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Statistical Distribution of Exoplanets

Andrew Cumming
McGill University

This chapter discusses the current statistical sample of exoplanets. We discuss the selec-
tion effects in radial velocity and transit surveys, followed by a brief introduction to statistical 
techniques for characterizing the orbital properties of planets and how to include completeness 
corrections in population studies. We then highlight the major features of the planet population 
discovered so far, discuss some of the implications for planet formation theories, and the future 
prospects for increasing the sample of known planets.

1.  INTRODUCTION

The last 15 years have seen a tremendous rate of discovery 
of exoplanetary systems. At the time of writing in September 
2010, the Extrasolar Planets Encyclopedia website reports 
490 planets in 413 planetary systems (http://exoplanet.eu, 
maintained by J. Schneider, Paris Observatory, accessed on 
September 1, 2010). These planets have masses that range 
from 3 M  and up, orbital periods from close to one day to 
several years, and a wide range of eccentricities. The number 
of confirmed multiple planet systems is 49, with many other 
single planet systems showing evidence for an additional 
companion at long orbital periods. This large number of 
planets has allowed the first studies of the distribution of 
orbital periods, eccentricities, and planet masses, as well as 
the dependence on host star properties. For example, it is 
now well established that the planet occurrence rate increases 
strongly with the metallicity of the host star. The number 
of transiting planets is over 100, allowing studies of the 
mass-radius relation for hot Jupiters, and the first glimpses 
of exoplanet atmospheres.

One reason to be interested in the statistical properties of 
exoplanets is to answer the question of how common plan-
etary systems are, particularly those with habitable planets. 
We now know that at least 10% of solar type stars, perhaps 
up to 20%, harbor gas giant planets, and information about 
lower masses will follow. Already, lower-mass planets with 
masses ~10 M  comparable to Neptune are being studied 
in close orbits. Systems similar to our own solar system, 
dominated in mass by Jupiter at 5 AU from the Sun, are 
beginning to be found, including a Jupiter/Saturn analog 
recently detected in a microlensing event. The frequency of 
planets determined from current data is an important input 
for future surveys, such as astrometric and direct searches. 

Another reason for studying the statistical distributions of 
planet properties is that they offer us a tremendous amount 
of information about the process of planet formation. Planets 
likely form in the outer regions of protoplanetary disks and 
migrate inward. The radial distribution of observed planets 
offers clues to the physics of migration and the process by 

which it stops close to the star. The increasing planet occur-
rence rate with stellar metallicity and stellar mass is likely 
directly related to the amount of planet-building materials 
in the protoplanetary disk. The nonzero eccentricities of 
most exoplanets perhaps point to planet-planet scattering or 
other gravitational interactions as an important process early 
in the life of most planetary systems. Part of the puzzle is 
to understand how our solar system, in which the planets 
have nearly circular orbits and the gas giants orbit at larger 
distances than most of the exoplanets so far discovered, fits 
into this picture. 

When studying the statistical distributions of planet 
properties, we must be careful to account for selection ef-
fects. For example, in radial velocity searches, the velocity 
precision (typically σ ≈ 1–3 m/s) sets a lower limit on the 
amplitude of velocity variations that can be detected. The 
result is that low-mass planets in wide orbits are much 
harder to detect than massive planets in close orbits. We 
must include this fact when trying to estimate the fraction 
of stars with planets, and when interpreting the distribution 
of planetary masses and orbital periods. 

This chapter is an overview of the statistical properties of the 
known planets as of September 2010. We focus on the planets 
detected by radial velocity, transit searches, and microlensing 
techniques. Radial velocity and transit searches have both led 
to large samples of planets. Although microlensing has so far 
uncovered only a handful of planets, the results already con-
strain the occurrence rates of planets with different properties 
than those detected by the radial velocity and transit methods. 
We start in section 2 by describing the selection effects in each 
of these search techniques, and how to understand them. We 
review the main statistical techniques that are used to char-
acterize the properties of the planet from the data, and infer 
properties of the population from large surveys. In section 3, 
we present the observations and highlight some of the lessons 
so far about planet formation from the distribution of planet 
properties. We conclude in section 4 with a discussion of 
future prospects for this field. The number of planets prom-
ises to increase dramatically in future years, making this a 
particularly exciting time for the study of exoplanet statistics. 
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2.  STATISTICAL TECHNIQUES AND 
SELECTION EFFECTS

In this section, we first discuss how to set the detection 
threshold for a radial velocity or transit observation (sec-
tion 2.1), and then how to understand the resulting selection 
effects in radial velocity (section 2.2), transit (section 2.3), 
and microlensing surveys (section 2.4). In section 2.5, we 
discuss the importance of understanding the properties of the 
host star and population of stars in the survey. In section 2.6, 
we briefly introduce some of the techniques that have been 
developed to characterize the orbital properties of a planet 
from the data. Finally, in section 2.7, we discuss how to use 
our knowledge of the selection effects to infer properties of 
the planet population. 

2.1.  Setting a Detection Threshold 

A typical set of radial velocity measurements is shown in 
Fig. 1, taken from the paper by Robinson et al. (2007) that 
announced the discovery of a planet with minimum mass 
1.9 MJup in a 675-d low-eccentricity orbit around the star 
HD 5319. The velocity variations due to the planet can be 
clearly seen in this dataset, as they have a much larger am-
plitude than the measurement errors. But it is interesting to 
consider what would happen for smaller-mass planets, which 
induce a smaller amplitude of velocity variations. When this 
amplitude becomes comparable to the measurement errors, 
there must be a point at which we can no longer say with 
confidence that we are seeing an orbiting planet in the data. 
How to calculate this detection threshold is the subject of 
this section. 

We start by considering radial velocity data, but similar 
ideas apply to analysis of lightcurves for transits. Imagine 
we are given a set of N measured velocities vi where i la-
bels each individual measurement, i = 1 to N, along with 
the observation time ti and the measurement error si. The 
simplest approach is to carry out a c2 fit of a Keplerian orbit 
to the data. For each trial orbit, we calculate 

	

( ) 2N
i i2

ii 1

v V t

e=

 −
χ =   ∑

	

(1)

where V(ti) is the predicted velocity at time ti for the orbital 
parameters being considered, and the estimated error ei for 
each measurement includes the Doppler measurement errors 
si, but could also be augmented by other sources of noise 
such as intrinsic stellar variability. The best fitting orbit is the 
one that minimizes the value of c2. [We show how to calcu-
late V(ti) in section 2.2. We need five parameters to specify 
V(ti) for each planet in the model:  the orbital period P, the 
planet minimum mass Mp sin i, the eccentricity e, longitude 
of periastron w, and the time of periastron tP. In addition, 
we need to include the systemic velocity, and in some cases 
(such as in Fig. 1) add a long-term velocity trend.]

Minimizing c2 in this way tells us the set of best-fitting 

orbital parameters, i.e., characterizes the orbit. (In addition, 
how quickly c2 grows as the parameters are changed from 
their best-fitting values gives a measure of the error in each 
parameter. We will say more about this in section 2.5.) But 
the question of whether we have a detection is a different 
one. A model that includes a planet will always fit the data 
better, in the sense that it will always lower the minimum 
c2, because we have more free parameters to adjust. The 
important question to ask is whether the reduction in c2 
is significant. If we were to model the velocities in Fig. 1 
without the planet, the value of c2 would be significantly 
larger. Because we can lower c2 by such a large amount 
with only five additional parameters, the planet model is 
strongly preferred. The principle at work here is similar to 
Occam’s razor; we want to keep the model as simple as 
possible while adequately describing the data.

This idea underlies the Lomb-Scargle (LS) periodogram, 
a commonly used tool for searching for periodicities in mea-
surements that are unevenly sampled in time (Lomb, 1976; 
Scargle, 1982). The LS periodogram power is calculated 
for each trial period P as 
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Fig. 1.  An example radial velocity dataset for the star HD 5319 
(Robinson et al., 2007). The error bars correspond to the mea-
surement errors. The best fit model is shown, which has a planet 
in a 1.84 yr orbit with K = 33.7 m/s and e = 0.12. A long term 
acceleration is included in the fit indicating a massive long period 
companion is also present in the system. The lower panel shows 
the measured velocities after subtracting the best fit Keplerian 
orbit. The scatter is significantly larger than the measurement er-
rors, but can be accounted for by intrinsic stellar jitter. 
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where c2
0 is the minimum value of c2 from a fit of a con-

stant to the data, and c2 (P) is the minimum c2 from a fit 
of a sinusoid with period P plus constant. If including the 
sinusoid reduces c2 significantly, the power z will be large. 
The procedure is then to calculate z(P) for a number of 
different trial periods and look for the period that gives the 
largest power, zmax. Figure 2 shows the LS periodogram for 
the data shown in Fig. 1. There is a large peak in the power 
at a period just under 700 days, which matches nicely the 
final orbital period determined by Robinson et al. (2007). 

The LS periodogram is often used in planet searches 
to quickly identify likely periods for planets. For circular 
orbits, the velocity variations are sinusoidal, and so the LS 
periodogram fits the correct model, but even for eccentric 
orbits, where the velocity curve becomes significantly non‑ 
sinusoidal, the LS peridogram often gives a good initial 
estimate for the orbital period. (To do better for noncircular 
orbits, Cumming (2004) defined a “Keplerian periodogram” 
in an analogous way to equation (2) but fitting a Keplerian 
orbit at each period.) 

We can use the values of zmax to decide whether we have 
detected a planet:  Only if the power exceeds a threshold 
value, zmax > zth, do we count the fit as significant and say 
that we have a detection. The detection threshold zth can 
be determined with Monte Carlo simulations. By generat-
ing many synthetic datasets consisting of a constant velocity 
plus random noise chosen to represent the measurement er-
rors and stellar variability, the distribution of zmax that arises 
due to noise fluctuations can be determined. [In the Monte 
Carlo simulations, the noise can be generated by assuming 
a Gaussian distribution, or by using the measured velocities 
themselves to estimate the noise distribution (so-called “boot-
strapping”) (see Press et al., 1992). For example, Marcy et 
al. (2005a) discuss the calculation of the false alarm prob-
ability by scrambling the order of the detected velocities.] 
The threshold zth is then set to be the value of zmax that 
is exceeded in some small fraction F of the Monte Carlo 
simulations. If we observe zmax > zth, then we know that 
we have a detection, with a small false alarm probability 
F that the signal is due to noise fluctuations. The choice of 
F is determined by our willingness to tolerate false alarms. 
The higher we set zth, the lower the false alarm rate F, but 
we also lose the ability to detect low-amplitude signals. 
This trade off is something that always has to be dealt with 
when deciding where to set the detection threshold (e.g., 
Wainstein and Zubakov, 1962). Figure 2 of Cumming (2004) 
gives the false alarm probability for Keplerian orbit fits for 
different values of N and Dc2/c2. 

An important quantity is the number of statistical trials 
that we make in our search of parameter space. The more 
different combinations of parameters we try, the more likely 
it is that noise fluctuations will mimic a planetary signal and 
give a large value of z. Therefore the value of zth increases 

as we search a larger range of parameters. An example 
is the number of independent frequencies Nf (or periods) 
that are searched. Monte Carlo simulations must be used 
to determine Nf , but a simple analytic estimate gives Nf ≈ 
3000 for typical radial velocity datasets (Cumming, 2004). 
This means that to detect a signal with a false alarm prob-
ability of 10−3, the periodogram power for that signal must 
be large enough, or the Keplerian fit good enough, that the 
false alarm probability for a search at a single frequency 
would be ~10−6. 

For transits, the same approach applies, of defining a 
detection statistic, and setting a threshold that takes into 
account the noise level and number of trials. There are a 
variety of detection statistics that have been proposed for 
detecting the signature of a transiting planet. These detec-
tion statistics are essentially based on c2 fitting of a box-
shaped dip to the stellar lightcurve. Moutou et al. (2005) 
carry out a blind test comparison of five different detection 
methods on simulated lightcurves, which include a matched 
filter method (Jenkins et al., 1996), box-fitting least squares 
(Kovács et al., 2002), and a Bayesian approach (Defaÿ et al., 
2001), finding that no one technique offers an advantage in 
all situations. Indeed, Schwarzenberg-Czerny and Beaulieu 
(2006) point out the equivalence of some of these methods 
for Gaussian noise, but this may not be the case if the data 
have a red noise component coming from systematic errors 
that introduce correlations over time (Pont et al., 2006). 

It is important to stress that we have been discussing the 
statistical detection threshold, but that may in fact not be the 
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Fig. 2.  Lomb-Scargle periodogram of the data for HD 5319 shown 
in Fig. 1, which measures the improvement in χ2 when the data 
are modeled by a sinusoidal velocity variation plus constant rather 
than a constant alone. There is a peak at 1.8 yr, which matches well 
with the final derived orbital period when a long-term trend and 
nonzero eccentricity are included. The periodogram shows many 
peaks, spaced equally in frequency with separation ~1/T where 
T is the timespan of the dataset. The peaks are equally spaced in 
frequency, so that on the log scale used here, the density of peaks 
increases toward shorter periods. 
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criterion used to determine detections, especially early in a 
survey when systematic effects are not fully understood, and 
the same detection threshold may not be applied uniformly 
in a given survey. For example, the first planets discovered 
by Doppler surveys had large signal-to-noise ratios, and are 
essentially detectable by eye. Marcy and Butler (1998) note 
that “experience shows that a confident detection requires 
that the amplitude be ~4 times the Doppler error.” Recent 
radial velocity detections have velocity amplitudes much 
closer to the noise level, and statistical analysis has become 
more important, with the planet search teams often reporting 
false alarm probabilities for their detections (Marcy et al., 
2005a). Another example is the OGLE-III transit survey, in 
which the transit candidates were selected by eye from a list 
of “pre-candidates.” Gould et al. (2006a) pass a number of 
simulated transits through the same by-eye selection proce-
dure in an attempt to objectively quantify the corresponding 
detection threshold as a function of the signal-to-noise ratio. 

The other point to note is that the methods discussed here 
identify significant periodic signals in radial velocity data 
or dips in stellar lightcurves, but it may be the case that the 
detected signal is not due to a planet. For example, in radial 
velocity searches, a periodic signal could be caused by stel-
lar magnetic activity, and be related to the rotation period of 
the star. In transit surveys, typically only a small fraction of 
identified candidates turn out to be transiting planets; most 
are other kinds of systems such as transits by low-mass stars. 

2.2.  Selection Effects in Radial Velocity Searches 

Having set a detection threshold, we can ask what orbital 
parameters lead to signals that are detectable. The radial 
velocity of a star with an orbiting planet is

	
( ) ( )( )ZV t V K cos f t e cos = + + ω + ω 	

(3)

where VZ is the systemic velocity, K is the semiamplitude, 
and the remaining factor in square brackets sets the shape 
of the velocity curve. The amplitude is 
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where the mass of the star is M , the planet mass is MP, 
the orbital period is P, and the inclination of the orbit to 
the line of sight is i (where i = 90° if we are looking at the 
orbit edge-on). The shape of the velocity curve depends on 
the longitude of periastron w and how the true anomaly f 
varies with time, given by the relations 
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where E(t) is the eccentric anomaly, and M(t) is the mean 
anomaly. For a circular orbit, f(t)  = E(t)  = M(t), and the 
velocity variations are sinusoidal. 

There are three main factors that determine whether the 
velocity variations induced by a planet will be detectable 
in a radial velocity dataset. The first is the signal-to-noise 
ratio. A larger-amplitude K leads to a larger-power zmax on 
average, and so increases the likelihood of detection. Using 
analytic results for Gaussian noise, the signal-to-noise ratio 
required for a 50% detection rate is 
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(Cumming, 2004) (here we give the large N limit), where Nf 
is the number of independent frequencies that were searched, 
and F is the desired false alarm probability. The noise level 
s includes contributions from measurement errors and stellar 
jitter. The 1/ N factor should be no surprise:  If we take N 
measurements each with an error s, then the uncertainty in the 
mean of those measurements we expect to be s/ N, and this 
gives a measure of what velocity amplitude could be detected. 
For example, for typical values Nf ≈ 1000 and F ≈ 10−3 (so that 
on the order of one false alarm would be expected in a survey 
of 1000 stars), we find K0 ≈ 7 s/ N. Using equation (4), the 
planet mass that can be detected 50% of the time is 
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or 

	

2 31 3

p,50
1.0 M MP s

M
sin i 1 d 0.3 M 1 m s

    
=         

�

	
(8)

where we assume N = 30 (with Mp ∝ 1/ N for different N). 
The second factor is the time span of the observations, T. 

For long orbital periods P > T, we see only part of the orbit, 
and the velocity variation is smaller than the full velocity 
amplitude K. Therefore the velocity amplitude needed for 
detection Kdet increases with period for P > T. The rate at 
which it increases depends on the phase of the orbit being 
detected:  When the orbit is observed near a zero-crossing 
rather than a maximum or minimum, the velocity variation 
is larger. Averaging over phase, Cumming (2004) shows that 
for a 50% detection threshold (in which case we can rely on 
the zero-crossing phases only), Kdet ∝ P whereas for a larger 
detection efficiency, the scaling is ∝ P2. Of course, even if a 
long-period orbit is detected, it is not possible to determine 
whether the companion is of planetary mass:  Characteriza-
tion of the orbit is possible only after a whole orbit has been 
observed. For example, the velocities in Fig. 1 show a clear 
upward trend over the time span of the data, presumably 
due to an additional companion with a long-period orbit. 
However, only after continued monitoring will its orbital 
period and mass be securely identified. 
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The third factor is the shape of the velocity curve, which 
depends on the eccentricity and the orientation of the orbit. 
The orbit shown in Fig. 1 has a low eccentricity, giving a 
radial velocity curve that is close to sinusoidal. A planet on 
a very eccentric orbit on the other hand has a much more 
distorted velocity curve (Fig. 3), with large velocities dur-
ing periastron passage, but smaller velocities during most 
of the orbit. Unless we are lucky enough to observe the 
star while the planet is close to periastron, the orbit could 
go undetected. The two velocity curves in Fig. 3 are drawn 
from a large number of simulated observations using the 
same observation times and velocity amplitude, but ran-
dom phases, of an orbit with e = 0.5. The upper panel in 
the figure shows a case that was detected by the detection 
algorithm, whereas the lower panel was not. The effect of 
eccentricity on detectability has been calculated by several 
authors (Endl et al., 2002; Cumming, 2004; Wittenmyer et 
al., 2006). There is good agreement that the detectability 
falls off for e > 0.5– 0.6.

In equations (7) and (8) above, we use values s = 1 and 
3 m/s, corresponding to the long-term precision currently 
available. For example, the error bars in Fig.  1 show the 
measurement errors from the HIRES spectrometer at the 
Keck telescope, and range from 1.5 to 3.6 m/s. A long-term 
accuracy of s  ≈ 1  m/s has been achieved at the HARPS 
spectrograph at La Silla Observatory, Chile (Lovis et 
al., 2006). The ability to track stellar radial velocities at 
the ~1  m/s level on timescales of 10  yr is a remarkable 
achievement. In fact, the precision is good enough that 
the scatter in the residuals to orbital solutions usually has 
a significant component from stellar variability or “jitter” 
(added in quadrature to the measurement errors), which we 
discuss in section 2.4. 

The observed detection threshold of radial velocity sur-
veys matches these expectations quite well. For example, 
Cumming et al. (2008) show that equation  (6) provides a 
good description of the K-N relation for announced planets 
from the Keck Planet Search, if the noise s for each star is 
estimated from the residuals to the best-fitting orbital solu-
tion. However, for N > 60 there is an apparent floor in the 
signal-to-noise ratio of announced planets of K/s ≈ 2. The 
likely cause of this is that at small signal-to-noise ratio it is 
more difficult to rule out other explanations such as stellar 
variability and thereby confirm a statistically significant 
signal is indeed due to a planet. 

2.3.  Selection Effects in Transit Searches 

Searches for transiting planets look for dips in the stel-
lar lightcurve as the planet repeatedly transits its host star. 
Mandel and Agol (2002) and Seager and Mallén-Ornelas 
(2003) give analytic expressions for transit lightcurves. Four 
main parameters can be determined from the lightcurve. 
The time between transits gives the orbital period. The 
depth of the transit depends on the ratio of the areas of the 
disk of the planet and star, d ≈ (Rp/ R )2, or d ≈ 0.01 for 
Jupiter. The other two observables are the duration of the 

transit and the time for ingress or egress, which allow the 
orbital radius and inclination to be determined. The detailed 
shape of the transit lightcurve also depends on the stellar 
limb darkening. 

The observed transiting planets have radii ranging from 
≈ 0.15 to 1.8 RJup, masses ≈5 M  to >10 MJup (radial velocity 
follow-up is required to determine the mass of a transiting 
planet), and short orbital periods, concentrated at ~1 to sev-
eral days. These properties are consistent with the fact that 
detectability falls off strongly with increasing orbital period 
and decreasing planet radius. To see this (e.g., Horne, 2003; 
Gaudi et al., 2005; Gaudi, 2005), the first step is to write 
down the expected signal-to noise ratio. If there are Nobs 
observations made of a given star, the number of observa-
tions during transit will be on average Nt  ≈ Nobs(R  /pa), 
since the duration of the transit is roughly a fraction ≈R  /pa 
of the orbital period (a planet orbiting farther out spends a 
smaller fraction of its time in transit than one orbiting close 
in). The signal-to-noise ratio will then be 

	
tS N N

δ
≈

σ 	
(9)

where s is the photometric precision per observation. By 
analogy with equation (6) for radial velocities, we expect 
that there will be a critical value of S/N required for a 
detection. For example, Tingley (2003) finds that S/N ≈ 16 
for a 50% detection rate with 1% false alarm probability, 
the exact number depending on the particular detection 
statistic adopted (although note that a FAP of much less 
than 1% will be typically necessary given the large numbers 
of stars surveyed). 
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Fig. 3.  Examples of velocity curves with e  = 0.5 that are (top 
panel) and are not (bottom panel) detected. The dotted line in each 
case shows the true orbit, the points are the observed velocities, 
and the solid curve shows the best-fitting orbit. In both cases, the 
solid curve gives a lower χ2 than the dotted curve. The lower panel 
has only a single measurement during the periastron passage, and 
is not a significant detection. 
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The sensitivity to orbital period and planet radius comes 
about because the search volume, or the number of stars 
surveyed, is different for different planet parameters (Gaudi, 
2005). If we assume that the noise level is set by source 
dominated photon noise, then s ∝ 1/ Ng ∝ d where d is 
the distance to the star, since the stellar flux falls off as 
1/d2. Therefore, if we fix the signal-to-noise threshold and 
stellar properties, equation (9) gives a search volume ∝ d3 ∝ 
Nt

3/2 d3 ∝ R6
p / P. The probability that a planetary orbit has 

an inclination leading to a transit is ≈ R  /a. Multiplying 
the transit probability by the search volume, and assuming 
a constant space density of stars, we find that the number 
of detections is ∝  R6

p / P5/3 (Gaudi, 2005). Therefore, the 
number of planets discovered should increase strongly 
with planet radius, and fall off strongly with orbital period. 
Based on this simple formula, we see that going from an 
orbital period of 1 to 3 d gives a factor of 6 suppression in 
detectability, and going from a radius of 1 RJup to 1.3 RJup 
increases detectability be a factor of 5.

This estimate predicts the general fall off with period 
well, but in detail the detection probability as a function of 
period shows a series of sharp dips around this trend set by 
the spacing of the observations [see Fig.  1 of Beatty and 
Gaudi (2008) for an example of the detectability as a func-
tion of orbital period, known as the window function]. This 
aliasing arises because the observations are taken during the 
same ≈8-h window each day. Depending on the phase of the 
orbit at the time of observation, this can make orbits with 
periods close to an integer number of days easier or harder 
to detect. For example, if the phase is such that the transit 
occurs in every observing window, then the detectability is 
greater than a noninteger period, but the opposite could also 
be true, that the phase is such that transits happen outside 
the observing window! Gould et al. (2006a) show that for a 
signal-to-noise limited survey the first effect wins out, leading 
to a net enhancement of detectability at integer periods. The 
finite spacing of the observations has other consequences. For 
example, scheduling radial velocity follow up to confirm the 
mass of a candidate transiting planet requires that two transits 
be observed, giving the orbital period. For a given observing 
strategy, this becomes less likely for longer orbital periods 
(Gaudi et al., 2005).

Another important complication is the presence of red 
noise (Pont et al., 2006). Equation (9) for the signal-to-noise 
ratio assumes that the photometric errors are uncorrelated, 
i.e., that the noise was white. In fact, systematic effects 
such as changing atmospheric or telescope conditions over 
time lead to correlations in the errors in transit surveys, so 
that equation (9) overestimates the effective signal-to-noise. 
Several recent papers attempt to untangle the effects of red 
noise on detection thresholds in transit surveys; see, e.g., 
Pont et al. (2006) and von Braun et al. (2009). 

Understanding the selection effects in transit surveys in 
detail has proved to be complex. Although there are now more 
than 100 transiting planets, the discoveries at first did not come 
as quickly as expected based on the known occurrence rate of 
hot Jupiters from radial velocity surveys. It became apparent 

that the yield of transit surveys was initially overestimated 
by large factors (e.g., Horne, 2003). The yields are now 
much better understood. Beatty and Gaudi (2008) consider a 
number of different transit surveys that have adopted differ-
ent observing strategies, and carefully estimate the predicted 
yields, finding numbers that are close to the actual number 
of reported detections. 

2.4.  Selection Effects in Microlensing Surveys 

Ten planets discovered using microlensing had been pub-
lished at the time of writing, with masses in the range 3 M  
to 3.5 MJup, and orbital radii from 0.6 to 5.1 AU. This range 
of planet mass and orbital radius can be understood by 
considering that the planet must cause a significant devia-
tion from the microlensing lightcurve that would otherwise 
result from lensing of the background star by the lens star. 
This requires that the orbital radius of the planet lies close 
to the Einstein radius 

	 ( ) ( )1 2 1 2
E LR 2.9AU M M D kpc≈ 	 (10)

where R2
E = (4 GML/c2)D, ML is the mass of the lens (planet 

host star), and D is the reduced distance (1/D = 1/DLS + 1/
DOL with DLS being the lens source distance, and DOL the 
observer lens distance). 

Given a planet in the lensing zone (typically a within 
about a factor of 2 of RE), the probability of detection can 
be close to 100% for high-magnification central caustic 
events, in which the source image sweeps around the Ein-
stein ring (Griest and Safizadeh, 1998). This is a powerful 
way to detect multiple planet systems, since there is a high 
probability of seeing all detectable planets within the lens-
ing zone. For lower-magnification planetary caustic events, 
the detection probability depends on the relative path of the 
source and lens, but is typically tens of percent for Jupiter-
mass planets to a few percent for Earth-mass planets (Gould 
and Loeb, 1992; Bennett and Rhie, 1996). 

A limit on the detectable planet mass is set by the finite 
angular size of the source star, which washes out the per-
turbation due to low-mass planets if the angular size of the 
source star is greater than the Einstein radius of the planet. 
(However, note that detection of finite size effects in the 
lightcurve is important, as it enables a measurement of the 
Einstein radius and therefore the lens mass.) The detect-
able mass can therefore be roughly estimated by setting the 
angular size of the planet’s Einstein radius θE = RE,p/DL = 
q1/2RE / DL, where q = Mp/M  is the mass ratio, to the an-
gular radius of the source θ  = R  / DS. This gives 
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(11)

where the stellar radius depends on the type of star, R  ~ 
R  for a main-sequence star or could be ~10 R  for a giant. 
Such low planet masses at orbital radii of several AU are 
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not possible to detect with other techniques, so microlens-
ing provides a unique and important probe of the planet 
distribution in this region.

2.5.  Stellar Properties 

Alongside the rapid growth in the number of known exo-
planets has been a large amount of work to understand the 
properties of their host stars. Understanding stellar properties 
is important for detecting and characterizing the planets in 
a given system, and for interpreting the statistical properties 
of the planet sample.

For transiting planets, knowledge of the planet properties 
is limited by how well the properties of the host star can 
be determined. For example, the geometric measurements 
of the planet radius RP and orbital radius a are in units of 
the stellar radius. Differences in the way stellar properties 
are determined from star to star are important to take into 
account when looking at the sample of transiting planets as 
a whole. Torres et al. (2008) and Southworth (2008) pres-
ent subsamples of transiting planets for which the stellar 
parameters have been obtained in a uniform way. 

For radial velocity searches, the intrinsic stellar radial 
velocity variability, or stellar jitter, provides an important 
source of noise. Stellar jitter is believed to correlate with mag‑ 
netic activity, and can arise from a few different sources. For 
example, a magnetic spot that covers a fraction fspot of the 
area of a rotating star would give a shift in the observed 
line centroids of roughly fspot v sin  i ≈ 10 m/s (fspot/0.01)
(v sin i/1 km/s) (Saar and Donahue, 1997) (to set the scale, 
note that 2pR  /10 d = 5 km/s). An old inactive star like the 
Sun has fspot  ~ 10−3; active stars can have fspot of several 
percent. Other sources of stellar jitter are spatial variations 
in convective velocities across the surface, changes in line 
profiles with time, or stellar oscillations. The effect of stellar 
jitter can be seen in the lower panel of Fig. 1, in which the 
residuals have a scatter ≈6 m s−1, greater than the measure-
ment errors, but consistent with the predicted jitter for this 
star. [For F, G, and K dwarfs in radial velocity searches, the 
level of jitter has been empirically calibrated (Wright et al., 
2004; Wright, 2005; see also Saar and Donahue, 1997; Saar 
et al., 1998) in terms of observables absolute magnitude MV, 
color B–V, and activity level S. The quantity S measures the 
flux in Ca H and K emission lines (an indicator of magnetic 
activity) relative to the neighboring continuum.] As well as 
hindering detection as an extra noise source, time-dependent 
jitter can also mimic planetary orbits. Timescales range 
from the stellar rotation period (~10 d) to magnetic cycle 
timescales of ~10 yr. Monitoring magnetic activity indica-
tors over time is important to check that a planetary signal 
is in fact real [e.g., see Queloz (2001) for a study of the 
magnetically active star HD 166435]. 

As well as individual stellar properties, the properties 
of the sample of stars surveyed is important to understand 
when trying to draw conclusions about the planet popula-
tion. For example, the selection of stars in the Keck Planet 
Search is described by Wright et al. (2004) and Marcy et 

al. (2005a). The ≈975 stars are selected to be chromo-
spherically quiet, to lie at most 3 magnitudes above the 
main sequence (thereby excluding giant stars), to have no 
companion within 2", a color selection B–V  > 0.55, and 
are magnitude limited to V = 8. As discussed by Marcy et 
al. (2005a), the fact that the survey is magnitude limited 
introduces some interesting biases. The first is a Malmquist 
bias, that brighter stars such as subgiants can be seen to 
a larger distance, and so they are overrepresented in the 
sample. Second, there is a metallicity bias introduced by the 
fact that at a fixed B–V color, metal-rich stars are brighter 
than metal-poor stars (e.g., see Santos et al., 2004; also see 
discussion in Gould et al., 2006a). This comes about be-
cause metal-rich stars are redder than metal-poor stars of the 
same mass, due to increased line blanketing. Therefore in a 
given B–V bin, there are more-massive, brighter, metal-rich 
stars, and less-massive, fainter, metal-poor stars. Because 
the sample is magnitude-limited, metal-rich stars are seen 
out to a larger volume and therefore overrepresented. The 
same effect leads to a correlation between stellar metallicity 
and mass for stars in the sample (Fischer and Valenti, 2005). 

A second example is the CORALIE survey of 1650 
dwarfs (Udry et al., 2000), which is selected using Hippar-
cos parallaxes to be volume limited (d < 50 pc) rather than 
magnitude limited, in which case the Malmquist biases are 
absent. However, the fainter cool dwarfs are removed from 
the sample by implementing a color-dependent distance 
cutoff for K  dwarfs, and so the search volume depends 
on the B–V bin. As a final example, the N2K consortium 
deliberately targets metal-rich stars in a search for closely 
orbiting (P  < 14  d) planets (Fischer et al., 2005). It is 
important to keep these different sample biases in mind 
when comparing the results of different surveys, or looking 
at differences between the planet populations around stars 
with different metallicities or masses.

2.6.  Exploring Parameter Space:  Fitting  
and Uncertainties 

We now turn to techniques for exploring parameter space 
to find the best-fitting orbital solution, and to assess the 
errors in the fitted parameters. Consider fitting Keplerian 
curves (equation  (3)) to radial velocity measurements. A 
common approach to finding the best-fitting solution is to 
use a Levenberg-Marquardt algorithm (e.g., Press et al., 
1992). This is an efficient algorithm that marches downhill 
from a starting guess to the c2 minimum. The difficulty is 
that in general there isn’t a single c2 minimum in parameter 
space, but rather a complicated c2 surface with many lo-
cal minima. For example, the many peaks in periodogram 
power in Fig. 2 reflect the many local minima in c2 as a 
function of period for a circular orbit fit. For nonzero ec-
centricities, there are also many peaks as a function of the 
phase (time of periastron tP), since there can be many values 
of tP for which the radial velocity peak at periastron passage 
intercepts the sparsely spaced data points. The problem be-
comes more complicated for multiple planet systems since 
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each additional planet adds an extra five parameters to the 
model. A grid search through parameter space with a reso-
lution of 100 in each direction would require an additional 
factor of 1010 evaluations for each additional planet added. 

Often, Levenberg-Marquardt is used with many different 
starting points in parameter space to determine which leads 
to the lowest value of c2. The LS periodogram can be used 
to give initial guesses for the orbital period. For multiple 
planet systems, the data can be analyzed by subtracting 
successive planet orbits from the data and analyzing the 
residuals for further companions, before carrying out a full 
multiple-planet fit. 

A related question is determining the uncertainties in 
fitted parameters. The probability distribution of certain 
parameters such as eccentricity is not necessarily Gaussian 
(e.g., Shen and Turner, 2008), so that the usual estimate 
of uncertainty from the covariance matrix, roughly da  ≈ 
(∂2c2/∂a2)−1/2 for parameter a (e.g., Press et al., 1992), does 
not give a good measure of the error. 

A good framework for systematically calculating the 
probability distributions of the different parameters of the 
model is a Bayesian approach. [We only have room here to 
give the basic idea. For a short but thorough introduction 
to the subject that will get you up and calculating quickly, 
we recommend the book by Sivia (1996).] The goal is to 
calculate the probability distribution of model parameters 
given the data, Prob(a

�
 | data), where, for example, a

�
 = (V0, 

P, K, e, w, tP ) for a single Keplerian orbit. Bayes’ theorem 

	 ( ) ( ) ( )Prob a data Prob a Prob data a∝� � �
	

(12)

gives this probability in terms of something we can cal-
culate directly, the probability of obtaining the data given 
the parameters a

�
, Prob(data | a�). If the noise is Gaussian and 

uncorrelated from observation to observation, the prob-
ability of obtaining a set of measurements {ti, vi, σi} if the 
underlying velocities are V(t i) is Prob(data | a�) = 
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where in the last step, we see that the probability is related 
in a simple way to the c2 for that choice of parameters. The 
remaining factor in equation (12) is the prior probability of 
the parameters a

�
, Prob(a

�
), which allows us to specify any 

prior information about the parameters. 
Equations (12) and (13) give the joint probability densi-

ties for all parameters a
�
. However, often we are interested 

in the probability distribution of some subset of the param-
eters of the model. For example, consider circular orbits, 
for which the model has four parameters a

�
 = (P, K, φ, V0), 

	
( ) i

i 0
2 t

V t V K sin
P

π = + + φ  	
(14)

Often we are interested in the period P and velocity ampli-
tude K of the orbit (since they relate to physical properties 
of the system), but not φ and V0. The probability distribution 
of P and K can be obtained by marginalizing, or integrating 
over the uninteresting parameters

	
( ) ( )0 0Prob K,P data dV d Prob K,P, ,V data= φ φ∫ 	

(15)

A good way to think of this integral is as a weighted average 
of the probability over the parameters V0 and φ. Therefore, 
all possible values of φ and V0 are taken into account, in 
contrast to traditional c2 minimization, in which one would 
find the best fit V0 and φ at each K and P. For eccentric or-
bits, similar integrals are needed, but over different choices 
of the Keplerian parameters. 

There has been a lot of work recently on Markov Chain 
Monte Carlo (MCMC) techniques as a method for evalu-
ating marginalization integrals for Keplerian fits to radial 
velocity data (e.g., Ford, 2006; Gregory, 2007). The basic 
algorithm is very simple. One starts off at some point in 
the parameter space a

�
, and then proposes jumping to a new 

location a ′
�

 = a
�
 + da
�
. If c2 for the new set of parameters at 

a ′
�

 is lower than at a
�
, then we accept the jump. In this way, 

we always accept a move to a better-fitting model. If the 
c2 is larger at the new location, we accept the jump with a 
probability exp(−Dc2/2). Every jump that is accepted gener-
ates a new “link” in the chain. After following this simple 
algorithm many times (typically at least several thousands 
of accepted jumps are required), we end up with a sample 
of points in parameter space. The amazing property of this 
algorithm is that the density of points in parameter space 
is proportional to the probability density in equation (12). 
[For this to be the case, certain rules must be followed, for 
example, the jumps we make in parameter space da

�
 must 

have certain properties, e.g., the probability to jump from 
point A to point B in parameter space should be the same 
as B to A, and the jumps should be uniform in the prior 
distribution. The size of the jumps is generally adjusted so 
that the jump is accepted ≈25% of the time. The choice 
of parameters in which to make jumps can be tuned to 
make this efficient (Ford, 2006).] Marginalization is then 
trivial. Say we generate a series of points in the parameter 
space (P, K, φ, V0) for a circular orbit; to find Prob(P), we 
simply plot a histogram of the P values of all the points 
that were visited.

As an example of the kind of constraints that are ob-
tained, Fig. 4b shows the joint probability distribution of 
P and e derived from the radial velocity data for the star 
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HD  72659 from Butler et al. (2003). The radial velocity 
data for this star (Fig. 4a) show clear long-period variations. 
However, because the orbit has not yet closed, a range of 
orbital periods are possible, with longer periods correspond-
ing to a larger eccentricity. This plot is based on Fig. 4 of 
Ford (2005), but calculated by direct integration (Cumming 
and Dragomir, 2010) rather than using a MCMC technique. 

There are alternative methods for investigating the uncer-
tainties in derived parameters. Marcy et al. (2005a) calculate 
uncertainties by a Monte Carlo method in which they make a 
large number of radial velocity curves consisting of the best-
fitting model plus “noise” drawn from the residuals to the 
best fit. The resulting distribution of measured parameters 
gives an estimate of the uncertainties. 

There are also many other methods for searching com-
plicated parameter spaces that have been applied in the 
literature. For example, Lovis et al. (2006) use a genetic 
algorithm in which sets of parameter values are bred (along 
with occasional mutations) such that only the fittest (the 
best-fitting models) survive. Gregory (2007) has developed 
a parallel tempering technique in which MCMC chains 
with different temperatures are run simultaneously, and 
exchange information. A “hot” chain, which has artificially 
increased error bars, explores the broad parameter space, 
jumping large distances and exploring many local minima; 
a “cold” chain takes small steps locally and explores the 
local minima. This technique has been applied with success 
to a number of multiple-planet systems. 

In some cases, more than one method may be applied. 
A good example is fitting microlensing lightcurves. The 
c2 surface in that problem is extremely complex. Small 
changes in parameters that affect the location of caustics can 
lead to dramatic changes in the lightcurve and therefore c2. 
This makes it nontrivial to explore the parameter space and 
find the best-fitting solutions. Gould et al. (2006b) adopt 
a brute force scan of parameter space in some nonlinear 
parameters, and use a minimization algorithm for others. 
Bennett et al. (2008) use MCMC to explore the complex 
parameter space. 

A different application of Bayesian techniques is in 
microlensing and transit searches, when a statistical model 
of the stellar population must be considered. For example, 
in microlensing events, constraints on the lens mass and 
distance can be derived using as input priors on the dis-
tances and masses of lenses and sources [see Beaulieu et 
al. (2006) for an application of this approach to one of the 
detected microlensing planets]. 

2.7.  Completeness Corrections:  Determining Planet 
Occurrence Rates 

Understanding selection effects is crucial for population 
studies, as it allows us to correct for incompleteness, i.e., 
to determine the effective size of the stellar sample. For 
each set of planet parameters, e.g., mass, orbital period, 
and eccentricity, the idea is to work out which stars in 
the survey have data that would allow a planet with those 

parameters to be detected. Only those stars are useful in 
constraining the population. To see this, consider a simple 
example. Imagine surveying 100 stars, detecting 10 planets, 
and being able to rule out the presence of planets around 
the remaining 90 stars. Then the best estimate of the frac-
tion of stars with planets is 10%, since we detected 10 
planets out of 100 stars surveyed. However, it could be 
that the data for 80 of those stars are not good enough to 
say whether a planet is present or not. In that case, only 
20 stars have data good enough to constrain the presence 
of a planet, and since planets were detected around 10 of 
these, the best estimate of the planet fraction is 50%. In 
practice, the ability to detect or rule out the presence of a 
planet depends on the orbital parameters, and so when do-
ing this, we must account for every combination of orbital 
parameters of interest. 

We can write this argument down mathematically using 
a maximum likelihood method. Assume that a survey of N  
stars detects Np planets, and rules out planetary companions 
for the remaining N −Np stars. If the fraction of stars with 
planets is f, then the probability that a given star has zero 
or one planet can be written e−f or f  e−f (considering each 
star as an independent Poisson trial). The total likelihood 
is the product of these probabilities for all stars
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Fig. 4.  Constraints on the period and eccentricity of the compan-
ion to HD 72659 (data from Butler et al., 2003), for a companion 
with mass less than 10 MJup. The best fit values given in that paper 
are e = 0.18 and P = 5.98 yr, shown by the cross. From Cumming 
and Dragomir (2010), based on Fig. 4 of Ford (2005). 



200      Exoplanets

	 ( ) ( )d d
d

N N N N N ff fL fe e f e
− −− −= =�

�

	
(16)

Maximizing the likelihood with respect to f by setting ∂L/∂f = 
0 gives f = Nd/N , exactly what we expect:  The fraction 
of stars with planets is given by the number of detections 
divided by the total number of stars. We can introduce selec-
tion effects into this calculation by including the fact that 
for each star i there is some probability pi of detecting a 
planet. Then 
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where the sum labeled i is over stars with a detected planet, 
the sum labeled j is over stars with no detection, and the 
sum labeled k is over all stars. The value of f that maximizes 
the likelihood L is now f  = Nd/Neff where the effective 
number of stars N

eff ii 1N p== Σ � . This is the mathematical 
statement of our previous argument. We are guaranteed to 
detect a planet around stars with pi = 1, and so these stars 
contribute fully to Neff; stars with lower quality or fewer 
data points that have small pi do not contribute as much to 
Neff. In practice, the detection probability depends on the 
orbital parameters of the planet, and varies from star to 
star depending on the number of data points, measurement 
errors, and stellar properties.

There have been several detailed calculations of detec-
tion probabilities and thresholds for radial velocity surveys 
(Walker et al., 1995; Cumming et al., 1999, 2008; Endl et 
al., 2002; Naef et al., 2005; Wittenmyer et al., 2006; O’Toole 
et al., 2009). These papers essentially use the same method 
for determining detection probabilities or upper limits on the 
planet mass at a given orbital period. The idea is to use a 
Monte Carlo method to find the value of velocity amplitude 
K as a function of period that results in a particular detec-
tion efficiency. The technique for modeling the noise differs 
in different studies, ranging from assuming Gaussian noise 
with amplitude set by the observed variability, to sampling 
directly from the observed residuals to the best-fit orbit. 

Early investigations of the planet mass and orbital period 
distributions did not take these detailed star-by-star mass 
limits into account (Tabachnik and Tremaine, 2002; Udry et 
al., 2003; Lineweaver and Grether, 2003), but recent work 
has included mass limits calculated for each star. Naef et 
al. (2005) estimate planet occurrence rates in the ELODIE 
Planet Search, Cumming et al. (2008) use their results from 
the Keck Planet Search to constrain the minimum mass and 
orbital period distribution of planets, and O’Toole et al. 
(2009) use observations from the Anglo-Australian Planet 
Search to focus on the frequency and mass distribution of 
low-mass planets. Cumming et al. (2008) use a method 
similar to Tabachnik and Tremaine (2002), but including 

the upper limits derived separately for each star, rather than 
assuming a constant velocity limit for the whole survey. 
The method is a generalization of equations (16) and (17) 
to bins in the mass-period plane [based on the method of 
Avni et al. (1980) for one-dimensional distributions with 
upper limits]. 

Calculations of the incidence of planets or limits on the 
planet fraction in transit surveys include Gilliland et al. 
(2000), Brown (2003), Mochejska et al. (2005), Bramich 
and Horne (2006), Gould et al. (2006a), Beatty and Gaudi 
(2008), and Weldrake et al. (2008). Monte Carlo methods 
are used in which fake planetary transits are injected into the 
observations, and subject to the same analysis procedure as 
the real data. As discussed in section 2.3, the effective size 
of the stellar sample in a transit survey depends sensitively 
on the planet radius and orbit. Determining this number 
accurately requires a model of galactic structure, the stellar 
mass function, and accounting for the effects of extinction. 
For example, Gould et al. (2006a) give a detailed discus-
sion of the selection effects and stellar sample size for the 
OGLE-III transit surveys, and derive the frequencies of hot 
and very hot Jupiters. 

Examples of calculations of detection sensitivities and 
occurrence rates in microlensing surveys are Gaudi et al. 
(2002) and Snodgrass et al. (2004). Exactly as we discuss 
above, the challenge is to identify a subset of microlens-
ing events for which planetary systems could have been 
identified, e.g., free from nonplanetary features and with 
good enough signal-to-noise data. Detection sensitivities are 
then calculated as a function of planet-lens mass ratio and 
separation [see Fig. 8 of Gaudi et al. (2002) for examples] 
and used to infer occurrence rates of planets. 

3.  PROPERTIES OF OBSERVED PLANETS

In this section, we discuss the statistical properties of 
observed planets, highlighting the major features of the 
population discovered so far, and some of the implications 
for planet formation theories. As we go, we will point out 
the places where the selection effects discussed in section 2 
play a role. 

3.1.  Catalogs of Exoplanet Properties 

There are a few different catalogs of exoplanet properties. 
The Extrasolar Planets Encyclopedia website (http://exoplanet.
eu), maintained by J. Schneider of the Paris Observatory, 
gives properties of all planets announced to date, organized 
by discovery method. In this section, we use data from the 
Extrasolar Planets Encyclopedia for planets discovered by 
radial velocity measurements, transits, or microlensing, ac-
cessed on September 1, 2010, a total of 469 planets with 101 
transiting planets and 10 microlensing planets. Butler et al. 
(2006a) published a catalog of 172 exoplanets within 200 pc 
with M sin i < 24 MJup. An updated version of this catalog is 
available (http://exoplanets.org/exotable/exoTable.html), which 
at the time of writing lists 372 planets. This catalog includes 



Cumming:  Statistical Distribution of Exoplanets      201

radial velocity data for those stars with planets observed at the 
Keck, Lick, or Anglo-Australian telescopes. When showing 
plots of planet properties in this section, we use data from the 
Extrasolar Planets Encyclopedia, but our conclusions would 
not be changed had we used the Butler et al. (2006a) sample. 

For transiting planets, there are several other sources of in‑ 
formation. A website maintained by F. Pont (http://www.in
science.ch/transits/) gives properties and references for all 
known transiting planets. As we mentioned in section 2.4, 
Torres et al. (2008) and Southworth (2008) have published 
data for subsamples of the transiting planets in which the 
data have been analyzed in a uniform way.

There is also a lot of information available about planet 
host stars. For example, the Spectroscopic Properties of Cool 
Stars (SPOCS) survey (Valenti and Fischer, 2005; Takeda et 
al., 2007) provides a catalog of stellar properties for 1040 
F, G, and K stars that have radial velocity measurements as 
part of the Keck, Lick, or Anglo-Australian Planet Search 
programs. 

A new resource is the NASA/IPAC/NExScI Star and Exo‑ 
planet Database (NStED) available at http://nsted.ipac.
caltech.edu/. Designed to support NASA’s planet-finding and 
characterization activities, this is a comprehensive database 
of stellar and planet properties, including radial velocity data 
and lightcurves.

3.2.  Fraction of Stars with Planets 

The fraction of F, G, and K stars with giant planets is 
fairly well understood, out to orbital periods of several years 
that can be probed with the current data, with good agree-
ment between different surveys. The simplest estimate that 
can be made is to divide the number of detected planets by 
the number of stars surveyed. Marcy et al. (2005b) did this 
for the Lick, Keck, and Anglo-Australian planet surveys. 
They found that 16/1330 = 1.2 ± 0.3% of stars have a hot 
Jupiter (a < 0.1 AU), 88/1330 = 6.6% of stars have a gas 
giant within 5 AU, and extrapolating the observed orbital 
period distribution to longer periods, 12% of F, G, and 
K stars have a gas giant within 20 AU. Udry and Santos 
(2007) give the corresponding numbers for the CORALIE 
Planet Search, finding 0.8% of stars with hot Jupiters, and 
63/1120 = 5.6% of stars having giant planets within 5 AU. 

These estimates are lower limits to the true planet frac-
tion for these stellar samples, because they do not account 
for selection effects. Including completeness corrections for 
the Keck Planet Search, Cumming et al. (2008) concluded 
that 11 ± 1.7% of stars harbor gas giants within 5 AU, or 
17% within 20 AU (Saturn mass and larger), using a flat 
extrapolation of the period distribution observed for a  < 
3 AU. Naef et al. (2005) find 7.3 ± 1.5% of stars have gas 
giants (M > 0.5 MJup ) within 5 AU from the ELODIE sur-
vey. (Taking into account the different lower mass limits, 
these numbers are consistent at the 1s level.) 

It is important to be aware of the selection effects in the 
stellar sample when discussing the planet occurrence rate. 
The planet fractions we mentioned previously are for the 

particular samples of F, G, and K stars studied, which are 
biased selections of stars. For example, Beatty and Gaudi 
(2008) argue that a comparison between the 0.8 ± 0.3% hot 
Jupiter occurrence rate reported by Udry and Santos (2007) 
for the volume-limited CORALIE survey and the 1.5  ± 
0.6% reported by Cumming et al. (2008) for the magnitude-
limited Keck sample should take into account metallicity 
bias in the magnitude-limited sample. Accurately knowing 
the hot Jupiter occurrence rate is necessary to understand 
the yields of transit searches (Beatty and Gaudi, 2008). 
Gould et al. (2006a) calculated a hot Jupiter frequency of 

0.4
0.20.3 %+

−  (P  < 5 days) from the OGLE-III transit survey 
results, which appears consistent with the radial velocity 
numbers (see also Gaudi et al., 2005). 

At larger separations, beyond the reach of transit and 
current radial velocity surveys, there are indications from 
microlensing that low-mass planets are common. Gould et 
al. (2006b) detected a Neptune-mass 13 M  planetary com-
panion to a 0.5 M  star with orbital separation 2.7 AU. They 
were able to infer that such cool Neptune planets (~10 M  
in orbits beyond the ice line, ~1–4 AU) are common based 
on the detection of two planets from four events sensitive to 
them, with a derived frequency and 90% upper and lower 
limits of 0.31

0.220.38+
−  (see also Beaulieu et al., 2006). This 

is significantly larger than the frequency of Jupiter-mass 
planets at similar distances from solar-mass stars, found 
to be 2–5% (for Jupiter mass and above between 2–5 AU) 
by Cumming et al. (2008). 

3.3.  Mass and Orbital Period Distributions 

The mass-orbital period distribution is shown in Fig. 5. 
The two different symbols distinguish the transiting and radial 
velocity planets. The gray solid curves show the expected 
50% and 99% detection thresholds for a radial velocity sur-
vey of eight years with s = 3 m/s for solar mass stars. These 
curves match the lower envelope of detected planets quite 
well. Figure 6 shows the mass-semimajor axis distribution, 
now including the planets discovered by microlensing. 

Perhaps the most striking feature is that the distribution 
of orbital periods is bimodal, with a population of “hot” 
planets with orbital periods close to 3 d, and a population of 
long-period planets with periods of >200 d. Figure 7 shows 
the distribution of semimajor axes. Udry et al. (2003) and 
Jones et al. (2003) emphasized this “period valley” in the 
period distribution. 

The rising number of gas giants with orbital period has 
been fit with a power-law distribution. Cumming et al. 
(2008) fit the orbital period and M sin i distribution from 
the Keck Planet Search jointly with a power law, and found 
that dn ∝ MaPbd ln Md ln P with a = −0.31 ± 0.2 and b = 
0.26  ±  0.1 for a range of masses and periods M  sin  i  = 
0.3–10 MJup and P = 2–2000 d [similar values for a and 
b were found by Tabachnik and Tremaine (2002), who in-
cluded detections from several surveys but with a simplified 
treatment of detection thresholds]. In terms of semimajor 
axis, this corresponds to dn/d ln a ∝ a0.39, assuming equal 
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stellar masses. Cumming et al. (2008) pointed out that an 
equally good description of the distribution is a step in the 
number of planets per decade beyond orbital periods of 
≈300 d or semimajor axis ≈ 1 AU. For the Keck sample of 
F, G, and K dwarfs, they found the fraction of stars with 
planets per decade in orbital period dn/d  log10 P = 6.5 ± 
1.4% at long periods, compared with dn/d log10 P = 1.3 ± 
0.4% at short periods. 

The detection curves in Fig. 5 rise steeply at long peri-
ods, as discussed in section 2.2, but the data show a much 
sharper cutoff at P ≈ 2000 –3000 d. This is because even 
though a companion can be detected statistically, it cannot 
be confirmed as a planet, as opposed to a low-mass star, for 
example, until a full orbit has been observed. There is a lot 
of information in the radial velocity datasets about orbits 
at long periods. Analysis of these long-period candidate 
planets is beginning to appear in the literature (e.g., Fischer 
et al., 2001; Wright et al., 2007; Patel et al., 2007). 

The group of hot Jupiters at short orbital periods shows 
a “pileup” in their orbital periods at P ≈ 3 d, with a tail that 
stretches out to longer periods. Figure 8 shows the distribu-
tion of radial velocity and transiting planets at short periods. 
There are planets with orbits inside 3 d, particularly those 
found by transit surveys, which survey a larger number 
of stars and whose sensitivity depends strongly on orbital 
period. Initially there were questions about why the “very 
hot” planets found by transit surveys were not being found 
by radial velocity surveys, but in fact the likely explana-
tion is that they are rare (Gaudi et al., 2005; Gould et al., 
2006a). Interestingly, the distribution of transiting planets 
is showing increasing numbers at 3–4-d orbital periods. 

Marcy et al. (2005b, following Marcy and Butler, 2000) 
fit a power law to the observed minimum mass distribution, 
finding dn/dMp sin i ∝ 1/(Mp sin i)1.05. In other words, the 
planets are distributed almost uniformly in log mass, ris-
ing slightly more steeply than that toward lower masses. 
The power law fits of Tabachnik and Tremaine (2002) and 
Cumming et al. (2008) given earlier rise more quickly to 
lower masses than the Marcy et al. (2005b) fit, which is 
as expected since the completeness corrections account for 
undetected low-mass planets. 

The observed MP sin i distribution of planets is shown in 
Fig. 9, for all observed planets and for those in close orbits 
with P < 100 d. For orbital periods beyond P ≈ 1 yr, the low-
velocity amplitude makes it difficult to constrain the mass 
distribution below a Saturn mass. However, in close orbits, 
particularly the “hot” orbits within 10-d orbital periods, Fig. 5 
shows that there are now many examples of Neptune-mass 
planets and below (mass range ~10 M ). Indeed, Lovis et al. 
(2006) discovered a three-Neptune planetary system around 
HD 69830. The long-term radial velocity precision of only 
≈1 m/s of the HARPS spectrometer at La Silla Observatory 
allowed the detection of these signals from this 0.86 M  star, 
each of which has an amplitude of less than 3 m/s. Many, 
but not all, of the known hot Neptunes orbit M  dwarfs, 
which helps with their detection since a less-massive star 
has a larger-velocity amplitude for a given planet mass (in 
equation (8) we scale to a typical Mdwarf mass). 

The distribution of planet periods and masses has been 
contrasted with that of low-mass stars and stellar binaries. 
The roughly dn/dM ∝ 1/M mass distribution is significant 
because it clearly separates the distribution of planet masses 
from that of low-mass stars. These objects are not an exten-
sion of the low-mass stars/brown dwarfs to lower masses. 
[Indeed, there is a paucity of brown dwarfs at semimajor 
axes <3 AU, the so-called “brown dwarf desert” (Marcy 
and Benitz, 1989)]. This has been used to argue for differ-Period (yr)
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ent formation mechanisms for brown dwarfs and planets. 
Jones et al. (2003) contrasted the distribution of planetary 
orbital periods with the stellar binary orbital period distri-
bution, which shows no dip at intermediate orbital peri-
ods, being well fitted by a log-Gaussian (Duquennoy and 
Mayor, 1991), again consistent with the different formation 
mechanism of giant planets in a gas disk through which 
migration occurs. 

In general, the distribution of planet masses and orbital 
periods can be described by core accretion models of planet 
formation including inward migration (e.g., Ida and Lin, 
2004a,b, 2005, 2008a,b; Armitage, 2007; Mordasini et al., 
2009a,b). Models based on type II migration of gas giants 
predict a smooth increase in the number of gas giants with 
orbital radius, because of the increasing migration rate 
as the planet moves inward. In principle, therefore, how 
quickly the observed distribution increases to long periods 
can be used to determine the ratio of migration to formation/
disk-depletion timescales. The most recent models by Ida 
and Lin (2008a,b) include type  I migration, and propose 
that the upturn in planet frequency at ~1 AU corresponds to 
retention of solids near the ice line, which gives a preferred 
radius in the protoplanetary disk. Mordasini et al. (2009a,b) 
also find an upturn, although further out than observed by 
about a factor of 2, coming from two different evolutionary 
tracks:  one in which cores migrate inward before reaching 
the condition for runaway accretion of gas, the other from 
cores that run away in situ. In addition, they predict a dis-
tribution of ≈20 M  planets ranging in semimajor axis from 
~0.1 to 5 AU, which is consistent so far with the Neptunes 
being found within a wide range of semimajor axis both 
by radial velocity surveys and microlensing. 

3.4.  Eccentricity Distribution 

Exoplanets have a large range of eccentricities. This goes 
against what we might have expected in comparison with the 
solar system, in which the orbits are almost circular (e.g., 
Jupiter has an eccentricity of 0.05; Mercury’s eccentricity 
is significantly larger than the other planets, with e = 0.21). 
The eccentricity distribution is shown in Fig. 10 for planets 
with orbital periods greater than 10 d, for which tidal damp-
ing of eccentricity is not expected to have occurred. The 
distribution is consistent with being flat at low eccentricity, 
continuing up to eccentricities beyond the median value of 
0.25–0.3 and then drops sharply above e = 0.5. The reason 
for the drop at high eccentricity may be partly due to se-
lection effects. Figure 11 illustrates this by comparing the 
K–e distribution against the detection curves calculated by 
Cumming (2004) (this is an updated version of Fig. 13 in 
that paper). The planets with large eccentricities all have 
large K values, K > 20 m/s for e > 0.7. This suggests that the 
tail of eccentricities in Fig. 10 may be underestimated due 
to the finite sampling of radial velocity surveys, although 
a detailed analysis taking into account the selection effects 
on a star-by-star basis in different surveys is needed. 

Marcy et al. (2005b) point out that the most massive plan-
ets have nonzero eccentricities. This is not due to a selection 
effect, since more massive planets should be easier to detect 
at all eccentricities than low-mass planets, yet only lower-
mass planets are found with circular orbits. Figure 12 shows 
the eccentricity against mass for planets with P  > 10  d 
(to avoid circularization effects). The median eccentricity 
for MP  sin  i  > 5  MJup is clearly greater than the median 
eccentricity for M  < 5  MJup. This could indicate that the 
most massive planets have a different formation mechanism 
(Ribas and Miralda-Escudé, 2007; Ford and Rasio, 2008). 
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The eccentricity-semimajor axis distribution is shown in 
Fig. 13. The orbits of short-period planets are expected to 
be circularized by tides, and the eccentricity-semimajor axis 
distribution provides evidence for this. The circularization 
timescale for small e due to tides raised on the planet is 
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where the parameter Q describes the tidal dissipation inside 
the planet. For a Jupiter-mass and radius planet orbiting a 
solar-mass star, this is te ≈ 1 G.y. (Q/106)(a/0.05 AU)13/2. 
The value of Q is uncertain; values somewhere between 
~105 to 106 are likely (Wu, 2003). Therefore we see that 
within a periastron distance on the order of 0.05 AU, the cir-
cularization time is smaller than 1 G.y., and it is reasonable 
to expect that the planet’s orbit will have circularized over 
the lifetime of the star. In Fig. 13 the dotted curve shows 
a constant value of a(1−e) = 0.05 AU. Indeed, this roughly 
separates the occupied and unoccupied regions, suggesting 
that tidal dissipation sets the upper envelope of the distribu-
tion. This cannot be the only factor, however, as there is a 
significant group of planets with nonzero eccentricity at short 
orbital periods. In some cases, a yet-undetected additional 
companion may excite the eccentricity of the short-period 
planet through gravitational interactions.

Earlier, we discussed the differences in the mass and 
orbital period distributions of exoplanets compared to stellar 
binaries, and how these differences have been used to argue 
that the planets are a distinct population with a different 
formation mechanism. For the eccentricity distribution, the 
opposite is the case. Stepinski and Black (2001) pointed out 
that the period-eccentricity distribution for planets is very 
similar to that for binary stars, and suggested that this may 
result from a similar formation mechanism. More recently, 

Halbwachs et al. (2005) point out that there are differences, 
e.g., there are several long-period planets with almost cir-
cular orbits (analogous to our solar system), which is not 
the case in the stellar binaries.

The origin of the observed exoplanet eccentricities is 
still not understood. Since gas giants are believed to form 
in close to circular orbits in a gas disk, most ideas rely on 
dynamical interactions following formation of the planet 
to increase its eccentricity. Building on their earlier work, 
Ford and Rasio (2008) find that two-body scattering with a 
range of planet mass ratios can explain the observed eccen-
tricity distribution of most planets, but that there should be 
a well-defined maximum eccentricity of ≈0.8 (for initially 
circular orbits of both planets), so that the most eccentric 
planets require some other mechanism to excite their ec-
centricity. Jurić  and Tremaine (2008) simulate systems of 
several planets and find that the eccentricity distribution 
for a wide range of initial conditions relaxes to the form 

( )21
2

dn e exp e 0.3 de ∝ −  . This distribution is shown as 
the dotted curve in Fig. 10, and matches the shape of the 
observed distribution well at larger eccentricities, but not 
for small eccentricities. Therefore, an extra mechanism is 
needed to make the population of planets on circular orbits 
(perhaps these are planets that formed in a disk and did not 
undergo gravitational scattering). 

One problem with these models is that the distribution 
of semimajor axis tends to be smooth with increasing a, 
and does not match the factor of 5 observed increase in 
the number of planets orbiting beyond ~1 AU compared to 
within 1 AU (see Fig. 7 of Jurić  and Tremaine, 2008). This 
increase is present even when planets with circular orbits 
are excluded (see Fig. 13). Other proposals for producing 
the observed eccentricities are due to the interaction of a 
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migrating planet with the disk itself (Goldreich and Sari, 
2003), and interactions with a passing star (Zakamska and 
Tremaine, 2004), or companion star (Holman et al., 1997; 
Wu and Murray, 2003; Fabrycky and Tremaine, 2007; Wu 
et al., 2007). The observed eccentricity distribution is likely 
due to a combination of these mechanisms. 

3.5.  Planet Incidence Versus Stellar Metallicity 

It is now well established that the occurrence rate of 
giant planets increases dramatically with increasing metal-
licity of the host star. Evidence that this is the case emerged 
from the first planet discoveries. Gonzalez (1997) performed 
abundance analyses of four of the early planet discover-
ies, and noted that they were all metal rich relative to the 
Sun. This trend has been confirmed with the many planet 
detections since then:  There are many more planets known 
around metal-rich than metal-poor stars. One might worry 
that this could be an effect of the stellar selection. We have 
already discussed the possible metallicity biases possible 
in stellar samples; e.g., metal-rich stars are overrepresented 
in a magnitude-limited sample with a cutoff in B–V (sec-
tion 2.4). To eliminate these selection effects, Santos et al. 
(2004) and Fischer and Valenti (2005) measured metallici-
ties in a uniform way for samples of stars with and without 
planets, and so could directly address the likelihood that a 
star in a particularly metallicity bin would have a planet. 

Figures  14 and 15 show the results from Fischer and 
Valenti (2005), who determined metallicities and other stel-
lar parameters for more than 1000 stars observed as part of 
the Keck, Lick, and Anglo-Australian Planet Searches. They 
identified a subset of 850 stars that they estimated had similar 
radial velocity detectability (more than 10 observations span-

ning four or more years). [You may also wonder whether the 
typical velocity precision would change with metallicity and 
could introduce a bias. In fact, the mean velocity precision 
seems to be constant for [Fe/H] in the range −0.5 to 0.5 (see 
Valenti and Fischer, 2008).] Figure 14 compares the metal-
licity distributions for the stars with and without planets, 
and Fig. 15 shows the fraction of stars with planets in each 
metallicity bin. Fischer and Valenti (2005) find that the prob-
ability that a star has a planet is well fit by the expression 
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(shown by the gray curve in Fig. 15). 
For hot Jupiters, another way to address the incidence 

of planets at low metallicities is transit searches of globular 
clusters. Gilliland et al. (2000) found that the frequency of 
hot Jupiters in the globular cluster 47 Tuc is at least an order 
of magnitude below that found in radial velocity surveys of 
stars in the solar neighborhood. They found no transiting 
hot Jupiters in their sample of ~34,000 main-sequence stars, 
whereas if the occurrence rate is 1%, 17 detections would 
have been expected. More recently, Weldrake et al. (2008) 
placed limits on the occurrence rate of planets at periods 
between 1 and 5 d in the globular cluster w Cen. The ma-
jority of stars studied are members of the low-metallicity 
population of the cluster, which has [Fe/H]  = −1.7. The 
combined rate of hot and very hot Jupiters that they find 
is approximately <1/600. We should note that both of these 
studies are for planets with radii larger than Rp = 1.3 RJup 
or 1.5 RJup respectively, which decreases the expected rate 
compared to that for all hot Jupiters (see the distribution 
of transiting planet radii in Fig. 18). 
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The origin of the metallicity correlation could be either that 
planet formation or migration are enhanced around metal-rich 
stars, or that the metallicity of the star is enhanced by planet 
formation itself. Following the suggestion of Lin et al. (1996) 
that the hot Jupiters migrated inward along with the remains 
of the protoplanetary disk, Gonzalez (1997) proposed that 
the addition of heavy elements to the outer convection zone 
of the star would be enough to raise the star’s metallicity by 
a significant amount. The thickness of the convection zone at 
the time of the accretion event, which depends on the mass 
of the star (more massive stars have thinner outer convective 
envelopes) and the timing of the accretion event (the mass 
of the convection zone decreases as the star settles onto the 
main sequence), is critical since the added material is mixed 
throughout the convection zone and therefore diluted. However, 
studies of the metallicities of stars as a function of their effec-
tive temperature, or in subgiants compared to main-sequence 
stars, do not show any clear evidence that the accretion of 
solids gives rise to the observed metallicity dependence of the 
planet occurrence rate (Pinsonneault et al., 2001). 

The alternative is that metallicity affects the migration 
process, which brings planets closer to their host star where 
they are easier to detect, or that metallicity directly affects 
planet formation. In the context of the core-accretion model 
for forming Jupiters, this would not be surprising. We might 
naively expect the probability of forming a planet to scale 
with N2 (equation (19)) if planet formation involved binary 
collisions of solids. Core-accretion models by Ida and Lin 
(2004b) or Mordasini et al. (2009b) do indeed show an 
increasing abundance of planets with metallicity. 

The behavior at low metallicity is still being debated. 
The planet abundance against [Fe/H] appears consistent 
with going to a constant at low values of [Fe/H] (Fig. 15), 
as suggested by Santos et al. (2004). However, Cochran et 

al. (2008) find that many of the stars with low [Fe/H] are 
members of the thick disk population rather than the thin 
disk, and have a larger fraction of a-elements than thin disk 
stars. This means that [Fe/H] actually underestimates their 
total metallicity if measured as the total mass fraction of ele-
ments heavier than helium, Z/Z . It may be that the planet 
fraction does indeed go to zero below some value of Z/Z , 
as expected as the raw materials for planet building become 
rarer. There is clearly a lot of interesting work to do study-
ing the relationships between stellar abundances and planet 
occurrence rates and properties. 

3.6.  Planet Incidence Versus Stellar Mass 

Stellar mass is another parameter that could affect the 
likelihood of forming planets, and their masses and orbital 
properties. The distribution of masses and metallicities of 
known planet-bearing stars is shown in Fig. 16. The range of 
stellar masses goes from ≈0.3 M  (main-sequence M dwarfs) 
to almost 3 M  (evolved stars). However, most planet detec-
tions are concentrated in the stellar mass range close to 1 M  
(mostly G and K spectral types). This is because radial veloc-
ity surveys have traditionally focused on this narrow range of 
stellar masses, where the stellar spectra are most amenable 
to radial velocity measurements. At higher stellar masses, 
main-sequence stars earlier than late F-type are generally not 
included in radial velocity surveys, because of the low radial 
velocity precision that can be achieved (~50–100 m/s). The 
reason for this is that these stars have hot atmospheres giving 
fewer spectral lines, and are rapid rotators giving high levels 
of jitter and rotationally broadened lines. At lower masses, 
because M dwarfs are faint they require more observing time 
to achieve the same precision as brighter solar-type stars. 

Observational programs have begun to enlarge the sample 
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of low- and high-mass stars surveyed for planets, and evi-
dence is emerging that the planet occurrence rate and even the 
distribution of orbital properties depends on stellar mass. One 
potential selection effect that must be considered carefully 
is the mass-metallicity correlation introduced into a stellar 
sample by making a cut in B–V (section 2.4). 

At the low-mass end, there is now good evidence for a 
low occurrence rate of giant planets around M dwarfs. For 
example, Butler et al. (2006b) estimated the occurrence rate 
of giant planets within 2.5 AU as 2/114 = 1.8 ± 1.2% for 
planet masses > 0.4 MJup. The equivalent occurrence rate for 
F, G, and K stars is between 6% and 7% (Cumming et al., 
2008). Taking into account differences in selection effects 
between the F, G, and K stars and the M dwarfs, Cumming 
et al. (2008) found that M  dwarfs were 3–10  times less 
likely to harbor a gas giant planet with an orbital period 
less than 2000 d (set by the duration of the Keck survey). 

A low occurrence rate is predicted by core accretion 
models for planet formation, which find that Jupiter-mass 
planets should be rare around M  dwarfs, with the mass 
function of planets shifted toward lower masses (Laughlin et 
al., 2004; Ida and Lin, 2005; Kennedy and Kenyon, 2008). 
Kennedy and Kenyon (2008) assume that the mass of the 
protoplanetary disk scales ∝  M , and include a detailed 
calculation of the position of the snow line. Their Fig.  7 
shows that the probability of having at least one giant planet 
is six times lower for 0.4 M  star than a 1 M  star, in good 
agreement with the observed fraction from radial velocity 
surveys. A challenge for these models is to still be able 
to produce massive planets, e.g., the recent microlensing 
discovery of a 3.8 MJup planet at 3.6 AU from a 0.46 M  
M dwarf (Dong et al., 2009).

At higher stellar masses, the evidence is that giant plan-
ets are more common. The most massive stars in Fig. 16 
are evolved stars, either subgiants or giants. Whereas it is 

not possible to achieve high-precision velocities for massive 
stars on the main sequence, once these stars evolve off the 
main sequence and move to later spectral types, it again 
becomes possible to look for planets. Johnson et al. (2007, 
2008) describe the first results from survey of 159 subgiants 
with Lick and Keck, for which they can achieve a precision 
of ≈2–5 m/s. They use these results to investigate the stellar 
mass dependence of the planet occurrence rate. To ensure 
uniform detectability between stars of different masses, they 
select stars that have at least eight observations with an ob-
serving time necessary to detect a companion at a = 2.5 AU, 
and consider only Mp sin i > 0.8 MJup (this mass limit is set 
by the need to be able to detect companion around subgiants, 
which have lower radial velocity precision, and being more 
massive, lower stellar velocity amplitudes for a given planet 
mass). They find planet occurrence rates of 1.8 ± 1.0% for 
M  < 0.7 M , 4.2 ± 0.7% for 0.7 M  < M  < 1.3 M , and 
8.9 ± 2.9% for M  > 1.3 M . The increasing trend of planet 
occurrence rate with mass remains after correcting for the 
mean metallicity of each mass bin.

This trend is consistent with the core accretion models of 
Kennedy and Kenyon (2008). They find that the planet oc-
currence rate is sensitive to the assumed dependence of snow 
line location with stellar mass. For example, Ida and Lin 
(2005), with a steeper dependence of snow line position on 
mass, predict a decrease in the planet fraction for M  > 1 M .

Johnson et al. (2007, 2008) emphasize the different 
semimajor axis distribution of the planets discovered around 
subgiants and giants compared to the sample of F, G, and 
K  stars. This is illustrated in Fig.  17, which shows the 
mass semimajor axis distribution of known planets, with 
stellar masses <0.5 M  (corresponding to M dwarfs) and 
>1.5 M  (evolved stars) highlighted. [Note that the ≈3 M  
microlensing planet MOA-2007-BLG-192-L b may orbit a 
substellar object. The best-fit mass for the host star is well 

Fig. 15.  Fraction of stars with planets as a function of [Fe/H], 
calculated using the same data as in Fig. 14. The gray curve shows 
the relation 0.03 × 102[Fe/H] from Fischer and Valenti (2005). 
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below an M dwarf mass, M  = 0.028
0.0210.06+

−  M  (Bennett et al., 
2008).] The planets orbiting evolved stars are concentrated 
in long-period orbits, out beyond 0.6 AU [the exception in 
Fig. 17 is the hot Jupiter orbiting HD 102956 (Johnson et 
al., 2010)]. This cannot be due to selection effects, since 
shorter orbital periods would be easier to detect. Similarly, 
no planet with mass ~1  MJup has been detected within 
0.1 AU of an M dwarf. Continued observations of evolved 
stars and M dwarfs will clarify this trend. Particularly for 
giants, tidal effects on close orbits must be included when 
trying to infer how much of this trend is due to differences 
in planet formation or migration between stars of different 
masses (Sato et al., 2008). 

3.7.  Mass-Radius Relation of Transiting Planets 

The statistical study of the properties of transiting planets 
is just beginning. Transiting planets are particularly interest-
ing because we are not restricted to measuring the orbital 
elements, but can study planet properties such as radius and 
atmospheres. Some interesting trends in the population are 
already emerging. 

The masses and radii of the transiting planets are shown 
in Fig. 18. At a given mass, the transiting planets show a 
range of radii, or alternatively a range of densities. Given 
the uncertainties in the physics of giant planet interiors (e.g., 
Saumon and Guillot, 2004), the study of a large sample 
of gas giant planets is of great interest. The first transit-
ing planet HD  209458 had a larger radius than expected 
(1.3 MJup) (Charbonneau et al., 2000), which has been at-
tributed to tidal heating caused by damping of eccentricity 
driven by gravitational interactions with a second planet 
in the system (Bodenheimer et al., 2003, Laughlin et al., 

2005b), or the insulating effect of stellar irradiation as the 
planet migrates inward, which keeps the internal entropy of 
the planet at a larger value than a planet cooling in isolation 
(Burrows et al., 2003). A smaller radius than expected can 
be explained by the presence of a rocky core. For example, 
the Saturn-mass planet orbiting HD  149026 has a radius 
of only 0.73 RJup, and is inferred to have a core of mass 
≈70 M  (Sato et al., 2005). Guillot et al. (2006) propose 
that the radii of all transiting planets can be accommodated 
by having different size cores, with the core mass increas-
ing with stellar metallicity (see also Burrows et al., 2007). 

Figure 19 shows the masses and orbital periods of closely 
orbiting planets. Inspection of this figure shows that the planet 
mass is anticorrelated with the orbital period (for planet 
masses >0.1 MJup). One proposal is that this is evidence 
that planet-planet scattering is responsible for producing 
hot Jupiters. Some fraction of planets will scatter into 
orbits in which they approach very close to the star, and 
could tidally circularize there. In this picture, there should 
be a limit on the orbital radius of hot Jupiters of twice the 
Roche limit (Rasio and Ford, 1996; Ford and Rasio, 2006), 
since a highly eccentric orbit circularizes to twice its peri-
astron distance. [To see this, conserve angular momentum 
∝ ( )2GMa 1 e−  during the circularization, so that afinal  = 
ainitial(1−e2) ≈2aperiastron for e ≈ 1.] Writing the Roche limit 
aR as Rp = 0.462 aR(MP/M )1/3, then acirc = 2aR gives Mp = 
1.1 MJup (Rp/RJup)3(P/1 d)−2, which is plotted as a dotted 
line in Fig. 19. This is quite close to the lower envelope of 
the planets with Mp > 0.1 MJup. 

Other correlations between parameters have been dis-
cussed in the literature. Hansen and Barman (2007) point 
out that the transiting planets appear to fall into two classes 
based on Safronov number, Θ  = (1/2)(vesc/vorb)2  = (a/Rp)
(Mp/M ), where vesc is the escape speed from the planet, and 
vorb is the planet’s orbital velocity. The size of the Safronov 
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determines whether the planet captures or scatters other 
objects in neighboring orbits, and so this difference could 
point to differences in migration or stopping mechanisms. 
However, the statistical significance of the correlation has 
been questioned (Southworth, 2008). As the number of 
transiting planets increases further, we are sure to learn 
a tremendous amount about their internal structure and 
formation and evolution histories. 

3.8.  Multiple Planet Systems 

There are 46 multiple-planet systems in the set of planets 
considered here, about 10% of the 397 planetary systems. 
Of these, 15 have three or more planets and 5 have four 
or more planets, including the star 55 Cnc, which has five 
companions (Fischer et al., 2008). Note that the chance of 
having additional planets is much greater for a two-planet 
system (15 out of 46) than for a single-planet system (46 
out of 397). This may be partially due to a selection effect, 
in that two-planet systems will have been observed more 
carefully than many single planet systems, making it more 
likely to detect additional companions. Analysis of the 
multiplicity of planets taking into account selection effects 
has not been carried out. 

Several multiple-planet systems show orbital period ratios 
that are integers or close to integers. For example, the two 
planets in GJ 876 have P ≈ 30 and 60 d, and are believed to 
be in a 2:1 mean-motion resonance. A natural way to form 
such an arrangement is by migration. As planets migrate 
inward, they can be trapped in resonant configurations (e.g., 
Kley et al., 2005). The occurrence of resonant configura-
tions is a strong argument that migration does take place. 

Planets in resonant configurations are particularly inter-
esting since over time they will show correlated changes in 
orbital elements. An example is the GJ 876 system (Laugh-

lin et al., 2005a; Rivera et al., 2005; Bean and Seifahrt, 
2009). The fit to the radial velocity measurements for this 
system is significantly improved if the gravitational inter-
actions between the planets is included. Instead of fitting 
Keplerians, the equations of motion for the multiple body 
system are integrated directly to predict the expected radial 
velocity evolution. Because the dynamical interactions 
depend on the planet masses, whereas the Keplerian fits 
determine MP sin  i, the interactions can be used to deter-
mine the inclination of the orbits, and whether the orbits 
are coplanar. Another example is the three-planet system 
orbiting u And (the first multiple-planet system discovered 
orbiting a main-sequence star). The outer two planets orbit 
with periods of 241 d and 1301 d (the third planet is a hot 
Jupiter), and are expected to show evolution of their ec-
centricities and longitudes of periastron on long timescales 
of thousands of years (Ford et al., 2005). 

In Fig. 20, we show the known planets in the mass orbital 
period plane, highlighting those planets that are known to 
be in multiple systems. Note that this does not include stars 
with single planets that have an underlying trend in their 
radial velocity, many of which could have a planet at long 
orbital periods (Fischer et al., 2001; Wright et al., 2007). 
Quite striking in this figure is that the majority of the super 
Earths and Neptunes (MP sin  i < 30 M ) are in multiple-
planet systems (see, e.g., Mayor et al., 2009). However, 
one could imagine that this is a selection effect. Neptune-
mass planets are detected with small signal-to-noise values, 
requiring many observations. Multiple-planet systems are 
likely to have been subject to intense observational scrutiny, 
accumulating many observations that could make them 
amenable to detecting planets with low masses. 

Microlensing allows planetary systems at large orbital 
separations to be probed. There has been one detection so 
far; Gaudi et al. (2008) report the detection of a planetary 
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system that is a scaled version of our Jupiter/Saturn system, 
with 0.71 MJup and 0.27 MJup planets with orbital separations 
of 2.3 and 4.6 AU from a 0.5 M  host star. Based on the fact 
that the two other Jupiter-mass planets detected by micro-
lensing were not very sensitive to multiple-planet systems, 
they suggested that the occurrence rate of multiple Jupiters 
is likely to be high, which promises more of these systems 
will be discovered in the future.

4.  FUTURE PROSPECTS

This is an exciting time in exoplanet statistics. The current 
sample of planets is now large enough to yield statistically 
meaningful constraints on orbital properties, giving input for 
planet formation theories. In the next few years, we should 
learn much more as the sample increases further and new 
regions of the mass-orbital period plane and a wider range 
of stellar properties are explored. 

Doppler surveys are moving forward in a few different 
ways. Doppler precision continues to improve beyond the 
1 m s−1 level. Pepe and Lovis (2008) discuss the prospects 
for lowering the Doppler precision from the current ≈1 m s−1 
level to the cm s−1 level. They conclude that s ≈ 10 cm s−1 
should be possible for some stars that are “quiet” enough, 
although it is not yet clear for how long such a precision 
could be maintained. Precise radial velocity measurements 
so far have been made at optical wavelengths, but Ramsey 
et al. (2008) demonstrate the first measurements in the near-
infrared at the 10 m s−1 level. This has the potential to allow 
studies of M dwarfs that are not currently possible, moving 
the mass function of hot planets to smaller masses. As part 
of the Sloan Digital Sky Survey III, the Multi-Object APO 
Radial Velocity Exoplanet Large-Area Survey (MARVELS) 
will monitor 11,000 bright stars with a precision ~10 m s−1. 
This survey makes use of a dispersed fixed-delay interfer-
ometer to make simultaneous observations of ≈60 stars in a 
given exposure, and ≈500 stars per night (Mahadevan et al., 
2008). Johnson et al. (2008) have added 300 new subgiants 
to their program to look for planets around massive stars, 
which should enlarge the sample by 20–30 more planets in 
the next few years. Continued monitoring of stars included 
in current surveys will reveal planets in long-period orbits. 
Wright et al. (2008) announced the discovery of a Jupiter 
twin around the star HD 154345. This planet has a mass of 
0.95 MJup, and a 9.2-yr circular orbit, with no evidence so 
far for other planets in the system. 

For transits, the number of planets has grown tremen-
dously in the last few years, and will continue to increase 
in the near future with observations from the ground and 
from space (the CoRoT and Kepler missions). Whereas 
photometric precision from the ground is limited to ≈0.1%, 
spacebased observations allow a photometric precision 
adequate to detect Earth-sized planets [recall that δ  ≈ 
(RP /R )2 ≈ 10 − 4 for RP = R ]. The NASA Kepler mission, 
launched in 2009, will continuously monitor ≈105 stars 
for transits over the 3.5-yr mission lifetime. It should find 
hundreds of terrestrial-mass planets if they are common 

around solar-type stars (scaling from the ≈10% probability 
of observing a transit for a hot Jupiter at 0.05 AU, we see 
that the probability is ≈0.5% at 1 AU for a solar-type star), 
out to orbits of 1 AU and beyond, and increase the sample 
of hot Jupiters by tens (Basri et al., 2005). This will provide 
a census of Earths and super Earths in close orbits. 

Even with only a handful of detections, microlensing 
has already provided interesting constraints on the planet 
population beyond the snow line, complementing the dis-
coveries made by radial velocity and transit surveys, e.g., 
indicating that cold Neptunes are common at orbital radii 
of a few AU. Microlensing offers some unique views of 
the planet population:  It is potentially sensitive to Earth-
mass planets beyond the snow line; it can detect old, free-
floating planets; it surveys a different population of stars, 
being sensitive to planets in the bulge and disk of the Milky 
Way at large distances, and probes a wide range of host 
stars. Next-generation microlensing searches are currently 
being put together or planned (including the MOA-II and 
OGLE-IV upgrades, and the South Korean KMTNet project 
undergoing construction over the next few years), involving 
continuous wide-field large area surveys that would survey 
~107 stars on ~10-min timescales, giving thousands of mi-
crolensing events per year that would all be monitored for 
planetary perturbations (rather than a small subsample as in 
current alert-follow-up surveys). Simulations indicate a de-
tection rate of ≈10 super Earths per year and ≈1 Earth-mass 
planet per year (e.g., Gaudi, 2008), an order of magnitude 
improvement on the current detection rate. A spacebased 
mission such as the Microlensing Planet Finder [a 1-m-
class telescope, imaging the galactic bulge continuously for 
several months (Bennett et al., 2007)] would be 100 times 
as effective at finding Earth-mass planets (Bennett, 2004). 

Direct searches are beginning to detect planetary com-
panions, e.g., the HR 8799 system with three massive gas 
giants at ≈20–70 AU (Marois et al., 2008), and had already 
placed interesting statistical constraints on giant planet oc-
currence rates at large orbital radii. The Gemini Deep Planet 
Survey (Lafrenière et al., 2007), a near-infrared survey of 
85 nearby young stars using adaptive optics at the Gemini 
North telescope, was able to place 95% upper limits on the 
fraction of stars with a gas giant between 10 and 25 AU of 
0.28, 25 and 50 AU of 0.13, and 50 and 250 AU of 0.09. This 
compares to the fraction 0.17–0.2 for gas giants within 20 AU 
from the Keck radial velocity survey (Cumming et al., 2008). 
Follow-on projects in the next few years such as the Gemini 
Planet Imager (Macintosh et al., 2006) should increase the 
detection rate of gas giants at separations >5 AU, informing 
our understanding of the early evolution of gas giants, and 
when and how planets migrate to large orbital radii. 

Future astrometry space missions should allow detec-
tion of a significant sample of planets at AU separations. 
Depending on the bright star single measurement precision 
achievable (they assume 8 μas), Casertano et al. (2008) find 
that Gaia could potentially find several thousands of gas giant 
planets at orbital radii 1–4 AU around stars within 200 pc, 
with hundreds of multiple-planet systems. The flux-limited 
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stellar sample would consist of a range of spectral types, 
ages, and metallicities. The Space Interferometry Mission, 
with a single measurement accuracy of 1 μas, could uncover 
tens of terrestrial planets (~3 M ) in habitable zones around 
stars within 30 pc (Ford and Tremaine, 2003; Catanzarite 
et al., 2006). 

Theoretical models of core accretion can reproduce 
many of the statistical properties of exoplanets; recent 
papers include Ida and Lin (2008b), Kennedy and Kenyon 
(2008), and Mordasini et al. (2009b). As the observational 
sample grows to include a wider range of orbital, planet, 
and stellar properties, a challenge for theorists is to identify 
which properties of the observed distributions constrain 
key aspects of the theoretical models, and can distinguish 
between alternative scenarios. In this way, the full potential 
of the upcoming observational discoveries can be realized. 
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