Stellar evolution (with MESA)

CRAQ Summer School 2019 Andrew Cumming

Goal for this session

 cover some of the basic ideas in stellar structure and evolution

 how to make your own stellar models with the MESA stellar evolution code

Thursday June 13 9-10.20 am 10.40am-noon

HR diagram from Gaia

Stellar properties depend on a few parameters: mass, age, composition

Understanding stellar structure and evolution tells us why stars look the way they do, and how they evolve through the HR diagram as they age

What is a star?

ball of gas (plasma)

internal pressure balances against the weight of the gas

if you know the mass and radius, then you can work out what the central pressure must be

hydrostatic balance $\frac{\partial P}{\partial r} = -\rho \frac{Gm}{r^2}$

Stars shine because they are hot

A hot object will cool by emitting thermal radiation

In many cases, heat is transported internally by diffusion of photons Pressure needed to support the star => central temperature

heat transport equation

 \mathcal{K} = opacity (proportional to the cross-section for scattering or absorption of photons)

The life of a star is a continual battle against gravity

As energy is radiated away, the star will contract, unless there is an energy source inside the star

- * **Pre-main sequence**: the star is too cold for nuclear burning; it contracts as it radiates away energy
- * Main sequence: the central temperature is large enough that the energy released from hydrogen burning balances the luminosity: contraction halts
- * White dwarf: once the star becomes very dense, degenerate electrons provide the pressure. Degeneracy pressure is independent of temperature => contraction halts once again and the white dwarf cools at fixed radius

The equations of stellar structure

$$\begin{aligned} \frac{\partial r}{\partial m} &= \frac{1}{4\pi r^2 \varrho} , & \text{mass continuity} \\ \frac{\partial P}{\partial m} &= -\frac{Gm}{4\pi r^4} , & \text{hydrostatic balance} \\ \frac{\partial l}{\partial m} &= \varepsilon_n - \varepsilon_\nu - c_P \frac{\partial T}{\partial t} + \frac{\delta}{\varrho} \frac{\partial P}{\partial t} , & \text{energy equation} \\ \frac{\partial T}{\partial m} &= -\frac{GmT}{4\pi r^4 P} \nabla , & \text{heat transport} \\ \frac{\partial X_i}{\partial t} &= \frac{m_i}{\varrho} \left(\sum_j r_{ji} - \sum_k r_{ik} \right) , & i = 1, \dots, I . & \text{composition} \\ \end{aligned}$$

Timescales in stellar evolution

Following the evolution of a star is a challenging calculation because of the large range of timescales involved

nuclear burning timescale
$$t_{\rm nuc} \sim \frac{0.007 X M_{\odot} c^2}{L_{\odot}} \sim 70 \text{ Gyr}$$

can be much shorter: e.g. hours at the end of the life of a massive star, or during a thin shell flash

thermal time

$$t_{\rm KH} \sim \frac{GM_{\odot}^2}{R_{\odot}L_{\odot}} \sim 30 \,\,{\rm Myr}$$

sets the evolution time when you run out of fuel

dynamical time
$$t_{\rm dyn} \sim \left(\frac{R_\odot^3}{GM_\odot}\right)^{1/2} \sim 20 \text{ mins}$$

e.g. core collapse

Part 1 : Make a model of the Sun with MESA

Make a new work directory: cp -r \$MESA_DIR/star/work evolve

```
If you do cd evolve
    ./mk
    ./rn
```

MESA should run and pop up two windows

Copy the inlist_pgstar file provided to your work directory and run MESA again

MESA has many built in options for different types of plots

<u>http://</u> <u>mesa.sourceforge.net/</u> <u>pgstar_defaults.html</u>

Now look at inlist_project

! inlist to evolve a 15 solar mass star

! For the sake of future readers of this file (yourself included), ! ONLY include the controls you are actually using. DO NOT include ! all of the other controls that simply have their default values.

&star_job

- ! begin with a pre-main sequence model create_pre_main_sequence_model = .true.
- ! save a model at the end of the run save_model_when_terminate = .false. save_model_filename = '15M_at_TAMS.mod'
- ! display on-screen plots pgstar_flag = .true.
- / !end of star_job namelist

&controls

```
! starting specifications
initial_mass = 15 ! in Msun units
```

```
! options for energy conservation (see MESA V, Section 3)
    use_dedt_form_of_energy_eqn = .true.
    use_gold_tolerances = .true.
```

```
! stop when the star nears ZAMS (Lnuc/L > 0.99)
Lnuc_div_L_zams_limit = 0.99d0
stop_near_zams = .true.
```

```
! stop when the center mass fraction of h1 drops below this limit
xa_central_lower_limit_species(1) = 'h1'
xa_central_lower_limit(1) = 1d-3
```

/ ! end of controls namelist

Now look at inlist_project

! inlist to evolve a 15 solar mass star

! For the sake of future readers of this file (yourself included), ! ONLY include the controls you are actually using. DO NOT include ! all of the other controls that simply have their default values.

&star_job

- ! begin with a pre-main sequence model create_pre_main_sequence_model = .true.
- ! save a model at the end of the run save_model_when_terminate = .false. save_model_filename = '15M_at_TAMS.mod'
- ! display on-screen plots pgstar_flag = .true.
- / !end of star_job namelist

Let's make a model of the Sun

First step is to change initial_mass to 1 instead of 15

&controls

- ! starting specifications initial_mass = 15 ! in Msun units
- ! options for energy conservation (see MESA V, Section 3)
 use_dedt_form_of_energy_eqn = .true.
 use_gold_tolerances = .true.
- ! stop when the star nears ZAMS (Lnuc/L > 0.99)
 Lnuc_div_L_zams_limit = 0.99d0
 stop_near_zams = .true.
- ! stop when the center mass fraction of h1 drops below this limit xa_central_lower_limit_species(1) = 'h1' xa_central_lower_limit(1) = 1d-3
- / ! end of controls namelist

Now look at inlist_project

! inlist to evolve a 15 solar mass star

! For the sake of future readers of this file (yourself included), ! ONLY include the controls you are actually using. DO NOT include ! all of the other controls that simply have their default values.

&star_job

- ! begin with a pre-main sequence model create_pre_main_sequence_model = .true.
- ! save a model at the end of the run save_model_when_terminate = .false. save_model_filename = '15M_at_TAMS.mod'
- ! display on-screen plots pgstar_flag = .true.
- / !end of star_job namelist

First step is to change initial_mass to 1 instead of 15

the Sun

Let's make a model of

&controls

- ! starting specifications initial_mass = 15 ! in Msun (
- ! options for energy conservati use_dedt_form_of_energy_eqn use_gold_tolerances = .true.
- ! stop when the star nears ZAMS Lnuc_div_L_zams_limit = 0.99c stop_near_zams = .true.
- ! stop when the center mass fra xa_central_lower_limit_specie xa_central_lower_limit(1) = 1

To make things faster for now (less accurate!)

! options for energy conservation (see MESA V, Section 3)
 use_dedt_form_of_energy_eqn = .false.
 use_gold_tolerances = .false.

! global timestep control (default 1e-4)
varcontrol_target = 1d-3

We need a new stopping condition to stop when we get to the age of the Solar System

http://mesa.sourceforge.net/controls_defaults.html#when_to_stop

max_age ¶

Stop when the age of the star exceeds this value (in years). only applies when > 0.

 $max_age = 1d36$

Add this to your inlist_project in the controls section:

!sto	р	at	a	given	age
max_	ag	e	= 4	.5d9	

and change this one from <code>.true.</code> to <code>.false.</code> :

stop_near_zams = .false.

We've set the flag Grid1_file_flag = .true.in inlist_pgstar so that MESA will output png files. Before running make sure the png directory is empty

 $\ \ nm -r png/*$

Now run the code!

./rn

To make a movie use

images_to_movie 'png/grid*.png' movie.mp4

Take a look at the movie — does the star have the structure you expect for the Sun?

TRho_Profile

The equations of stellar structure

$$\begin{aligned} \frac{\partial r}{\partial m} &= \frac{1}{4\pi r^2 \varrho} , & \text{mass continuity} \\ \frac{\partial P}{\partial m} &= -\frac{Gm}{4\pi r^4} , & \text{hydrostatic balance} \\ \frac{\partial l}{\partial m} &= \varepsilon_n - \varepsilon_\nu - c_P \frac{\partial T}{\partial t} + \frac{\delta}{\varrho} \frac{\partial P}{\partial t} , & \text{energy equation} \\ \frac{\partial T}{\partial m} &= -\frac{GmT}{4\pi r^4 P} \nabla , & \text{heat transport} \\ \frac{\partial X_i}{\partial t} &= \frac{m_i}{\varrho} \left(\sum_j r_{ji} - \sum_k r_{ik} \right) , & i = 1, \dots, I . & \text{composition} \\ \end{aligned}$$

Fig 3.9 from Hansen & Kawaler

Heat transfer I: photon diffusion

mean free path $\ell \approx \frac{1}{n_e \sigma} = \frac{1}{\rho \kappa}$

Contributions to the opacity:

* electron scattering (Thomson cross-section σ_T) $\kappa = 0.2 \text{ cm}^2 \text{ g}^{-1} (1 + X)$

* free-free and bound-free absorption

$$\kappa \propto \rho T^{-7/2}$$

Hayashi et al. (1962); reproduced in Fig 4.7 of Hansen & Kawaler

Heat transfer II: convection

1D model: mixing length theory

$$\begin{split} F_{\rm conv} &\sim \rho v_{\rm conv} c_P T (\nabla - \nabla_{\rm ad}) \\ v_{\rm conv}^2 &\sim g \mathcal{E} (\nabla - \nabla_{\rm ad}) \end{split}$$

where the mixing length ℓ is a parameter calibrated to observations

Convection turns on when the temperature gradient exceeds the adiabatic temperature gradient

$$\nabla \equiv \frac{d \ln T}{d \ln P} > \nabla_{\rm ad} \equiv \frac{\partial \ln T}{\partial \ln P} \bigg|_{S}$$

In convecting region $\nabla \sim \nabla_{ad}$ (effective upper limit on temperature gradient)

- * hot fluid elements can become buoyant and rise, transporting energy
- * an intrinsically multi-D process!

Two ways to burn hydrogen

* Much easier to fuse low Z nuclei than high Z (Coulomb barrier) => need higher temperatures for the CNO cycle * In the CNO cycle, p capture on ^{14}N is rate limiting step => C,N,O evolve to ^{14}N

Part 2 : Properties of main sequence stars

We want to compare the properties of main sequence stars with different masses

Define "main sequence" as the time when the central hydrogen abundance reaches X = 0.35 (you can use a stopping condition to stop the model at that point)

Choose a mass for the star, and run MESA until the star reaches X=0.35 at the centre.

Record your results in the google sheet. Fill in as many of the columns as you can: (all evaluated when the star reaches X=0.35)

- * The age of the star
- * The luminosity (in solar luminosities)
- * The central temperature
- * The mass of the convective core
- * The opacity at the centre
- * The ratio of luminosity from pp burning to CNO burning

MESA output

LOGS/history.data

One line per model with information such as the age, luminosity, mass etc. so you can see how things change over time

LOGS/profileN.data

One file per model with the internal structure of each model, e.g. composition profile, temperature profile etc.

Adding columns

Let's add opacity to the output for each model

First copy the file that tells MESA which columns to output into your work directory:

cp \$MESA_DIR/star/defaults/profile_columns.list .

If you look in the file, you will see many options for things to output. Uncomment this line:

opacity ! opacity measured at center of zone

Rerun MESA and you should find the profile files have an extra column showing you the opacity at each location in the star

(To add columns to the history, use history_columns.list)

You can find my results for different masses here:

http://45.56.103.199/CRAQ_summer_school_2019/

Low mass vs high mass stars

A few different aspects of stellar physics change at about the mass of the Sun:

Low mass (< solar mass)	High mass (> solar mass)	
free-free opacity	electron scattering opacity	
pp chain	CNO cycle	
radiative core, surface convection zone	convective core, radiative envelope	

Part 3: Beyond the main sequence

Moving the burning source off-centre drives the star into a giant configuration

Compact stars vs giants

Helium burning

Once we leave the main sequence, we need to worry about He burning

- He burns by the triple alpha reaction $3\alpha \Rightarrow^{12} C$
- Requires temperatures of ~10⁸K
- Further alpha captures make ¹⁶O,²⁰Ne,²²Mg

More advanced burning beyond oxygen happens in massive stars (see lectures this afternoon)

To run your model beyond the main sequence, you just need to remove the stopping condition so that it keeps going

There is one more piece of physics to add to the inlist_project, which is mass loss

```
cool_wind_full_on_T = 9.99d9
hot_wind_full_on_T = 1d10
cool_wind_RGB_scheme = 'Reimers'
cool_wind_AGB_scheme = 'Blocker'
RGB_to_AGB_wind_switch = 1d-4
Reimers_scaling_factor = 0.8d0
Blocker_scaling_factor = 0.7d0
```

(I copied these from the MESA test_suite 1M_pre_ms_to_wd)

TRho_Profile

Going further with MESA (what we didn't talk about)

- The test suite as a resource
- Convergence studies
- Things you can change using the inlist
 - Examples are:
 - the metallicity of the star
 - changing to a different nuclear network, e.g. more isotopes for advanced burning
 - change the atmospheric boundary conditions
 - turn on accretion, rotational mixing, diffusion, hydrodynamics The MESA website is a good place to browse the different options

Using run_star_extras to extend MESA

Examples are:

- implementing a more precise stopping condition (e.g. you need to stop the code when X=0.35 *precisely*)
- adding your own opacity, mass loss prescription
- outputting custom information to the history or profile output files

When in doubt, email the user list! You will get a quick answer..

ls \$MESA_DIR/star/test_suite/

Andrews-Mac-mini:evolve_test cumming\$ ls /Applications/mesa/star/test_suite/

1.3M_ms_high_Z 1.4M_ms_op_mono 1.5M_with_diffusion 15M_dynamo 16M conv premix 16M_predictive_mix 1M_pre_ms_to_wd 1M thermohaline 1M_thermohaline_split_mix 25M_pre_ms_to_core_collapse 25M_z2m2_high_rotation 5M cepheid blue loop 7M_prems_to_AGB 8.8M urca README accreted_material_j accretion with diffusion adjust_net agb agb_to_wd astero_adipls astero_gyre axion cooling black hole brown_dwarf build and run c13 pocket cburn_inward conductive_flame conserve_angular_momentum count_tests create_zams custom colors

custom rates debugging_stuff_for_inlists det riemann diffusion smoothness do1 rsp test source do1_test_source each_rsp_test_clean each rsp test run each_rsp_test_run_and_diff each_test_clean each_test_do each_test_run each_test_run_and_diff each_test_up_final envelope_inflation example_astero example ccsn IIp example_make_pre_ccsn gyre_in_mesa_bcep gyre_in_mesa_envelope gyre in mesa ms gyre_in_mesa_rsg gyre_in_mesa_spb gyre_in_mesa_wd hb_2M he_core_flash high mass high_rot_darkening high_z hot_cool_wind hse_riemann hydro_Ttau_evolve hydro Ttau solar

irradiated planet list tests low z magnetic_braking make brown dwarf make_co_wd make_he_wd make_low_mass_with_uniform_composition sedov_omega_1 make_metals make_o_ne_wd make planets make_sdb mesa dir.rb multimass multiple_stars neutron_star_envelope noh riemann nova ns_c ns_h ns he other_physics_hooks ppisn pre zahb profile_mesa radiative levitation relax composition j entropy report rsp_BEP rsp_BLAP rsp_Cepheid rsp_Delta_Scuti rsp RR Lyrae

rsp_Type_II_Cepheid rsp_check_2nd_crossing rsp_gyre rsp_save_and_load_file sample he zams sample_pre_ms sample_zams semiconvection sewind simplex solar calibration split burn 20M si burn qp split_burn_big_net_30M split_burn_big_net_30M_logT_9.8 surface effects test case template test case template for bill test_memory test_memory2 timing very_low_mass wd wd2 wd3 wd_acc_small_dm wd_aic wd cool wd_cool_0.6M wd diffusion wd_ignite wd_surf_at_tau_1m4

MESA resources

MESA webpage: http://mesa.sourceforge.net/index.html

MESA Marketplace: http://cococubed.asu.edu/mesa_market/

MESA Summer schools:

http://cococubed.asu.edu/mesa_summer_school_2019/index.html

"Beyond inlists"

https://jschwab.github.io/mesa-2018/

The mailing list mesa-users@lists.mesastar.org

The MESA "instrument papers" Paxton et al. (2011,2013,2015,2018,2019)

https://ui.adsabs.harvard.edu/abs/2019arXiv190301426P/abstract