
Introduction

These are notes for two lectures on “Neutron Star Theory” at the CRAQ Summer
School, held in Montreal in August 2016.

Neutron stars are important for many reasons: they are endpoints of stellar evo-
lution, they contain unique phases of matter that exist only at high pressure, they
have strong magnetic fields, strong gravity, the precise timing of pulsars enables tests
of general relativity, and hopefully soon as a source of gravitational radiation from
mergers. Neutron star theory encompasses far too much to cover in two lectures. I de-
cided here to mostly focus on the interior physics of neutron stars, and how that can
be constrained observationally. The notes are divided into three parts: (1) the struc-
ture of the neutron star crust and core and the mass-radius relation, (2) neutron star
cooling, and (3) a brief discussion of neutron star magnetic field evolution.
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Chapter 1

Neutron Star Structure

1.1 Neutron Star Basics

Neutron stars are composed mostly of degenerate neutrons, which provide the pres-
sure required to hold up the star against gravity, just as degenerate electrons hold up
a white dwarf. We can get the expected radius of a star held up with neutron degen-
eracy pressure by scaling from a white dwarf. From hydrostatic balance, the central
pressure Pc of a star is roughly given by

Pc

R
∼ GM

R2
M
R3 → Pc ∼

GM2

R4 . (1.1)

If the pressure is provided by degenerate particles of mass m,

P =
2
5

nEF =
2
5

n
h̄2

2m
(3π2n)2/3. (1.2)

The number density of particles is n ∼ M/R3 for both white dwarfs and neutron stars.
Therefore

Pc ∝
M5/3

mR5 ∝
M2

R4 ⇒ R ∝ M−1/3m−1. (1.3)

The radius of the neutron star should be a factor mn/me ≈ 2000 times smaller than
a white dwarf. (An alternative version of this argument is to set EF ∼ Gmp M/R.)
For RWD ≈ 109 cm, we get RNS ≈ 5 km. Not bad – we think that neutron stars are
between about 10 and 15 km in radius.

A composition of neutrons may seem surprising if you consider that free neutrons
decay with a half-life of about 15 minutes by the reaction

n→ p + e− + ν̄e. (1.4)

Yet neutrons are able to exist stably in an atomic nucleus or in a neutron star. The
reason is that the reaction (1.4) is in equilibrium with the reverse reaction, electron
capture on protons

p + e− → n + νe. (1.5)
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The condition for equilibrium is that the chemical potentials balance

µn = µe + µp. (1.6)

This is known as beta-equilibrium.
At high density, the equilibrium favors neutrons, which is why we end up with

neutron stars. To see this, we write down the chemical potentials for degenerate elec-
trons, neutrons, and protons. All three species of particle are degenerate because their
Fermi energies are much greater than any thermal energy (EF � kBT) — neutron
stars are cold stars. (The energy scale is given by the virial theorem: the energy per
baryon must be ∼ GMmp/R ∼ 100 MeV, which is � kBT as long as T � 1012 K.)
The chemical potentials are then µn = mnc2 + p2

F,n/2mn, µp = mpc2 + p2
F,p/2mp, and

µe = pF,ec (the electrons are relativistic at Fermi energies of ∼ 100 MeV). We can ne-
glect the neutron–proton mass difference (∼ 1 MeV) compared to the Fermi energies
and write mn ≈ mp ≈ mu. Beta-equilibrium implies

p2
F,n

2mu
=

p2
F,p

2mu
+ pF,ec. (1.7)

From charge neutrality, ne = np, which implies that the electron and proton momenta
must be equal pF,e = pF,p, where we use the relation p = h̄(3π2n)1/3 for degenerate
particles. This means that the electron term must dominate on the right hand side.
This gives the proton to neutron ratio as

np

nn
≈

(
EF,n

2muc2

)3/2

∼
(

100 MeV
1 GeV

)3/2

, (1.8)

or a proton fraction of a few percent.
The picture of a neutron star as a self-gravitating ball of non-interacting fermions

is of course simplified. A more realistic slice showing what we think a neutron star
looks like is shown in Figure 1.1, which is taken from [17]. The simple model of a
n, p, e− neutron star fails in a few different ways. First, the equation of state of the
neutrons and protons in the core is far from being that of an ideal degenerate gas.
Instead of P ∝ ρ5/3, the equation of state is closer to P ∝ ρ2 because of interactions
between the neutrons and protons. The high Fermi energies also allow the production
of other particles such as muons (the mass of the muon is 105.7 MeV), perhaps pions
(mass of pion is ≈ 140 MeV), or even quark matter. We discuss this further in section
1.3. Second, we have ignored the temperature of the core which matters for example
if we want to know how hot the surface will be and whether we can observe the
star. We discuss the cooling of neutron stars in section 2. Finally, near the surface of
the star where the density and Fermi energies drop, neutrons and protons prefer to
concentrate in bound nuclei rather than exist as homogeneous nuclear matter. The
region in which nuclei are present makes up the outer ≈ 1 km of the star known as
the crust. We discuss the structure of this interesting region in the next section.
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Figure 1.1: The neutron star pizza-diagram showing the different regions of the crust
and core. Taken from [17].

1.2 The Neutron Star Crust

1.2.1 What happens to matter as it is compressed

The gas at the surface of a neutron star has about the same density as water, ρ ∼
1 g cm−3, but in the core the density is 1014–1015 g cm−3. The state of matter is very
different in each of these circumstances: ideal gas at the surface, nuclear matter at
the centre. How this transformation occurs sets the internal structure of the star: the
outermost atmosphere and underlying envelope, the outer crust with its solid lattice
of nuclei and degenerate electrons, the inner crust with free neutrons permeating the
solid, and the core, with neutrons and protons, and possibly other particles, making
up bulk nuclear matter. I start by highlighting the important pieces of physics that
determine the transition.

Hydrostatic balance. As you move radially into the star from the surface, the pressure
increases to support the increasing weight of the material above any given point. This
is hydrostatic balance, P ≈ gy where P is the pressure, g ≈ GM/R2 is the surface
gravity, and y is the mass per unit area or column depth. The scale height is H =
y/ρ = P/ρg (the lengthscale on which pressure changes).

Pressure ionization. The first thing that happens as atoms get pushed together is that
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the electrons in one atom begin to feel the electric fields from other atoms. Eventually,
the electrons are no longer bound to a single nucleus; the matter is pressure ionized. To
estimate when this happens, we can ask when is the spacing between atoms roughly
equal to the atomic radius aZ = a0/Z where a0 = h̄/(αmec) = 0.53Å is the Bohr
radius. The spacing between atoms is given by (4π/3)a3n = 1 where the number
density is n = ρ/Amp. This gives a = aZ when

ρ =
3Amp

4π

(
αmecZ

h̄

)3

= 2.7 g cm−3 AZ3. (1.9)

This formula overestimates the density at which pressure ionization occurs; a detailed
treatment is given by [6]. The density at the photosphere of the neutron star is ∼
1 g cm−3 so for light elements like hydrogen and helium the matter is pressure ionized;
heavier elements such as 56Fe are ionized by ρ ∼ 104 g cm−3.

Degenerate electrons. Not too far into the star, then, the atoms are fully ionized and
the electrons are free. They form a Fermi gas with Fermi momentum pF = h̄kF where
kF = (3π2ne)1/3. The Fermi energy is

EF =
p2

F
2me
≈ 30 eV

(
ρYe

1 g cm−3

)2/3

, (1.10)

where the electron fraction Ye is defined by ρYe = nemp (for a single species Ye =
Z/A ≈ 0.5). Setting EF = kBT, we see that the electrons become degenerate at a
density

ρYe = 6.1 g cm−3
(

T
106 K

)3/2

. (1.11)

Again, except at the very surface, we expect neutron stars to have degenerate elec-
trons. As density increases, the electron Fermi energy increases and eventually EF =
mec2 and the electrons become relativistic. This happens at a density

ρYe ≈ 3× 106 g cm−3. (1.12)

Once the electrons are relativistic, the Fermi energy is

EF ≈ pFc ≈ 1 MeV
(

ρYe

107 g cm−3

)1/3

. (1.13)

The pressure is Pe = (1/4)neEF = 3 × 1024 erg cm−3 (ρYe/107 g cm−3)4/3, or scale
height H = 3000 cm (ρ/107 g cm−3)1/3Y4/3

e /g14 where g14 = g/1014 cm s−2.

Solid, liquid, or gas?. The electrons are degenerate, but what about the ions? The ions
are non-degenerate with energy set by the thermal energy ∼ kBT. As the matter is
compressed, the ions get closer together and their Couloumb interaction can become
important. This is measured by the ratio Γ = Z2e2/aikBT, where ai is the interion
spacing. For Γ < 1, the Coulomb energy between ions is small and the ions behave
like a gas. For Γ > 1 Coulomb interactions begin to dominate the thermal energy. The
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Figure 1.2: The types of nuclei that can be found at different depths in the neutron
star crust. The different scales show the depth, the density, and the electron Fermi
energy. Taken from [19].

ions behave like a liquid – they know about each other. For Γ & 175, the Coulomb
energy is strong enough to force the ions to fall into a lattice, giving a Coulomb solid.
The neutron star has a solid crust. The density where the ions solidify (where Γ = 175)
is

ρsolid ≈ 100 g cm−3
(

T
106 K

)3 ( Z
26

)−6 ( A
56

)
. (1.14)

Electron captures. Nuclear physics begins to intervene once the electron Fermi energy
gets to values of a few MeV and beyond. The nucleus with the largest binding energy
(most stable nucleus) is 56Fe. If you let a bunch of neutrons and protons rearrange
themselves into whatever nuclei they want, they will form 56Fe to minimize their en-
ergy. However, this changes at high density. For EF > 3.7 MeV or ρ & 109 g cm−3, the
electron capture reaction

56Fe + e− →56 Mn (1.15)

becomes energetically favourable and so 56Fe is no longer the preferred nucleus (and
in fact, note that because even numbers of protons and neutrons are preferred in nu-
clei, another electron capture reaction would quickly follow to make 56Cr).

The ground state, or lowest energy, nucleus is different at high density. As the
electron Fermi energy increases, the ground state nucleus becomes more and more
neutron rich (Ye drops). The high electron Fermi energy outside the nucleus stabilizes
the large number of neutrons inside the nucleus that would quickly undergo beta
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Figure 1.3: Nuclear pasta. Top: An illustration of the transition from normal nuclei
through the pasta phases to the core. Taken from [17]. Bottom: Lasagna formed in a
molecular dynamics simulation. Spiral defects link the lasagna sheets. From [14].

decay in vacuum.

Neutron drip. As density increases, the nuclei become more and more neutron rich.
But there is maximum neutron to proton ratio that a nucleus can accommodate. As
you try to put more and more neutrons into the nucleus, eventually the nucleus will
become unbound. The lowest energy state is then to have free neutrons outside the nu-
cleus. This is known as neutron drip. Neutron drip typically occurs for EF ≈ 27 MeV or
ρnd ≈ 4× 1011 g cm−3. This point divides the outer crust from the inner crust. Whereas
electrons dominate the pressure in the outer crust, the free neutrons set the pressure in
the inner crust. Treating them as an ideal Fermi gas, the neutron Fermi energy is EF,n ≈
1.5 MeV ρ2/3

12 Y2/3
n and pressure Pn = (2/5)nnEF,n = 5.7× 1029 erg cm−3 (ρ12Yn)5/3.

The pressure scale height is H ≈ 60 m ρ2/3
12 Y5/3

n /g14. (In reality, the neutrons interact
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Figure 1.4: The superfluid critical temperature as a function of baryon density (from
the pairing model of [3]). For T < Tc, the particles are superfluid. The boundary
between the crust and the core is at ρb ≈ 0.06− 0.09 fm−3. Taken from [7].

with each other through the strong force. This can be described by giving the neutrons
an effective mass m?

n, typically about 2mn).

Nuclei dissolve. In the inner crust, the surrounding gas of neutrons reduces the sur-
face energy of the nuclei compared to nuclei in vacuum. Eventually, it is no longer
favorable to form nuclei; they dissolve and the neutrons and protons form homoge-
nous nuclear matter. This transition is described in the classic paper by Baym, Bethe,
and Pethick [4] and happens at a baryon density nb ≈ 0.08 f m−3, or ρ ∼ 1014 g cm−3.
The bulk nuclear matter makes up most of the star, which will have a central density
∼ 1015 g cm−3 depending on the mass and the core equation of state. The Fermi ener-
gies of the protons and neutrons in the core are hundreds of MeV, and exotic particles
may appear at the highest densities, e.g. a pion condensate or quark matter.

Nuclear pasta. Near the base of the inner crust, the competition between the long
range Coulomb repulsion between nuclei and the short range nuclear attraction can
result in complex phases of matter known as pasta phases. (In condensed matter
physics, this kind of system in which competing forces give rise to complex struc-
tures is known as a frustrated system). Whereas at low density, nuclei are spherical,
in the pasta regions nuclei may take on rod-like (spaghetti) or sheet-like (lasagna)
shapes. Although the pasta likely spans only about a factor of two in density, it ac-
counts for much of the mass of the crust. An illustration of the transition through the
various pasta phases is shown in Figure 1.3. It is really quite remarkable that matter
at high density exhibits this complex behaviour. Matter becomes much simpler on
going from the densities of terrestrial materials to white dwarf densities; complexity
emerges again once the nuclear forces become important.

Pairing and superfluidity. Fermions with an attractive interaction will pair, forming
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a superfluid. In neutron stars, the superfluid pairing is usually described as 1S0 or 3P2,
a notation which describes whether the spins of the interacting nucleons is aligned or
not (triplet or singlet state). One of the features of the nuclear force is that it is spin-
dependent. At the low densities in the crust, the neutrons pair in the 1S0 channel. The
superfluid forms at temperatures below the density-dependent critical temperature
Tc(ρ). Calculations of Tc(ρ) are highly uncertain, but typically find that Tc increases
from zero at neutron drip to a maximum Tc ∼ 1010 K and then drops again at higher
densities towards the base of the inner crust, possibly reaching zero again before the
boundary with the core. In the core, the neutrons can again pair by in a triplet state
3P2, and the protons pair in the singlet 1S0. The protons are charged particles, so the
proton superfluid is a superconductor.

1.2.2 Neutron star structure

Table 1.1 summarizes the different regions of the neutron star.



C
H

A
PT

ER
1.

N
EU

T
R

O
N

STA
R

STR
U

C
T

U
R

E
10

Table 1.1: Neutron star structure

Region Density Composition State of matter EF,e EF,n Pressure Pressure scale
ρ (g cm−3) (MeV) (MeV) (erg cm−3) height H (m/g14)

Atmosphere ≈ 1 Ideal gas
Pressure ionized

Envelope 1–ρsolid Nuclei, e− Gas/Coulomb liquid, . 1
degenerate electrons

Outer crust ρsolid–≈ 4× 1011 Nuclei, e− Solid lattice, ≈ 1 (ρ7Ye)1/3 — Pe ≈ 3× 1024 30 ρ1/3
7 Y4/3

e
degenerate electrons ×(ρ7Ye)4/3

Inner crust 4× 1011–1014 Nuclei, n, e− Solid lattice, > 27 1.5 ρ2/3
12 Y2/3

n Pn ≈ 6× 1029 60 ρ2/3
12 Y5/3

n
degenerate electrons, ×(ρ12Yn)5/3

superfluid neutrons
Pasta ∼ 1013–1014 Non-spherical nuclei, Nuclear pasta

n, e− degenerate electrons,
superfluid neutrons

Core & 1014 n,p,e−,µ Nuclear matter ∼ 100 MeV
(nb & 0.08 fm−3) n,p may be superfluid
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1.3 The Mass–Radius Relation

One of the ways to investigate neutron star interiors is to measure the radii and masses
of as many different neutron stars as possible. The maximum mass of neutron stars
tells us about the high density behaviour of matter. The radius of the star tells us about
the matter nearer nuclear density, whether it is stiff or soft (how hard it is to compress).
Here, I go through the important points that you should know about to understand
the constraints from mass and radius measurements. I write equation of state as EOS.

The nucleon-nucleon interaction. The nuclear force which binds neutrons and pro-
tons into nuclei is short range, on the scale of∼fm. The short range nature can be seen
in the way that the binding energies of nuclei scale ∝ A, whereas if all the nucleons
attracted each other you would expect the binding energy to be ∝ A2 (for example the
gravitational binding energy of an object goes as the square of the number of particles).
Although attractive, the nuclear force has a repulsive core which sets a characteristic
mean spacing between nucleons in nuclei. The corresponding density is known as the
nuclear saturation density n0 ≈ 0.16 fm−3.

Stiffening of the equation of state. The repulsive part of the nuclear force provides
extra resistance to compression compared to a non-interacting gas. This stiffens the
equation of state, giving a scaling P ∝ ρ2 compared to the scaling P ∝ ρ5/3 that applies
for a non-interacting non-relativistic degenerate gas. The term stiffen refers to the fact
that with a steeper dependence of pressure on density, a larger pressure change is
needed to increase the pressure by a certain amount.

The different ways of calculating the EOS. The many-body problem of determining
P(ρ) for a given nuclear interaction cannot be solved exactly. A number of different
methods have been applied to calculate the equation of state, a recent comprehensive
review is ref. [2]. These calculations are generally calibrated to observed properties
of atomic nuclei, and then extrapolated to densities above nuclear density (or some-
times the other way round – write down a theory valid at very high density and work
backwards). An interesting approach is chiral effective field theory, in which a system-
atic perturbative expansion of the different 2-body and 3-body interactions is written
down consistent with the underlying symmetries of QCD (see [11] for a review). The
advantage of this approach is that it allows the theoretical uncertainties to be written
down in a well-defined way, which Hebeler et al. [12] used to argue that the neutron
star radius must lie in the range ≈ 10–14 km.

The TOV equations. Going from the equation of state P(ρ) to a predicted mass–
radius relation R(M) requires integrating the equations of stellar structure. In general
relativity, these are known as the TOV (Tolman-Oppenheimer-Volkoff) equations

dP
dr

= −G
c2

(P + ε)(m + 4πr3P/c2)

r(r− 2Gm/c2)
(1.16)

dm
dr

= 4πr2 ε

c2 (1.17)
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Figure 1.5: Examples of equations of state (left panel) and the resulting mass-radius
relations (right panel). Taken from [23] Fig. 3 – see the caption in that article for refer-
ences for the different equations of state. The grey band shows the range expected by
taking the well-understood low density part of the EOS and extrapolating in different
ways to high density. See also Fig. 7 of [18] which shows many more EOSs.

where m(r) is the total energy contained within radius r, P is the pressure and ε the
energy density at radius r. A useful exercise is to compare these with the usual stellar
structure equations to see where the GR effects come in. You can find codes online
that take P(ρ) and solve the TOV equations to get M(R). An example in python by
Alex Deibel from MSU is at https://github.com/adeibel/tov.

The correspondence between the equation of state and the mass-radius relation.
Figure 1.5 shows different predictions for the equation of state and corresponding
mass-radius relations. An important point is that there is a mapping between P(ρ)
and M(R) (see [16]). Low mass stars have low central densities so they depend only
on the low density part of the EOS. As mass increases, the central density increases
and the mass–radius relation explores the higher density part of the EOS.

Radius is roughly independent of mass. The M(R) curves are very vertical in the
M–R plane. This can be understood from the scaling Pc ∼ GM2/R4 we used to derive
the relative sizes of neutron stars and white dwarfs. For non-relativistic degeneracy
pressure Pc ∝ ρ5/3 ∝ M5/3/R5 gives R ∝ M−1/3, the mass–radius relation for white
dwarfs. Neutron stars have an equation of state closer to P ∝ ρ2. In that case, Pc ∝
(M/R3)2, and if you follow through the argument you’ll see that mass cancels and the
star selects a particular radius. (A similar cancellation happens for the Chandrasekhar
mass when P ∝ ρ4/3, but in that case it is radius that drops out of the equation, giving
a characteristic mass). Lattimer and Prakash [15] showed that across many EOSs,
R ∝ P1/4 where P is the pressure at a density about 1.5 times the saturation density, so

https://github.com/adeibel/tov
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that a radius measurement is probing the EOS just above nuclear density.

The maximum mass. Just as there is a maximum mass for white dwarfs (the Chan-
drasekhar mass), neutron stars also have a maximum mass. The stiffening of the equa-
tion of state plays a crucial role in setting the maximum mass (a non-interacting Fermi
gas gives a maximum mass . 1 M�). The extra pressure from the repulsive force
raises the maximum mass. A larger maximum mass means that the equation of state
at high density must be stiffer. A phase change to a different state of matter, e.g. a pion
condensate, leads a softening of the EOS and a reduction in the maximum mass. The
discovery of neutron stars with masses of 2 M� in recent years is an major constraint
on equations of state. The recent review by Özel and Freire [18] is a good place to look.



Chapter 2

Neutron Star Cooling

Neutron stars are cold stars in the sense that the energies of the particles inside the
star are� kBT, so that temperature doesn’t play a role in the structure of the star. But
how the neutron star cools can reveal a lot about the internal composition, through
both the heat capacity and the neutrino luminosity.

2.1 The Physics of Neutron Star Cooling

A recent review is [21].

Temperature evolution. The neutron star core has a very high thermal conductivity
and so as the neutron star cools it stays close to isothermal. The evolution of the core
temperature T is given by

C
dT
dt

= −Lγ − Lν, (2.1)

where Lγ is the luminosity of the neutron star surface Lγ = 4πR2σT4
eff and Lν is the

neutrino luminosity of the core. Just as with white dwarf cooling, the effective tem-
perature is related to the central temperature by constructing models of the neutron
star envelope. For an iron envelope, the relation is roughly Teff ≈ 106 K (T/108 K)1/2

[9], with a corresponding luminosity Lγ ≈ 1033 erg s−1 (T/108 K)2. A light element
envelope, for example helium, is less opaque and so has a larger luminosity by a fac-
tor of several for a given T. The unknown envelope composition is one of the main
uncertainties in interpreting observations of cooling neutron stars.

Fast and slow neutrino emission. Neutron stars naturally cool by neutrinos through
the weak reactions such as equations (1.4) and (1.5). These reactions are blocked at
zero temperature because the chemical potentials are balanced (eq. 1.6). At a non-
zero temperature, a small fraction of particles∼ kBT/EF are able to undergo the weak
reactions. Every time a neutron decays to a proton and then electron captures back
to a neutron, neutrinos are lost because the star is optically thin to neutrinos. This
process is known as the direct URCA process, and has an emissivity

εν ∼ 1026 erg cm−3 s−1
(

T
109 K

)6

. (2.2)

14
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The steep temperature dependence comes from the fact that the particles involved in
the reaction are degenerate (three powers of kBT/EF) and the outgoing neutrino phase
space (which goes like E2

νdEν giving two powers of kBT).
In fact, the proton fraction may be so low in the neutron star core that the direct

URCA process is blocked because the reactions cannot conserve both energy and mo-
mentum. Momentum conservation requires pn ≤ pp + pe, or n1/3

n ≤ n1/3
p + n1/3

e . Since
ne = np, we need np/nn ≥ 1/9, which requires a high density (eq. [1.8]).

If direct URCA is suppressed, a spectator particle can act to absorb the excess mo-
mentum, e.g. n + n� n + p + e− (with neutrinos emitted in each direction), a process
known as modified URCA. The rate is

εν ∼ 1020 erg cm−3 s−1
(

T
109 K

)8

. (2.3)

The prefactors in these expressions for εν are uncertain by orders of magnitude, de-
pending on the composition of the core. Handy formulas for the luminosities are
Lν ∼ 1045 erg s−1 (T/109 K)6 (direct URCA) or Lν ∼ 1039 erg s−1 (T/109 K)8 (modi-
fied URCA). Direct URCA is an example of a “fast” neutrino process (∝ T6), whereas
modified URCA is a “slow” process (∝ T8).

Heat capacity. The heat capacity of a degenerate Fermi gas is cV = π2k2
BT/(pFvF) per

particle, where pF and vF are the momentum and velocity of particles at the Fermi sur-
face (I write it this way because then this expression is valid for both non-relativistic
and relativistic particles). The heat capacity of the star is given by adding up the con-
tributions from all the particle species and integrating over the volume of the star.
Since all the species are degenerate fermions, we expect the overall heat capacity to
be linear in T. (This is not exactly true because the crust lattice has the Debye scaling
∝ T3 at low temperature, but the crust heat capacity is much smaller than the core).

Role of superfluidity. Superfluidity plays a crucial role in determining the heat capac-
ity and the neutrino emissivity. For example, if protons are paired (T < Tc), then the
URCA reactions are no longer allowed (there is not enough thermal energy to break
pairs). The neutrino emissivity then falls to a level below the modified URCA rate
set by neutron-neutron neutrino Bremsstrahlung, about a factor of ten times smaller
than the modified URCA rate. The heat capacity is also affected strongly by super-
fluidity. If the protons or neutrons are superfluid, their heat capacity is exponentially
suppressed (∼ exp(−Tc/T)) and they no longer contribute. Figure 2.1 shows calcu-
lated values for heat capacity. If all particles contribute, C ∼ 1038 erg K−1; if only the
electrons and muons contribute, the heat capacity is an order of magnitude smaller,
C ∼ 1037 erg K−1.

A fascinating possibility is that the heat capacity could be even smaller if the matter
in the neutron star core forms a color-flavor-locked phase (CFL phase). This is a type
of quark matter in which up, down, and strange quarks are present in equal numbers
and pair up to form a superfluid. Because the three types of quark (with charges
−1/3,−1/3 and +2/3) can balance each others charge, there is no need for electrons.
And because they are paired they have a suppressed heat capacity. The expected
heat capacity is about 8 orders of magnitude smaller than the lepton contribution –
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Figure 2.1: The heat capacity of the neutron star core at 108 K for a particular EOS.
Solid curve: all particles contribute. Dashed curve: some of the neutrons and protons are
superfluid, reducing the heat capacity. Dotted: all neutrons and protons superfluid, so
only leptons contribute. Curves labelled with ρt: some of the core is in a CFL phase with
vanishingly small heat capacity. Taken from [7].

so neutron stars could have very small heat capacities if this exotic phase of matter
exists!

2.2 Cooling in Isolated Neutron Stars

Figure 2.2 shows predictions for the cooling curves of isolated neutron stars. Neu-
tron stars are born hot and rapidly cool (the gravitational binding energy GM/R ∼
100 MeV is equivalent to kBT ∼ 1012 K, although neutrinos limit the temperature
shortly after birth to be about 109 K). At first, the temperature of the neutron star
surface reflects the temperature of the crust. The core has cooled quickly by neutrino
emission, so is colder than the crust and the crust cools by sending heat into the core.
After about 30 to 100 years, this process is complete and then the surface temperature
reflects the core temperature (through the Teff–T relation). The cooling of the core is
dominated by neutrino emission for about 106 years and afterwards by photon emis-
sion from the surface (the transition gives the change in slope of the cooling curve at
about 106 years). The curves do a reasonable job of explaining the observed temper-
atures. Some neutron stars appear consistent with minimal neutrino emission; others
are colder implying a larger neutrino emissivity. This could come about because more
massive neutron stars reach a higher density in the core for which np/nn is at a level
(eq. [1.8]) where direct URCA reactions can operate.
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Figure 2.2: Left: Predictions for the cooling curves of isolated neutron stars with differ-
ent core neutrino emissivity (from [24]). Right: The quiescent luminosity of accreting
neutron stars as a function of the time-averaged accretion rate (from [13]).

2.3 Heating and Cooling in Accreting Neutron Stars

Accreting neutron stars offer a different way to study the neutrino emissivity of the
core. An accreting neutron star is heated by nuclear reactions occurring in the crust as
matter is compressed to higher and higher pressure [10]. The heating rate is≈ QcrustṀ
where Qcrust ≈ 1MeV/mu is the energy per unit mass released by crust reactions
(mu is the atomic mass unit). This heat flows into the core, and over time the core
temperature reaches a level where the heating is balanced by neutrino losses, Lν ≈
QcrustṀ. The luminosity of a neutron star in an accreting system in quiescence (when
accretion has turned off) therefore gives a measure of the neutrino emissivity. The
heating rate 〈Ṁ〉Qcrust tells us the neutrino luminosity from the core (assuming they
balance each other on long timescales), where 〈Ṁ〉 is the accretion rate averaged over
outbursts; the measured surface temperature tells us the core temperature via the Teff–
T relation. The right panel of Figure 2.2 shows observations for about 20 sources which
are detected in X-rays in quiescence [13]. Some sources are consistent with modified
URCA, others seem to require enhanced cooling. Again, neutron star mass may be
responsible for the difference.

Accreting stars can also give information about the heat capacity, by using the ac-
cretion outbursts as a calorimeter [7]. If we know the temperature of the neutron star
core before the outburst, we can measure how much the core temperature changed
during the outburst as energy was added to it from the crust reactions, giving a mea-
surement of the heat capacity C = E/T. In practice, accreting transients are dis-
covered when they go into outburst; so far, we only have a lower limit on the heat
capacity by assuming the core started off much colder than it ended up. This is illus-
trated in the left panel of Figure 2.3 which shows the temperature to which the core
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Figure 2.3: Observations of accretion neutron star transients. Left: Inferred core tem-
peratures of the accreting transients MXB 1659-29, KS 1731-260, and XTE J1701-462
after outburst. The curves show the temperature to which the core would be heated
by an accretion outburst for different values of core heat capacity C. Taken from [7].
Right: The cooling curve of MXB 1659-29 following its accretion outburst. Taken from
[14].

should be heated for different values of C compared with temperature measurements
for three different transients. So far, the observations rule out a heat capacity a few
times smaller than the lepton value and below, e.g. a core dominated by a CFL phase
is ruled out.

Accreting transients also constrain crust physics. The right panel of Figure 2.3
shows temperature measurements taken over almost a decade following the outburst
of MXB 1659-29. The model is of a cooling crust that was heated up by the crust
reactions and then thermally relaxed after the accretion ended, eventually coming
into equilibrium with the neutron star core. The observations allow us to measure
the cooling time of the crust. The cooling of the crust is described by the heat equation

cP
∂T
∂t

= −1
ρ

∂F
∂r

= g2 ∂

∂P

(
ρK

∂T
∂P

)
, (2.4)

where we use hydrostatic balance dP = −ρgdr. The cooling time is therefore

tcool ∼
cPP2

g2ρK
, (2.5)

so that the observations can be used to determine a combination of the heat capacity
cP, thermal conductivity K, and gravity [5].

The last observation of MXB 1659-29 (Fig. 2.3) showed evidence that the neutron
star temperature dropped, in contradiction to the crust cooling model (dashed curve).
The reason the model levels off is that the crust has come into thermal equilibrium
with the core after about 1000 days. Including a low thermal conductivity for the
pasta phase can reproduce the observed drop (solid curve) [14]. A low conductivity
pasta layer had been suggested previously [20] as a way to achieve rapid magnetic
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field decay and explain the lack of pulsars with spin periods greater than 10 s. The
low thermal conductivity may be caused by scattering from defects that have been
found in molecular dynamics simulations of pasta (Fig. 1.3).



Chapter 3

Neutron Star Magnetic Fields

3.1 The Scale of Neutron Star Magnetism

Information about neutron star magnetic fields comes from the spin down rate of
pulsars, observations of cyclotron lines in accreting pulsars, and estimates based on
the equilibrium spin period of accreting pulsars. The inferred dipole magnetic field
strengths are ∼ 1011–3× 1014 G for isolated neutron stars, extending down to. 108 G
for some accreting neutron stars. I won’t say more as you should hear more about
magnetic field measurements in the afternoon.

To put these inferred magnetic field strengths in context, the mean magnetic field
strength on Earth is about 1 G. This is also the mean field of the Sun, although in
sunspots the local fields can exceed 1 kG. What sets the scale of neutron star magnetic
fields? The largest possible internal fields are much greater than observed ∼ 1017 G
(from balancing GM2/R4 with B2/8π). One idea that has also been applied to white
dwarfs is that the magnetic field is a fossil field that the neutron star inherited from
its progenitor. Scaling from white dwarfs for example, and conserving magnetic flux,
gives BNS/BWD ∼ (RWD/RNS)

2 ∼ 106. The range 1011–1015 G then becomes 105–
109 G, in good agreement with the magnetic field strengths observed in magnetic
white dwarfs. For white dwarfs, this idea can be tested by comparing the fraction
of magnetized white dwarfs with the fraction of magnetic main sequence progenitors.
For neutron stars, this is much harder because so little is known about magnetism in
massive stars.

Thomson & Duncan proposed that neutron star magnetic fields are generated in a
dynamo during the supernova [22]. Neutrinos leave the newly formed protoneutron
star and are absorbed in the surrounding material beneath the stalled shock, generat-
ing convection. In this picture, & 1015 G fields can be generated by the convection1.
The scale of the field depends on the rotation period. For fast rotation periods close
to 1 ms, an α-Ω dynamo can operate giving a large scale dipole; otherwise, the field
will be on smaller ∼ 1 km scales associated with the convective cells. In that case, a

1To see this, use mixing length theory to estimate the kinetic energy in the convective motions. The
luminosity carried by the convection is ∼ 1052 erg s−1 (1053 ergs over seconds), giving a convective
velocity v ≈ (L/4πr2ρ)1/3 ∼ 103 km s−1 for ρ ∼ 1014 g cm−3 and r ∼ 106 cm. The equipartition
magnetic field is B ∼ (4πρv2)1/2 ∼ 1016 G.

20
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superposition of many of these small dipoles could give a net global dipole of strength
∼ 1012 G, as seen in radio pulsars.

Without detailed models of the outcome of the supernova dynamo, we lack predic-
tions for the geometry of the initial field. Differential rotation winds up poloidal field
to make toroidal fields. Pure poloidal or pure toroidal configurations are unstable,
suggesting that the poloidal and toroidal fields are both present and somewhere near
each other in magnitude. This “twisted torus” configuration was found as a stable
solution that emerged from MHD simulations of stars seeded with initially random
fields. Submerged toroidal fields an order of magnitude or two above the observed
dipole are possible.

3.2 The (Many) Effects of Magnetic Fields

There is a lot of interesting physics associated with neutron star magnetic fields, in-
cluding:

Magnetospheres and particle acceleration. The magnetic field of a rotating star leads
to creation of a magnetosphere. Goldreich & Julian showed that if you consider the
neutron star to be a perfect conductor, so that the electric field vanishes in the ro-
tating frame, there is a non-zero ~E · ~B that gives a force on charged particles orders
of magnitude larger than the gravitational force. A neutron star in vacuum would
quickly populate its surroundings with plasma, creating a magnetosphere. The elec-
tric field E ∼ (ΩR/c)B can be cancelled by charges on closed field lines, but plasma
on open fields lines flows outwards, forming a pulsar wind. The structure and elec-
trodynamics of the pulsar magnetosphere was only solved recently, with the advent
of numerical codes that can model the 3D structure of the plasma and field when the
neutron star dipole and rotation axis are misaligned. Observationally, the large num-
ber of gamma-ray pulsars discovered by Fermi has led to new constraints on where
particles are being accelerated in the magnetosphere.

Conductivity of the crust. A magnetic field inhibits transport of heat across field lines
when the cyclotron frequency becomes large compared to the electron collision fre-
quency (Ωτ > 1). This requires fields B & 1012 G in the crust. At low densities and
high B such that h̄ωc > EF,e, the degenerate electrons in the crust fall into Landau
levels, modifying their momentum distribution, and giving oscillations in the con-
ductivity with depth. Observations of X-ray pulsations with large pulse amplitudes
have been modelled with strong submerged toroidal magnetic fields that inhibit heat
transport except very close to the magnetic pole.

Condensed surfaces. When B & 109 G, the cyclotron energy h̄(eB/mec) of an electron
in an atom is greater than its binding energy ∼ e2/a0. The atoms become cylindrical,
greatly compressed in the plane perpendicular to the magnetic field direction. These
cylindrical atoms can form a condensed surface which modifies the appearance of the
surface and changes the energy required to extract charged particles (e.g. in a pulsar).

Influence on the propagation of photons and the stellar spectrum. Strong magnetic
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fields affect the angular distribution and frequency spectrum of emission from the
neutron star surface. In fields that exceed the quantum critical field BQ = m2

e c3/eh̄ =
4.4× 1013 G, where h̄ωc = mec2, QED effects become important. The vacuum becomes
birefringent – different photon polarizations (relative to the magnetic field direction)
travel with different speeds. This is similar to the birefringence of a plasma except that
the polarizations of the two modes are different from those in a magnetized plasma.
This leads to interesting physics associated with the transition from plasma to vacuum
at the stellar surface, and predicted polarization signatures that could be looked for
with an X-ray polarimeter. Other QED effects also can operate at high fields, such as
single photon pair production, that can play a role in pulsars with strong fields.

3.3 Magnetic Field Evolution in the Crust

Magnetic activity in the form of X-ray and gamma-ray flaring and long timescale X-ray
outbursts has been observed from many neutron stars, traditionally from the magne-
tars that were discovered that way, but also from high magnetic field radio pulsars
(see [1] for a recent example). It is not obvious that neutron stars should be mag-
netically active - unlike the Sun for example, they do not have convective envelopes
that can distort the field. The neutron star crust likely plays a key role in driving and
regulating this magnetic activity.

Role of the solid crust. The crystal lattice in the crust can balance magnetic stresses,
with molecular dynamics simulations indicating that the crust can support rather
large strains of order ε ∼ 0.1. The shear modulus of the crust is µ ∼ 10−2Pe where Pe
is the electron pressure. Setting εµ = B2/8π gives the density below which magnetic
stresses can force the crust to yield,

ρB ≈ 3× 109 g cm−3 Ye

(
B

1013 G

)3/2 ( ε

0.1

)−3/4
. (3.1)

For magnetar type fields ∼ 1015 G, this extends into the inner crust. Breaking of the
crust has been suggested as a gating mechanism for magnetar outbursts, that magnetic
stresses build up until the crust yields. There has been a lot of work recently on how
the crust yields, how energy is transferred around the star, and the role of plastic flow.

Field evolution in the crust. The magnetic field in the crust evolves according to the
magnetic induction equation

∂B
∂t

= −c~∇× ~E (3.2)

where the electric field is
~E =

~J
σ
+
~J × ~B
neec

. (3.3)

The first term is the usual Ohm’s law ~J = σ~E; the second term is the Hall electric
field. The Hall term in particular is interesting because it will cause the magnetic field
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Figure 3.1: A snapshot from a 3D simulation of evolving magnetic fields in a neutron
star crust. The Hall effect leads to small scale features developing near the magnetic
equator with local field strengths more than an order of magnitude larger than the
global dipole. Taken from [8].

configuration to spontaneously evolve. The induction equation with the Hall term can
be written

∂B
∂t

= ~∇×
(
~ve × ~B

)
, (3.4)

where ~ve = −~J/nee is the electron velocity. This looks like the “frozen field” of MHD,
but now with electron velocity rather than fluid velocity. The magnetic field is ad-
vected by the electron fluid. This is a non-linear problem because the electron velocity
field (the current) is itself determined by the spatial arrangement of ~B. The timescale
on which Hall effects act tHall ∼ L/ve is thousands of years for 1015 G fields deep in
the crust, and so the Hall term is believed to play an important role in the magnetic
activity seen in magnetars.
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