ur (p1)ur (p2) and  t(p1,p2) = ur (p1)ur (p2)-

Using the explicit forms for the uy given in part (b), compute the spinor products explicitly and show that ¢ (p1,p2) =
s (p1,p2)" and s (p1,p2) = —s (p2,p1). In addition, show that

2
|s (p1,p2)[" = 2p1 - po.
Thus the spinor products are the square roots of 4-vector dot products.

Proof:



s(p1,p2) = ur(p1)ur (p2)

0010 _%;Jrigg
_ 1 0 3 1 . 9 0 0 0 1 p2—|—p2
B \/<pff+p%><pg+p§><0 0 papt pl-at)| 00 0] 0
0100 0
0
1 . 0
= 0 0 20+p3 pl—ip? '
\/(p?+p?)(p8+p§)( WAPE L) |y
P9+ 3

(0) +p?) (—ps +ip3) + (p1 —ip?) (9 + p3)
V@7 + ) (05 + p3)
—pYp3 — pips +ipip3 + ipips + piph — ipph + pips — ipips
V@Y +p7) (03 + p3)
pi (95 +p3) — (0 — p}) p3 + i (07 + p}) P53 — pT (9 + p3))
V(@) + %) (93 + p3)

= —S (pz,pﬂ

o} (09 +p3) — () — p3) o3+ (09 + p3) 3 — 12 (B3 + P3))|”
(Y +p?) (P9 + p3)

It (09 +p3) — () — p3) ph + 1 (9 + p3) 3 — 12 (B3 + p3))|°
() +p?) (P9 +p3)

(P} (09 +13) — (10 — p2) p3)° + (19 + p3) P2 — P2 (pY + p3))°
() +p3) (P9 +p3)

() (09 +p3)* — 20 (03 + P3) (9 — p?) pb — + (19 — p3) (p1)”

() + ) (09 + p3)
y (9 +13) (03)° — 2 (09 + 1) p3p2 (V9 + p3) + (P2)° (0§ + p3)°
() +p?) (P9 +p3)

9+ p3 0.4 .3

- % (@) + @) + gé%g () + () — 2 ik + )
9+ p3 0.4 .3

- g; ii;g (WD + (D)) + gé i% (@37 + (19)*) -2 (piph +pipd)

Since p; and po are lightlike
2 2 2 2
)"+ @) =) = )" = ) +pd) () - p})

we have
2
Is (p1,p2)|” = (p3+p3) (0 — i) + () +p3) (99 — P3) — 2 (pips + P3p7)
= pIpd +pip3 — pipY — pips + pIPY + pipY — PYP3 — pip3 — 2 (pips + P3pi)
= 2p0p3 — 2 (pips + p3pi + Pip3)
= 2p1-po.
n

10



1.4 Majorana fermions v

Recall form Eq. (3.40) that one can write a relativistic equation for massless 2-component fermion field that transforms
as the upper two components of a Dirac spinor (¢1,). Call such a 2-component field x, (z), a = 1, 2.

(a) Show that it is possible to write an equation for x (x) as a massive field in the following way:
i - Ox —imo*x* = 0.

That is, show, that this equation is relativistically invariant and, second, that it implies the Klein-Gordon equation,
(82 + m2) x = 0. This form of the fermion mass is called Majorana mass term.

Proof:

The unitary matrix, A 1 which Lorentz transforms a fermion field (spinor) is given by equation (3.30)

(SIS
=
=
S o
ol
N
\_/

i A(
A% (0,8) = exp (‘560,“15‘“’) _ ( ; A(O

where )
i

4

is the Lorentz transformation generator for spinor, ' = wp; = —wjo and 0¥ = w;;€*. This transformation matrix is
block diagonal. This is seen from the block diagonal form of the generators of boost (3.26) and (3.27)

o= (0 )

S A— —6”k2k
2

ko O'i 0
> _< ’ Ul).

The blocks A( 1.0) and A(o 1) are the left and right handed representations of the Lorentz group. A spinor which
PR ’2

SH v, v"]

where the spin operator of Dirac theory is

transforms according to A1 is called a Dirac spinor.
Because of the block diagonal form left and right spinors transform in different representations of the Lorentz group

IV (R CUR ()= Mo )
2 0 A(O,%) VR A(o)%)"/}R
Under infinitesimal rotations by @ and boosts 3 the transformation laws for the left and right handed spinors are
1 i
A = |1- 1 B-o+ 20
(03) = 27 7T )

Now equation (3.40) tells us that we can write the relativistic field equation for a massless fermion which transforms under

A(%,o) as i - Ox = 0. Furthermore, we know how ~+# transforms. This is given by equation (3.29)

=
—
ol
=
~—~
I

ARy = Al

On the left the Lorentz transformations are acting on the spinor indices of v* while on the right the Lorentz transformation

11



acts on the space time index . We can work out the transformation for & because # is just the off-diagonal blocks of y#

My = ATRA,
(al ™) 0 A0 o)
u GV - -1 Zu
A G 0 A(o,%)a A(%,o) 0

From the above we conclude that * (A‘l)uﬂ = A(o 1 )6”A(11 0)° We will also need the fact that if ytransforms according to
2 3
) (i.e., x is left-handed and o?x* is right-handed). We prove this here. Applying

- >
—~ o~
=l

0) then o?x* transforms under A(o,

=

)

0) to o?x* yields

Lorentz transforms; review of a scalar field y (no spatial orientation).
1. x: Under Lorentz transformations the scalar x transforms as x (z) — x’ (z') = x (A~'2’) where z — 2/ = Ax.
2. dux: Under Lorentz transformations 0, x transforms as

ox¥ 0 _ o
O (@) = O (@) = o (A7), )

8(A*1)V '’ 9 B
8x’l‘p 817"X ((A 1) O‘xla)

—1\V 0 _1\B o
= (A g (A 2)

— (A—l)”u (Bux) (A1)

where  — 2/ = Az. Notice that this is opposite to how the vector z* transforms x# — z’# = A¥ x”. This shows
that while 2 is a contravariant vector, J, is a covariant vector.

Applying the Lorentz transformation to the field equation we have

ia - 0x () —imo®x* () =0 — ioH (A_l)y# ('“)I,A(%ﬁ)x (A 'z) — imA(Oé)on* (A'z) =0

1

where we know how 9, x transforms. Using o* (A’l)y = A(o 1)
2 35

A7} | we conclude
I3 (4,0

ig - Oy (x) — imUQX* (x)=0 — iA(Oy%)ﬁl’A(—;O)&,A(%_’O)X (Ailx) - imA(O,%)sz* (Ailx) =0
) {i&”@,jx (A_lx) —imo?x* (A_lx)} =0.

Thus, we see that the field equation i - Oy (z) — imo?x* (x) = 0 is relativistically invariant.
Next, we must show that i5 - dx (x) — imo?x* (x) = 0 implies the Klein-Gordon equation. The equation —ig* - dx* (z) +
imo**x (z) = 0 implies x* (z) = 2025 - Ox (z). Substitution into the complex conjugate of i& - dx (x) — imo?x* (z) = 0

m

12



we have

Il
o

02020 o U”BM@,,X (x) +m?o**y

0“6”8#8,,)( (z) —m?x (=
—9" 0,0, x (x) —m?x (x
0*x (z) +m?*x (z

o O O O o o

as required.
|

(b) Does the Majorana equation follow from a Lagrangian? The mass term would seem to be the variation of (02)ab XaXps

however, since o2 is antisymmetric, this expression would vanish if y () were an ordinary c-number field. When we go

to quantum field theory, we know that y (z) will become an anti-commuting quantum field. Therefore, it makes sense to
develop its classical theory by considering x (x) as a classical anti-commuting field, that is, as a field that takes as values
Grassmann numbers which satisfy

af = —pa for any «, .

Note that this relation implies that a? = 0. A Grassmann field £ (x) can be expanded in a basis of functions as
= Z Oén(bn (l‘) )

where the ¢, (z) are orthogonal c-number functions and the «, are a set of independent Grassmann numbers. Define the
complex conjugate of a product of Grassmann numbers to reverse the order:

(aB)" = B'a” = —a"B".

This rule imitates the Hermitian conjugation of quantum fields. Show that the classical action,
S = /d4:v [xTio SOx + % (x"o*x — XTU2x*)]

(where xT = (x*)T) is real (S* = 9), and that varying this S with respect to x and x* yields the Majorana equation.
Proof:
The trick to this problem is realizing that S € C and so S* = ST. The complex conjugate of the action is therefore

i . :
/d4x (xtiz"a,) " + (”2” (xTo?x — fof?x*)> 1

S*

— dir _(aux) ZU#’fXTT 2 (XTUQTXTT X*T 2TXTT)}

dz |~ @) oty — 7 (XTUQX* —x"o x)}

d'x —(%x)*iff”x} /d4 {2 (x"o*x — xTo*x")
ds, [—iXTﬁ”X} —/d4x [— (XTifi“aﬂxﬂ /d4 [ 5 (X o X — XTJQ)C*)

d*z [(xi5"9,x)] + / d'a {2 (x"o*x - fofo*)]

Il
N — o T T T

13



Notice that we have assumed that the field y vanishes at the boundary of the integration region.

Recall that the action is the integral of the Lagrange density £. In our case we have

. m N
L = XTM-3><+7(X o*x — x'o’x*)

- im * %
= Xai0g0uxs + > (02pXa Xt — TapXaXs)
. The Euler-Lagrange equations are derived from variation of the action, requiring that to first order dy that §5 = 0.

However, we cannot just use the Euler-Lagrange equations because y is a Grassmann field. Varying the action with respect
to x* yields

68 = S +ox - S
— /d4:v£ (X" 4+ 0x™, 0ux™ + 0,0X") — /d4:v£ (X", 0ux")

[ a im
- / dha | (s + 8xC) i 00+ o2,

0% (v — (0 + 90 (3 + 1))

. m -
— /d4:v [Xawfl‘bau)(b + 70217 (XaXb — Xaxb):|

= /d4:v 5)(:;2'65})5“)(1,4-@

5 Oab (Xa0XG — 5><Z§x§)]

I . m
= /d4x 5)(:105173#)(5 + > (—0(2155)(:)(; - U&&ZX?)}
= /d4$ 5X:; [ia-gbauxb - szngﬂ

= 0

Since this holds for all integration volumes
it 0, x — imo?x* =0

which is the Majorana equation. Similarly, with the action
§=5t= /d4:1: [— (Bux) ity — 7 7 (xfo*x* — x"o%X)
and varying with respect to x yields the complex conjugate equation
i 9, x* — ima®x = 0.

(c) Let us write a 4-component Dirac field as

w<w>=($lg>,

and recall that the lower components of ¥ transform in a way equivalent by a unitary transformation to the complex
conjugate of the representation . In this way we can rewrite the 4-component Dirac field in terms of two 2-component
spinors:

Ui (2) = x1 (2) and Y (2) = io®x; ().

Rewrite the Dirac Lagrangian in terms of x; and x2 and note the form of the mass term.

14



Proof: The Dirac Lagrange density is £p = 1 (iy"0,, — m) 1. The Dirac spinor is ¢ = ( v YR )T = ( X1 102X )T

Lp = 1; (7;’7”6;1 - m) P
(

T T 2 0 1 —m ia"u‘a'u, X1
X —ixge®) < 10 ) ( iahd,  —m 02X

= (=idor ) (T )

= —ix30® (—my1 + ic"9,io*x3) + xl (ic" 0, x1 — mio?x3)
= iX2T02J -0 (0’2)(;) + ixi& -0x1 + imXQTaz)a - mix];a2x§
= ixla-ox1 +ixto®o0? - Oxs + im (xéro?xl - XIU2X§>

= o o+ gt oxg +im (ot - xlo*x)

= ix{o-Ox1+ix3o" - 05 +im ()@Tale - x{ozxé)

where we have used o20ta? = gH*,

Since the second term, ix2 * - dx5, is just a number we can simply it further using the fact that (6“)T = —ogH
- T — ik * _ - T — A
X200 OuXo = (ZX2 g uX2)
= iauxgﬁﬂxg
= iaﬂxgﬁﬂxg.

Thus, the Lagrange density is
Lp =ix{o-0x1 +ixto - Oxa +im (xgole - XIUQXS) :

Notice that if x1 = x2 we have twice the Majorana Lagrange density from part (b):

Ly = ixio-0xi+ixia - oxi +im (xlele - XIUQXT)
Lot m
= 2 {zxiff v+ (X1T02X1 - XIU2X1‘)} :

(d) Show that the action of part (c) has a global symmetry. Compute the divergences of the currents

J" =xTatx and J* = 15" y1 — bt xe,

for the theories of parts (b) and (c), respectively, and relate your results to the symmetries of these theories. Construct
a theory of N free massive 2-component fermion fields with O (V) symmetry (that is, the symmetry of rotations in an

N-dimensional space).
Proof:

The action
S = /d43: {ixi& -0x1 + ix%& - Ox2 +1im (X2T(72X1 — XIUQXS)}

is invariant under the U (1) symmetry ¢ — e¥1).
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To verify this we write

Y — e
i
X1 e x1
() = ()

Thus, in terms of the x’s the transformation ¢ — e is x; — €?x; and x2 — e ®x5. Because in each term of the
action x; is partnered with either its complex conjugate or y2 and vice versa for y2 the action is invariant under the U(1)
symmetry y1 — €y and y2 — e ?xo.

We now compute the divergences of the currents,
- XT&MX
Jr= xletx - xdot e,
for the theories of part (b) and (c). To derive these currents we apply equation (2.12).

Part (c): Under the U(1) transformation the Lagrangian of part (c) is invariant. To compute the currents we need to
know the equations of motion. The equation of motion is obtained from the Euler-Lagrange equations

oL oL
6"(a<aﬂxi>>‘a_>a -0

With x; = x1 the EL equation yields

Similarly, for x; = x2

b 0
Ou (ZX;U“) + zma—x2 (X§U2X1) = 0

0
(@X%) ot — mﬁ—xg (XFiFU2X2) =0

(@Lx;) o' —mxio® = 0

" (Oux2) —mo’x; = 0.

Now the divergence of the current can be computed

auJ” = au (X]iaMXl - X;ﬁH)Q)

= (%XJ{&“Xl - 5;»(;5‘5(2 +XJ{5”3HX1 - xéff“@um

= (@9x1) x1 — (3 0ux2)" x2 + X1 (@ 0x1) — X4 (3" ux2)
ot N \

= (mo*x3) x1 — (mo®x3) x2 +xd (mo?x3) — x4 (ma?x})

= mxdotxa — mxFotxe + mxlo®xs — mxio?x;

_—
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Since the divergence of the current vanishes, the current is conserved under U (1) transformations.

Part (c): Under the U(1) transformation the Lagrangian of part (b) is NOT invariant
. m « Nt . m T . ot s
yliz - oy + o (o2 — o) = (xe'®) iz -0 (xe'®) + o ((xe”b) o2xe® — (xei?) ' o? (xei?) )
= xlig-ox+ ? (x"o?xe*? — xTo2x*e_2i¢)
#+ L.
However, if m = 0 then the Lagrangian is symmetric under U(1) phase rotations.
The equations of motion are

g0, x —mox* =
(@LXT)  —mxlo? =
Thus the divergence of the current is
O (xto'x) = (9ux'e") x +x' (6"0,x)
- (mxTUQ) x+x' (m02x*)
= mxLo?y +mx oy
Like the Lagrangian the current is only conserved if m = 0.

For the last part of this question we construct a theory of N free massive 2-component fermion fields with O(N) symmetry
(the symmetry of rotations in an N-dimensional space). Each free massive particle is described by the Lagrangian of part

(b) ,
m
Lo = x4io - Oxa + 5 (Xa X0 = X40"X2)
where a € {1,2,..., N}. The total Lagrangian is the sum of the individual Lagrangians
£=3"xhio - Oxa+ =

2

(xZo?xa — xto?X}) -

Each fermion field satisfies the equation of motion
G 0uXa —ma*xs = 0
o) 5" —miTe? = 0
( Hxa) ot —mx, o .

To have O(N) symmetry the Lagrangian must be invariant under rotations in N-dimensional space. Let the rotation
operator be denoted by Ry, where a,b are the components of the operator. Applied to the b** fermion field the rotation
operator takes the b*" fermion field to the a'" fermion field

RabXb = Xa-
Since R is a rotation, it is an orthogonal matrix (i.e., R~* = RT and R, € R). Application of R to the Lagrangian yields

L= Y Raxw)' i 0 (Bavxe) + 5 (Raoxe)” 0% (Bavxs) = (Bavxs)' 0 (Raoxs)”)
ab

= > R, Raxjic-oxs +
ab

m N
> (RaTbRabXbTUQXb - RjszabXZU2XZ)

L m N
= E RbaRabXZZU : aXb + 9 (RbaRango2Xb - RbaRabXZU2Xb)
ab

L m
= lew-a)@—i— >
b

= L

(XbTU2Xb - xlff?xi)

17



Thus, we see that the Lagrangian for massive two-component fermions is invariant under O(N) transformations.
|
(e) Quantize the Majorana theory of parts (a) and (b). That is, promote x (z) to a quantum fields satisfying the canonical

anti-commutation relation
{Xa (X) 7Xlt (y)} = 5ab5(3) (X - Y) )

construct a Hermitian Hamiltonian, and find a representation of the canonical commutation relations that diagonalizes
the Hamiltonian in terms of a set of creation and annihilation operators. (Hint: Compare x () to the top two components
of the quantized Dirac field.)

Proof: The book suggests comparing y to the upper two component of the quantized Dirac field
d3p .
_ a u® —ip-x + bsT,Us Pt
v / m 2 p U (2)e)
3 s s
- / d’p Z< < VP T > z‘p-z+bst< VP on >ez‘p-z),
\ /2E Vp-o&® P\ —vp-on

Setting ©r = ioc%1r, in the Dirac Lagrangian yields the Majorana Lagrangian. Thus, we expect the Dirac field to be a
solution to the Majorana equation under certain restrictions (i.e., n° = —io2¢). Setting x equal to 17, the quantized

Majorana field becomes
d3p p-o . .
— r - S ¢85 —ip-T st,. s ip-x
X_/(2w)3\/2EpzS:(ap€e ).
The condition of charge conjugation

u®(p) = —iv* (v*(p))" and v*(p) = —iv* (u’(p))”

places a restriction on the spinors, namely n° = —io2¢. Thus, the Majorana field becomes

dgp p-o s 2 sk _—ip-T st s _ip-x
X_/(Qw)3 /—2EPZ(CLP’LO'T] e P +pr77 e'? )

We will now test our solution in the Majorana equation of motion 60, x = imo?x*. The RHS becomes

16"0y / /SEUZ ay, io*n*te pr—l—bST 5 ip'z)
p-o S . —1 st,.s z T
- G 58, 2 (i’ (im0 (i) bl e™)
. p U 2, 8% —ip-x 18T ,.5 ip-x
= ( ) NG Z apon*re +ibgn’e )
. d3p 2, s% _—ip-x 18T ,.8 ip-x
= im E Z apon*re +ibyn’e )

where we have used the fact that (7 - p) (o - p) = m?. The LHS is

*
d3
imozx* = imo 2< /];Eo E a 2027’]5*6_le bs‘i‘ s zp m))

= im02/ ( Z ZGSTU2*775€ZP T 4 bi)ns*e—ip.m) )

16" 0ux
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To deal with the square root of ¢* we note that the square root is defined as a taylor series. Inserting unity in the form

202 between each consecutive term of o*, 0*™ = 0?G0? and the taylor series becomes one in & instead of o*. With this

in mind the LHS becomes
2 Pp 5 [p-7 2
me /(2@30 35,0 2 (Siaglo® e bpy e ).
p S

- d3p p'5 s s _ip-x s S*  —ip-xT
- “"/W oE, 2 (afim e + bty e )
P

imo?x*

Comparing the LHS and RHS we see that they are equal only if

s __ 8
bp—ap.

/];EUZ af ’LUT] e zpz+asT s zpac)'

From this mode expansion of the Majorana field we can see that the Majorana particle is its own anti-particle.

Thus, the quantized Majorana field is

To determine the commutation relations of the particle operator a¥ we simplify the commutator

{Xa () 1] )} = 006 (x ~ )

in terms of aj, commutators. Simplifying, we have

S0ad® (x—y) = {Xa (x) =Xiz (y)}
r 11/2 1 1/2
_ /dSp/dgpIZp'U / pI-U]/
2m)3 ) (2m)3 £~ [2Ep |, [2Ep | 4
{(iafﬂgcﬁg*e_ipm +aginge™), (—iagafeen;ei’)/‘y + a;,ng*e_ip/'y) }
- [an [asy ] ‘p"’]m
Gy | @ 2 |25, ), 125,
[chT]c Ufenf {a apT} e—ip-w-l—ip/.y + zo.gcng*ng* {ai’ a;‘),} e_ip'w_ip’.y

mbafenf{ o a } R AR GS’}eiP'w_w/'y}'

This is very complicated and it is not obvious what commutation relations for ay, yields the RHS. However, since we are
using a modified Dirac field we would expect that aj, satisfies the usual relations

at,a’,V =0= {at a"l
{ag, ap } p 9%

{ap’ aTT} = (27T)3 drs0(p —P').
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Lets test if these commutation relations are indeed the ones we require

bubonlw)} = [&5 [ &2 B};Tf BEU“

> |:ch770 O'fenf {CL arT} —ip-x+ip’ -y +ns Tk {a CL:)/} eip~x71‘p/.y:|

- [ ey ] L

X(Srs&(p - pl) [Ul%cng*ajgen e—zp wHip'y +77 UT* iy’ y}

1/ po 1/2
k[
X [chng*afen;eﬂ(EPz —px)+i( Epy’— )+nsns*ez(E 7p~x)7i(EPy07p-y):|

When taken at equal times the commutator becomes

t d*p p-olP o], L +i
— s* ip-X—1ip-y S, 8% —ip-X-+ip-y
{Xa (%), Xg (y)} /(2@3;{2%}@ LEpLi lohnofente +mpmete ]
(2m)3

po 1/2 po 1/2 ) b0 1/2 po 1/2 )
2 s¥,s 2 ip-(x—y S, §% —ip-(x—y

|:2EP:| Tocle 50 5e |:2EP:| ‘ - {2Ep } ab lle |:2EP ] ed ‘

To simplify this further we sum over sand use the identity,

ab ed
§ CEW]
Mg My = 50177
s

to get
&3 M .0-1/2 o 1/2 o 1/2 - /2
T . p p 2 2 |P ip-(x—y) p —ip:(x—y)
Xa (X)ux (y)} - / a1 O—C(Scfo' e |:—:| e + | == 61)6 = €
{ ¢ (2m)3 __2Ep_ab ’ ! 2Ep | o4 2Ep | 2Ep | .4
3 o _
_ / A [[p0] peey)  [PT] ipiey)
(2m)3 LL2Ep ] .4 2FEp | 4a
3 :
_ / Ap [[P-0] ipey) {M} e-ip-(x—w}
(2m)3 LL2Ep | 49 2Ep | 4a

To simplify further we need to know (p - o),,. Here, we work out the matrix elements of p - 7,

(P 0)ey = (Ep—pP- 7)ad

Substitution into the commutation relation yields

d3 Epbaa —p'- ot Epbad — ol
T _ p ad p ad zp (x—y) ad p ad —zp (x—y)
3 3
_ / @p_[Sad ip-(x-y) | Sad —ip-(x-y) _/ @p P ad ip-(x—
2r) | 2 2 28,
= 5ad5(x - y)
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where the second integral is odd in p.

We now turn to calculating the Hamiltonian for Majorana fields. The Hamiltonian is the Legendre transform of the
Lagrangian,

H = /d?’:v(m'(—ﬁ)

Lo e m N
/d3:1: (zXTX — zXTa -0x + - (XTUQX - XTO'2X ))

where
L = iXTﬁ -Ox + ? (XTJQX — XTUQ)C*) ,
_ oL _ iXT
(%) '

The simplification is straight forward and messy.

We just note the result here
d3p
_ E st s
H - / WEP ap ap.
Which is exactly 1/2 the Dirac Hamiltonian,

d3p S S S S
Hp = /WEP Z (apTap + prbp) ;

S

with the restriction bf) = ap,.

We simplify the Hamiltonian term by term. The first term is

d3p a3p’ , ) : /. » B
' z/ (27)3 / 2r)? (—iagn™T o?e™® + aglyte ™) /pQ—E(I o gEU (ag,ia%”e—w 4 ale m)
s o P
d3 3y Ny ) D- p o ., »
. p p E . T . t. st —ip- _(7 9 rw —inl ot .
= Z/ (2—)3 / (2—)3 p’ g ( -Zaf,ﬁs et 4 af, 775 e W x) 2Ep 5 . (CL:)/O' T]T P ZCLp/T]Telp z)
|

1.5 Supersymmetry

It is possible to write field theories with continuous symmetries linking fermions and bosons; such transformations are
called super-symmetries.

(a) The simplest example of a supersymmetric field theory is the theory of a free complex boson and a free Weyl fermion,
written in the form

L=20,0"0"p+ x'ig - Oy + F*F.
Here F is an auxiliary complex scalar field whose field equation is F' = 0. Show that this Lagrangian is invariant (up to a
total divergence) under the infinitesimal transformation

o = —ielo?y,
oy = €F —o-0¢o?e",
OF = —icla -y,
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where the parameter €, is a 2-component spinor of Grassmann numbers.
(b) Show that the term
1

AL = |moF + §imxT02X + (complex conjugate)
is also left invariant by the transformation given in part (a). Eliminate F' from the complete Lagrangian £+ AL by solving
its field equation, and show that the fermion and boson fields ¢ and yare given the same mass.
(¢) It is possible to write supersymmetric nonlinear field equations by adding cubic and higher-order terms to the La-
grangian. Show that the following rather general field theory, containing the field (¢;, x;), i = 1, ..., n, is supersymmetric:

L = 0,¢;0"¢; +xliz -0y + F/ F;

oW 9] | i PWIP| 1 ,
F. — . ; .
+<’L a(bz +2a¢la¢7XzUXJ+CC )

where W [¢] is an arbitrary function of the ¢;, called the super-potential. For the simple case n = 1 and W = g¢3/3,
write out the field equations for ¢ and x (after elimination of F).

1.6 Fierz transformations v

Let u;, i = 1,...4, be four 4-component Dirac spinors. In the text, we proved the Fierz rearrangement formulae (3.78) and
(3.79). The first of these formulae can be written in 4-component notation as

N 1++° (1N 1+9°
ury B U2U3 Yy B Ug = —Ury 5 ULUI Y B Uz.

The above identity plays an important part in the weak interaction. Thus, we derive this equation from (3.78) and (3.79)

(w1ro*ugr) (Usroyuar) = — (Wigo™uar) (Usro,u2R)

(@1r.0"uor) (Usropusar) = — (u3pd™uar) (W1no,u2L) -
Denoting the handedness operators by Pr = 1+T”5 and P = I_TV we have the following:

rY ' u2R) (UsrYuU4AR)
roMu2R) (UsRO,UAR)
1rO*UaR) (3RO, U2R)

17uPrus) (37, Pruz)

(wy" Prus) (u3y, Prua) (T
(U

_(ﬁ
_(ﬁ

(" Prug) (usy,Prus) = — (uspyu Pruar) (w7, Pruar) -

In fact, there are similar rearrangement formulae for any product
(ﬂlfAUQ) (ﬁgFBU4) ,
where I', T'B are any of the 16 combinations of Dirac matrices listed in Section 3.4.
(a) To begin, normalize the 16 matrices T4 to the convention
Tr [T4TF] = 4545,
This gives I'* = {1,7°,i77, ...}; write all 16 elements of this set.

Proof: We already know that the 16 Dirac matrices are orthogonal subject to the inner product Tr[AB]. Thus, we only
have to find the normalization constant.
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1. Scalars (I'* = 1): Tr[1] = 4 thus, the identity is properly normalized.

2. Vectors (I'4 = v#):
Tr [(70)2} —Tr[1] =4

(75 gy )| o

Thus, the normalized vector matrices are: 4° and 7.

Tr {(yi)z} —Tr

3. Tensor (I'* = oH):

. 2
o] = (5) (6]
1 v 174 v 174 174 v 174 v
= —ZTfh“v 0 e e Tt Lo e e Tt ke i s T L T Lol
1 174 v v 174
= —3 {2Tx [y!'y"yH "] = 2Tr [y y* " 7”1}
1 174 v v 174 174 174
= -7 {2Tx [y! 9" H "] 4 2T [y 9"y H o] — 4gH Tr [y#47]}
1 174 v 174 74
= —Z{‘m YY"y y"] — 169" g }
1
= —; 16[g"g" = g"'g™ + g™ "] - 169" 9"}
1 124 124 vv
= —116[9“ g — gty
= —4{g"g" —g"'g""}
- 0 nw=v
o 4gMgr p# v
0 w=rv

= 4 1 # v and both u, v are spacelike or timelike
—4  p# v and p is spacelike (timelike) and v is timelike (spacelike)

Thus, the normalized tensor matrices are: —g%, —g™0, g%, g%,
4. Pseudo-vector (I'4 = y#~?):

Te [(v#9°)] = Tr[y"9°9"77]
= Tr [v#9°y°4*]
= Try"y"]
= 4gM*

-4 =0
4 w=1i

Thus, the normalized pseudo-vector matrices are: —%+° viy°.

5. Pseudo-scalar (I'4 = +°):
Tr [7575] =1

Thus, +° is already properly normalized.
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(b) Write the general Fierz identity as an equation
(ﬂll—‘A’u,g) (17,3FBU4) = ZCAC]«BD (ﬂ1FCU4) (ﬂ3FDu2)
C,D
with unknown coefficients CAC?D. Using the completeness of the 16 I'4 matrices, show that
1 CHAPDTB

Proof:
Using the completeness of the Gamma matrices we write
ABTC ABTD AB 1C 1D
F ch - Z C C 1—‘lad C D 1—‘lbc = Z C CDFadec
c D CD

from which it follows
(ﬁerUQ) U3FBU4 Z C U1FCU4) (ﬂgFDUQ) .

We now calculate C4% ,,. Multiplying by FdCanc we have
1—‘dal—‘bc 1—‘ ch - Z CAC? Flﬁradrbc
C,D
which implies
Te [POTATP TP = 3 4T [rTC T [P TP
C,D
= 16 /0090
c.D

= 16C% .
Thus, we see that C4%, = —T [rer4rPra] .
|
(c) Work out explicitly the Fierz transformation laws for the products (#iu2) (dsus) and (@i1y*us) (Usyuua).
Proof:

First, the product (uque) (agus) = (ﬂlI‘Aug) (ﬂ3I‘Bu4) where IT'4Z = 1. Thus, we need all nonzero traces of the form

1
11 _ CqpD

1

= —Tr[1°T?]
16

= -d¢p.
1ocD

Thus, the product rule for I'*® = 1 becomes
(Wr1ug) (Usus) = CACBD (ﬁlFCU4) (’ELgFDUQ)
C,D

dcp (ﬂ1FCU4) (ﬁgFD’UQ)

I
7

oM ®

N )

(ﬂ1FCU4) (ﬁgl—‘c’u,g)



where the index C' cycles through all 16 T'¢.

Next, we examine the product (@1y*us2) (37,u4). The coefficients C4%,, are determined as usual
L C . uD
Crtp = ETr [T ,] .

0

Using the matrices from our normalized basis of part (a) we define I'* = (7 ,i'y). In terms of I'* we have

1 7 !
Ctp = g {Iy [rerrPro] ZI&« [T (=" 1P (=i )}}
1 X2 X2
= {Tr [rerrPrY] +;Tr [rer FDF}}
Suppose that ' = ~Y then
1 & i i
"o = 1g {Tr [T°r°1ro] + ;Tr [ToT'TPre }
1 3
= {Tr [TPT0] — ;ﬂ [FOFD]}
= —§P0.
Similarly, if I'¢ = +7 then
3
1 i i
My = g {Tr [0/0°TP1r%) + ;Tr [rvr FDF}}
1 3 S .
- 1_6{ Tr [[V0P] + ;Tr[(—2g” —FT])PDPZ}}
3
1 %, i i i
= E{ 4673 —2ZgﬂTr [rPr] - ;Tr s FJPDF]}

3
1 , : ,
= {—45DJ —2Tr [TPIY] — ;:1 Tr [[VDP] }
1

= g {4077 - 85" — 12677}

_ __5Dg
16

3 .
_ __5DJ
2

Thus, we see that for ¢ =4 we must have ' = 4 and vice versa.
c,D _ —
For T'“"” =1 we have C*f,, = 0.

The remaining matrices are the anti-symmetric matrices form the set I' = {o"*, v#~5, v5}we have
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for: TC =45

for: TC = 045

for: T¢

Qa0

="y

B
¢ v5,D

o _
c j5D

cr, = 11—6{1&«[P5POPDPO +Zﬁ F5PZFDPZ}}

_5D5

==

Tr [T 210] +ZTr FO5FTDF1}}

1=1

al=

i=1
3

—Tr 75701{) —I— Z Tr z’y ) ( 75) FDIMJ }

==

=1

e
{4 S ) e o
{m

= = {’I‘r[F05FD +ZI&.~ r05rD]}

i=1

— Ligsosr

16
§05.D

1

3
50 D10 iSip D
5 T [DPTOrPrY] 4 T [T r}}

i=1

=

=1

Tr [P0 P10] +ZTr iyiy®) (i )Fqu}

3

al=

Tr 17507 Zﬂ (i (ir") )PDM}

{r
{r
{r
fasne - S g - )29 000 |
{
{

=

al=

3
4690 42 Z Tr [g7~°TPT] + > Tr [(iv') iv?4° T PT] }
i=1
1

3
5 14000 + 2T [T P 4y T FJ5FD]}

=1

3
G { 4675P 4 2Ty [PPTP] + 3" T rﬂf’rD]}
i=1
2
225950
16
3 .
2§50
2
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for: T¢ =T = —g% —g0 500 5%
i
{o" " = S0 ="
1 i
= S "M =5 0t

= S U+ 5 = 5 1 = 5
= gl +iyt (v = g") —ig" Uyt — iy (" = g"?)
igh ey ity S — iyt gt —agh it — ity iy gh
= 2ig""Y" = 2ig" M iyt — iyt

= 2igh*y" — 2ig" M iyt — iyt

)

1.7 Discrete symmetries of the Dirac field v

This problem concerns the discrete symmetries P,C', and T.

(a) Compute the transformation properties under P, C, and T of the antisymmetric tensor fermion bilinears, oV, with
o' = 5 [y*,4"]. This completes the table of the transformation properties of bilinears at the end of this chapter.

Proof: Starting with the parity transformation we have
Pyot P = P@PP% [v*,v"| PPy P
= i (6, =975 #0120 (1, =)
W (t,—x) 70% (V9" = "y") 2 (¢, —x).

Notice that u # v otherwise the commutator vanishes. There are two cases:

1. pu# v where y,v=1,2,3.

1

Pyo'iyP = (=1)*¢(t,—x) 5 (777 =) " (8, —x)
= 9 (t, —x) o (t, —x).
2. p # v and either p =0 or v = 0. For v = 0 the parity transformation is
o _ i, . .
PYo P = 4 (t=x)7"5 (v =1°7) 2" (1, —x)
_ i .

(=Dt =%) 5 (47" = ") 1* % (. —x)
= _J) (tv _X) Uio‘/’ (tv _X) .

Similarly, for © = 0 the parity transformation is

P&O.ijp = _1/; (ta _X) UOj‘/’ (tv _X) .
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The parity transformation of the bilinear tensor can be summarized by the following formula

P@O‘“jlﬂp = (_1)M (_1)V 1& (tv —x) o1 (t7 _X)

where

Next we look at the time reversal transformation

TYo" T = TYTTZ [y TTYT

- i

O (—t,x) (—7"?) (2

[”y“ﬁ”]) (v'9*) ¥ (—t, %)

= () () 2

5 (P =9 ") (v'9*) ¥ (—t,x)

Since v2* = —12,
1,3 n —
Lo 1.3 — (’Y’Y)FY ILL—O
) {—(7173)7“ p=123

and we can simplify the transformation law. Like the parity transformation there are two cases:
1. p#vand p,v=1,2,3.

TYo'iyT = —(=1)*9(=t,x) (—7'7°) (+'7%)
= —p(=t,x) " (—t,x).

% (V' =+ ¢ (—t,x)

2. p # v and either 4 =0 or v = 0. For v = 0 the time reversal transformation is
Too™vT = —b(-t,%) (-1'7") 5

= — (DY (=t,x) (") (')
= Y (—t,x) "% (~t,x).

(71*70* _ 70*71*) (7173) w (—t, X)
% (YY" =7%7) ¥ (~t,%)

Similarly, for © = 0 the parity transformation is

TYoyT = ) (t,—x) oY (t,—x).

To" T = — (=1)" (=1)" ¥ (t, =x) "9 (t, =) .

The time reversal transformation of the bilinear tensor can be summarized by the following formula

Lastly, we work out how the bilinear tensor transforms under charge conjugation
CpathC CypCat” CpC
. T v/ -7 T
= (=) o (—iy°y?)
702 p\T 0.2 T
= —[Mv (") ”Y”H/J}

L .
= —Py°9? (") 0%
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where in the last line we have used the fact that (—i’yo'yzw)T ohv (—id}yoﬂyQ)T is just a number so the transpose does not
change anything. The transpose of the gamma matrices are

Since,

we see that

" =13
Therefore,
T
() (") = =" (")
and we can show that %2 (U'U‘V)T = —g"~942. Thus, the bilinear tensor under charge conjugation becomes
CpatpC = o504y %%y
= pote).

The charge conjugation transformation of the bilinear tensor can be summarized by the following formula

CpotpC = —ip (t, —x) o9 (¢, —x) .

(b) Let ¢ () be a complex-valued Klein-Gordon field, such as we considered in Problem 2.2. Find unitary operators
P,C and an anti-unitary operator T' (all defined in terms of their action on the annihilation operators a, and b, for the
Klein-Gordon particles and antiparticles) that give the following transformations of the Klein-Gordon fields:

P(b(th)P = (b(tv_x);
To (taX)T = (b(_tax) )
Co(t,x)C = o¢"(t,x).

Find the transformation properties of the components of the current

TE =i ($° " — ")
under P,C and T
Proof: The quantized Klein-Gordon field is

d3p 1 —ip-x T ipx

(b (t, X) = (27T)3 \/E (ape =+ bpe )
d3p 1 X X

* t, _ T ip-x +b —ip-x

6% / oy amy e e )
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The natural definition for the parity operator is

Pa,P = a_p
PbyP = b_p.

Let us test this definition on the KG field. Application of P yields

d? 1 . ,
PoP = / P —(PapPe—W'w+(Ppr)TeW)

(27)* \/2Ep

3
= /ﬂ; (aipe*iEthrip-x + bT_peiEptfip.x) .

(27m)* \/2Ep

Defining p = (Ep, p) = (Ep, —p), the above equation may be written as

a3 (— 1 _ . . .
PoP =pop / ) (afpeﬂE’ptﬂp'x—I—bT_pelE*th”p'x)

(27)® /2B,

d/3]5 1 —ip-(t,—x T ip-(t,—x
= [ s (e )
= d)(ta_x)'

Thus, P takes ¢(t,x) to ¢(t, —x) as required. We note here that
Po*P = ¢*(t, —x).
This will be used later to find the transformation properties of the current.

Define the time reversal operator to be anti-linear so that when commuted past a c-number it conjugates the c-number.
The time reversal operator acting on the creation operators is defined to be:

~

Tag
TopT = b_p.

= a_p

Let us test this definition on the KG field. Application of T yields
d3p 1

rot = / 2n) /2Ep

(TapTei’”” + (10,1 e—im)

I
=
|
\'@0-
X

as required. We note here that
To*T = ¢*(—t,x).

This will be used later to find the transformation properties of the current.

Define the time reversal operator to be anti-linear so that when commuted past a c-number it conjugates the c-number.
The time reversal operator acting on the creation operators is defined to be:

CapC = by
CbpC = ap.
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Let us test this definition on the KG field. Application of T" yields

3
CoC = / —(dp = (CapCe#® 4+ (ChyC) T )

27)° /2Ep

d? 1 ; ;
N /(2 ])?3 — (bpe 7" +afe™)
™ p

a3 1 , ,
- /(2 1))3 2F (bpe™ 7" + ale™)
™ P

¢"(t,%)

as required. We note here that

Co*C = ¢(t,x).
This will be used later to find the transformation properties of the current.

Now, we can find the transformation properties of the current. In addition to knowing how ¢ and ¢* transform under P,
T, and C, we need the transformation rules for the derivative 90*. Parity takes x — —x and ¢ — ¢ and therefore, V — —V
and Jy — Jy. Time reversal takes x — x and t — —t and therefore, V. — V and 0y — —0Jy. Charge conjugation does not
effect the derivative. With g"#* defined such that there is no sum we can write the transformations of the derivative in a
compact way,

PoO*P = ghHoOH
TO'T = —ghtoh
corc = o
Thus, under P, T, and C, the current becomes
PJH(t,x)P = i(P¢*(t,x)PO*Pep(t,x)P — 0" Pp*(t,x)PPp(t,x)P)

i(67(t, —x)g"" 0" p(t, —x) — (9" 0" 9" (t, —%)) & (t, —x))
()" T (t, —x)

TJHt,x)T = i(To*(t,x)TO"T(t,x)T — TOT¢*(t,x)TTé(t,x)T)
= i(¢"(=t,x) (—=g"") " p(—t,x) — ((—g""") 0" (—t, %)) $(—t,x%))
= (=1 J*(~t,%)

CJM(t,x)C = i(Co*(t,x)CO"CH(t,x)C — I*C¢* (t,x)CCP(t,x)C)
= 1(o(t,x)0"0"(t,x) = (0"9(t,x)) ¢" (¢, %))
= i(o(t,x)0"¢"(t,x) = (0"9(t, %)) ¢ (t,%))
= —J"(t,x).

|
(¢) Show that any Hermitian Lorentz-scalar local operator built from v (x), ¢ (x), and their conjugates has CPT = +1.

Proof: A Hermitian, Lorentz invariant operator must have ¢ paired with ¢* and v paired with ¢. Additionally, the
Lorentz indices must be contracted to form a Lorentz scalar. Looking at table in P&S we can see that any combination
of these bilinears which yields a Hermitian, Lorentz invariant will have CPT = 1.
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1.8 Bound states

Two spin-1/2 particles can combine to a state of total spin either 0 or 1. The wavefunctions for these states are odd and
even, respectively, under the interchange of the two spins.

(a) Use this information to compute the quantum numbers under P and C of all electron-positron bound states with .S, P,
or D wavefunctions.

The Ps Schrodinger equation is the Schrodinger equation for a particle of electric charge e and reduced mass p = me/2
in the Coulomb potential V(|x]) = —«/|x| where e (< 0) is the electron charge, m. is the electron mass, o ~ 1/137 is
the fine structure constant and « is the separation distance between the electron and positron in Ps. Instead of directly
solving the Ps Schrodinger equation, the position space wave functions of Ps can be obtained by taking advantage of the
similarity between the Schrodinger equation for Ps and that for hydrogen.

Specifically, the position space wave functions can be obtained by replacing the hydrogen Bohr radius with the Ps Bohr
radius in the hydrogen position space wave functions. These wave functions are characterized by the principal quantum
number (or energy quantum number), n, the orbital angular momentum quantum number, I, and the orbital angular
momentum projection quantum number, m;. The position space wave functions are

Vi, () = \/ (2) ot (22 g, (22 o (1)

where a = 2/mec« is the Bohr radius of Ps, L], are associated Laguerre polynomials and ¥;"" are spherical harmonics.

Now that we have the position space wave functions of Ps, we can construct the Ps bound state. In the centre of mass
frame, the Ps bound state can be expressed by
A3k
|q}nlmz;s,ms> = V2mps anlmz( )\/—\/—
where s is the total spin of the Ps bound state and mg is the spin projection along the z-axis. The momentum space
wavefunction,

|k; —k; s, myg), (1.2)

Vot (B) = [ 21, () 13)

gives the amplitude for finding Ps in a given configuration where the electron has momentum k. The free state in equation
(1.2) is
1. _1
i —k;0,0) = (a2 b 75" — a2 ) 10)/V2,

for p-Ps (s = ms = 0) and

aéTb%UO) for mg =1,
|k; —k;1,ms) = ( %beélf + a;%Tb%L) |0)/v/2 for mg =0,
QTb 2T|O> for mgs = —1,
for 0-Ps (s = 1) where |0) is the vacuum state.
Applying the parity operator, we obtain
d*k

P|\Ilnlml,00 \/—/ wnlml( )P|k7_k700>
d3k 1o o1 141
vy Unim ()P (0 022" = 0 102 ) Po)

d®k

¢—/

|77¢l / 1/}nlml( )P (a%Tb:éT - CL;%TZ)%L) P|O>
\/_
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where we have assumed that the vacuum state is even under parity. To simplify the above further, note from equation
(1.3), that the parity of 1,im, (k) is the same as ¢;,m, (). Therefore, we can invert the spatial coordinate in (1.1) to
obtain the parity of the momentum space wavefunction. The only part of (1.1) that is sensitive to such an inversion is
the spherical harmonic, Yj,,, (6, ¢) — (—1)!Y;,, (6, ¢). Thus, p-Ps transforms as

P|q}nlmz;00> = (_1)l+1|q]nlmz;00>
under parity. Similarity, o-Ps transforms as
P|\Pnlmz;lms> = (_1)l+1|q]nlmz;1ms>

under parity and has an P eigenvalue of (—1)!*!. Notice that the relative phase difference between the fermion and
anti-fermion inversion phases, 7; = —1,, contributes a factor of —1 to the parity of Ps (p-Ps and o-Ps) in addition to the
parity of the wave function; this extra factor is called the intrinsic parity of a fermion--anti-fermion system.

The remaining C' and T eigenvalues of Ps are obtained in a similar manner and are listed below in Table 1.

| Discrete Transform | Ps Eigenvalue |
P (_1)l+1
C (_1)l+s
T (_1)s+l

Table 1: P, C and T eigenvalues of the Ps state |U,,;m,:sm,). Here, [ is the orbital angular momentum quantum number
and s is the spin angular momentum quantum number.

(b) Since the electron-photon coupling is given by the Hamiltonian
AH = /dS:v eA,g",

where j# is the electric current, electrodynamics is invariant to p and C' if the components of the vector potential have
the same P and C parity as the corresponding components of j#. Show that this implies the following surprising fact:
The spin-0 ground state of positronium can decay to 2 photon, but the spin-1 state must decay to 3 photons. Find the
selection rules for the annihilation of higher positronium states, and for 1-photon transitions between positronium levels.
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