
Solutions to Peskin and Schroder – Andrzej Pokraka

5.1 Coulomb Scattering.

Repeat the computation of problem 4.4, part (c), this time using the full relativistic expression for the matrix
element. Your should find, for the spin averaged cross section,

dσ

dΩ
=

α2

2|p|2β2 sin4(θ/2)

(
1− β2 sin2 θ

2

)
(1)

where p is the electron’s 3-momentum and β is velocity. This is the Mott formula for Coulomb scattering
of relativistic electrons. Now derive it in a second way, by working out the cross section for electron-muon
scattering, in the muon rest frame, retaining the electron mass but sending mµ →∞.

To answer this question we must study the single-particle cross-section and re-interpret the invariant
scattering amplitude, M (see Appendix).

The interaction hamiltonian for a classical potential is given by Hint =
∫
d3xeψ̄γµψÃµ which yields the

vertex:

p

qp′

= −ieγµÃµ(q). (2)

In the special case of Coulomb scattering we set Aµ = ( Ze4πr ,0). The matrix element for scattering is

iM = −ie (ū(p′)γµu(p)) Ãµ(p′ − p), (3)

To obtain the unpolarized cross-section we calculate the spin-averaged matrix element squared

1

2

∑
spin

|M|2 =
1

2

∑
spin

ū(p′)(−ieγµÃµ)u(p)u†(p)(ieγν†Ã†ν)ū†(p′)

=
e2

2

∑
spin

Tr [u(p′)ū(p′)γµu(p)ū(p)γν ] ÃµÃν

=
e2

2
Tr [(�p

′ +me)γ
µ(�p+me)γ

ν ] ÃµÃν

=
e2

2
Tr
[
�p
′γµ�pγ

ν +m2
eγ
µγν

]
ÃµÃν

= 2e2
[
−(p · p′)(Ã · Ã) + 2(p · Ã)(p′ · Ã) + (Ã · Ã)m2

e

]
= 2e2

[
2EE′ − p′ · p+m2

e

]( Ze

|q|2

)2

= 2e2
[
EE′ − p′ · p +m2

e

]( Ze

|q|2

)2

, (4)

where Ãµ(q) =
(
Ze/|q|2,0

)
, p = (E,p), p′ = (E′,p′) and the momentum transfer q = p′ − p. Taking the

E = E′ limit or equivalently the |p| = |p′| = mβ limit, the spin averaged matrix element squared becomes

1

2

∑
spin

|M|2
∣∣
E′=E

= 2e2
[
E2 − |p|2 cos θ +m2

e

]( Ze

2|p|2(1− cos θ)

)2

(5)

=
Z2e4

2|p|4
E2 − |p|2 cos θ +m2

e

(1− cos θ)2
(6)

=
4π2Z2α2m2

e

|p|4 sin4(θ/2)

(
1 + β2 sin2(θ/2)

)
. (7)
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The cross section is

dσ =
d3p′

(2π)3

|M|2

2E′2Eβ
(2π)δ(E − E′) (8)

(see problem the appendix for the derivation of this formula). Dividing by the spherical measure we obtain
the differential cross section

dσ

dΩ
=

∫
d|p′|
(2π)3

|p′|2 |M|
2

2E′2Eβ
(2π)δ(E − E′)

=
1

64π2

∫
d|p′| |p′|2 |M|

2

E′Eβ

E

|p|
δ(|p| − |p′|)

=
1

64π2

|p|
Eβ
|M|2

∣∣
|p|=|p′|=mβ

=
Z2α2m2

e

16Eβ|p|3 sin4(θ/2)

(
1 + β2 sin2(θ/2)

)
≈ Z2α2

16|p|2β2 sin4(θ/2)

(
1 + β2 sin2(θ/2)

)
(9)

This is annoyingly off by the large numerical factor of 8... I will not look for my factors of 2, but if someone
sees the mistake please let me know.

Appendix: Derivation of the cross-section for single-particle scattering off a
time-independent classical potential

The interaction hamiltonian for a classical electromagnetic potential is given byHint =
∫
d3xeψ̄(x)γµψ(x)Aµ(x).

The T matrix element for an electron scattering off a time-independent electromagnetic potential is

〈p′|iT |p〉 =

(
0〈p′|T

[
exp

(
−i
∫
dtHint(t)

)]
|p〉0

)
connected, amputated

≈
(

0〈p′|T
[
−i
∫
d4xeψ̄γµψAµ

]
|p〉0

)
connected, amputated

= − ie
∫
d4xAµ(x)0〈p′|ψ̄γµψ|p〉0

= −ie
∫
d4xAµ(x)ū(p′)γµei(p

′−p)·xu(p)

= −ieū(p′)γµu(p)

∫
dtei(E

′−E)t

∫
d3xAµ(x)e−i(p

′−p)·x

= −ieū(p′)γµu(p)Ãµ(p′ − p)(2π)δ(E′ − E)

= iM(2π)δ(E′ − E) (10)

It is useful to recall that amputated connected diagrams correspond to diagrams in which all field operators,
and, in and out states are fully contracted. It is now natural to define the Feynman rule

p

qp′

= −ieγµÃµ(q). (11)

for calculating the invariant scattering amplitude M.
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Next we must find the cross section for single particle scattering off a classical potential. First we must
set up wave packets representing the initial-state particles, evolve this state for a very long time using the
time-evolution operator exp(−iHt) of the full interacting field theory and overlap the resulting state with the
desired final state wave packets. This procedure yields the probability amplitude for producing the desired
final state from the initial state and is simply related to the cross-section. To get results that do not depend
on the shapes of the initial and final wave packets we assume that these wave packets are peaked sharply
about a single momentum.

A general wave packet may be represented as

|ψ〉 =

∫
d3k

(2π)3

1√
2Ek

ψ(k)|k〉, (12)

where ψ(k) is the Fourier transform of ψ(x) and |k〉 is a one-particle state of momentum k in the interacting

theory. In the free theory |k〉 =
√

2Eka
†
k|0〉. The factor of

√
2Ek converts the relativistic normalization of

|k〉 to the conventional normalization in which the sum of all probabilities adds up to 1:

〈ψ|ψ〉 = 1 if

∫
d3k

(2π)3
|ψ(k)|2 = 1. (13)

The probability we wish to compute is

P = |〈ψf |ψi〉|2, (14)

where |ψf/i〉 are single particle wavepackets constructed in the far future and far past. Note. Wavepackets
are localized in space and thus can be constructed independently of others.

We set up |ψi〉 in the remote past and then take the limit in which the wavepacket ψi(ki) becomes
concentrated about definite momenta pi; this defines the in state |pi〉in with definite initial momentum. We
choose to view ψi〉 as a linear superposition of such states.

As in two particle scattering, we must account for the transverse displacement of the initial wavepacket
relative to the origin. An incoming wavepacket with momentum pi in the z-direction with impact parameter
b can be represented by

|ψi〉in =

∫
d3pi
(2π)3

1√
2Epi

ψ(pi)e
−ipi·b|pi〉in. (15)

Note. We have extracted the explicit dependence on the impact parameter from the wavepacket ψ(pi).
Similarly, we expand 〈ψf | in terms of out states of definite momentum formed in the asymptotic future

out〈ψf | =
∫

d3pf
(2π)3

ψ(pf )√
Epf

out〈pf |. (16)

However, following Peskin it is easier to use the out states of definite momentum as the final states in the
probability amplitude and multiply by the various normalization factors after squaring the amplitude. As
long as the detectors of final state particles mainly measure momentum and do not resolve positions at the
level of de Broglie wavelengths, this is physically reasonable.

Now we can relate the probability of scattering in a real experiment to an idealized set of transition ampli-
tudes between asymptotically defined in and out states of definite momentum out〈pf |pi〉in. The conventions
for defining the in and out states are related by time translation

out〈pf |pi〉in = lim
T→∞

〈 pf︸︷︷︸
T

| pi︸︷︷︸
−T

〉 = lim
T→∞

〈pf |e−iH(2T )|pi〉 = 〈pf |S|pi〉. (17)

Recall that S contains both the kinematic and dynamical physics S = 1 + iT . The invariant matrix element
is related to the expectation value of the T -matrix by

〈p′|iT |p〉 = iM(2π)δ(E′ − E) (18)

and contains the dynamical information.
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We now must calculate howM relates to the cross section σ. To do this we calculate the probability for
the initial state |pi〉 to scatter and become a single particle final state whose momentum lies in the small
region d3pf in terms of the impact parameter b. In the Peskin normalization this probability is

P(i→ f ;b) =
d3pf
(2π)3

1

2Ef
|out〈pf |ψi〉in|2 (19)

The cross section is simply related to the above probability

σ =

∫
d2bP(i→ f ;b). (20)

Writing dσ rather than σ we have

dσ =
d3pf
(2π)3

1

2Ef

∫
d2b

∫
d3pi
(2π)3

ψi(pi)√
2Epi

∫
d3p̄i
(2π)3

ψ∗i (p̄i)√
2Ep̄i

e−ib·(pi−p̄i) (out〈pf |pi〉in) (out〈pf |p̄i〉in)
∗
.(21)

The integral over the impact parameter yields the delta function (2π)2δ(2)
(
p⊥i − p̄⊥i

)
. Assuming we are not

interested in the trial case of forward scattering where no interaction takes place, we can drop the 1 in S
and write

(out〈pf |pi〉in) = iM(i→ f)(2π)δ(Ei − Ef )

(out〈pf |p̄i〉in)
∗

= −iM∗(i→ f)(2π)δ(Ei − Ef ). (22)

With the above considerations, the differential cross section becomes

dσ =
d3pf
(2π)3

1

2Ef

∫
d3pi
(2π)3

ψi(pi)√
2Epi

∫
d3p̄i
(2π)3

ψ∗i (p̄i)√
2Ep̄i

M(pi → pf )M∗(p̄i → pf )

(2π)2δ(2)
(
p⊥i − p̄⊥i

)
(2π)δ(Ei − Ef )(2π)δ(Ēi − Ef ). (23)

Using these delta functions we can preform all three integrals over p̄i

dσ = 2π
d3pf
2Ef

∫
d3pi
(2π)3

ψi(pi)√
2Epi

δ(Ei − Ef )

∫
d3p̄i

ψ∗i (p̄i)√
2Ep̄i

M(pi → pf )M∗(p̄i → pf )

δ(2)
(
p⊥i − p̄⊥i

)
δ(Ēi − Ef ). (24)

The perpendicular competent of p̄i is fixed by the delta function δ(2)
(
p⊥i − p̄⊥i

)
. The only non-trivial

integral is the parallel comment of p̄i∫
dp
‖
i

[
ψ∗i (p̄i)√
2Epi

2Ep̄i

M(pi → pf )M∗(p̄i → pf )

]
p̄⊥

i =p⊥
i

δ(Ēi − Ef ) (25)

=

∫
dp
‖
i

[
ψ∗i (p̄i)√
2Epi

2Ep̄i

M(pi → pf )M∗(p̄i → pf )

]
p̄⊥

i =p⊥
i

δ(p̄
‖
i − p

‖
i )

1

p
‖
i /Epi

(26)

=
ψ∗i (pi)

2Epi
vi
|M(pi → pf )|2 (27)

With this the cross-section becomes

dσ = 2π
d3pf
2Ef

∫
d3pi
(2π)3

δ(Ei − Ef )
ψi(pi)ψ

∗
i (pi)

2Epi
vi

|M(i→ f)|2

≈ 2π
d3pf
2Ef

∫
d3pi
(2π)3

δ(Ei − Ef )
ψi(pi)ψ

∗
i (pi)

2Epivi
|M(i→ f)|2. (28)
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Recall that the wavepacket is localized in momentum space about a momentum p. This implies that we can
take all smooth functions of pi outside of the integral evaluated at momentum p

dσ =
d3pf

2Epf
2Epv

2πδ(Ep − Epf
)|M(p→ pf )|2

∫
d3

(2π)3
ψi(pi)ψ

∗
i (pi)

=
d3pf

2Epf
2Epv

2πδ(Ep − Epf
)|M(p→ pf )|2 (29)

This is our final expression for the differential cross-section for the scattering off a time-independent classical
potential.
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