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Introduction
These are notes for PHYS 432 Physics of Fluids, Winter term 2023. The was a “flipped”
format class, with notes to read outside class and class time devoted to exercises. Each week
covers a different topic. The beginning of class each week was spent discussing questions
that test understanding of the notes; they can be found at the end of each topic’s notes. The
remaining class time was spent on Practice Problems, which are more traditional analytic
problems, and Computational Exercises, which cover an application of that week’s topic and
over the term give an introduction to computational techniques in fluids.

Andrew Cumming, andrew.cumming@mcgill.ca
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Week 1: The fluid equations and Bernoulli’s principle
These are notes for the first week of PHYS 432 Physics of Fluids. We first discuss what
we mean by a fluid, and then introduce the fluid equations as a series of conservation laws.
Finally, we look at a famous consequence of the fluid equations, Bernoulli’s principle.

What is a fluid?
We start by asking, “what is a fluid?” The obvious answer to this is “something that flows”
such as a liquid or a gas. A solid has a non-zero shear modulus and can statically support
a shear stress, so we don’t think of it as a fluid. But we’ll see that solids can be handled by
adding a shear modulus to the fluid equations.

In fact, by fluid we mean a material that we can treat as a continuous substance or a
continuum– ie. we don’t have to worry about the fact that it is made up of atoms. The
requirement is that the mean free path λ is ≪ L, the scale on which macroscopic properties
such as velocity or temperature vary. In this limit, we are doing continuum mechanics.

For example, let’s estimate the mean free path in air. To do this, we imagine the air
molecule sweeping out a cylinder as it moves with cross-section σ. Any other molecule that
falls within the cylinder will result in a scattering. The mean free path is then given by the
cylinder that contains (on average) one other molecule,

nσλ = 1,

where n is the number density of molecules. For the cross-section, we can assume it is set
by the size of an air molecule σ ∼ 10−20 m2, and the number density is n = ρ/Amp where
ρ ≈ 1 kg m−3 is the density of air, and we’ll take the typical mass of a molecule (mostly N2

in air) as Amp ≈ 28mp. Putting this together gives n ≈ 3× 1025 m−3 and

λ ≈ 3× 10−6 m ≈ a few µm.

The mean free path in air is therefore ≪ than macroscopic lengthscales. So the flow of air
at atmospheric pressure can be studied by treating the air as a fluid, a continuum. Locally,
at any given point in space, the short mean free path means that the different particles
in the gas collide a lot, and the gas is in local thermodynamic equilibrium. It has a
well-defined temperature, and we can write for example P = nkBT for an ideal gas. The
temperature at each location measures the random velocities of the particles; we will track
the bulk velocity (the average velocity of the particles) as the vector field u(r). Similarly
the density, temperature, and pressure are also functions of position r, this time scalar fields
T (r), ρ(r), and P (r).

The fluid treatment requires that, for example,
T

dT/dx
≫ λ.
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The route to the fluid equations
The fluid equations describe the evolution of the velocity, pressure, density, and temperature
fields over time.

One route to the fluid equations is via statistical mechanics, in which we start with the
microscopic description of the material and average over lengthscales ≪ L (expand in the
small parameter λ/L). [In case you want to look this up, the names are Liouvilles theorem
→ Boltzmann equation → moments of the Boltzmann equation.]

Instead, we are going to take a short cut and use conservation laws to derive the fluid
equations.

Continuity equation (mass conservation)
First, consider a small volume of fluid with total mass

M =

∫
ρ dV.

If we keep the boundary of the volume fixed in space as the fluid evolves, the rate of change
of mass within the volume is

dM

dt
=

d

dt

∫
ρ dV =

∫
∂ρ

∂t
dV.

Any mass change must come about because fluid moves into or out of the volume, so we can
also write

dM

dt
= −

∫
ρu · dS,

adding up the mass flowing across the surface of the fluid element. The quantity ρu is the
mass flux (units of kg m−2 s−1).

Equating these two expressions for dM/dt gives∫
∂ρ

∂t
dV = −

∫
ρu · dS.

We can write this in a simpler way by applying the divergence theorem to convert the surface
integral to a volume integral, ∫

∂ρ

∂t
dV = −

∫
∇ · (ρu) dV.

But the choice of volume we are using is arbitrary which implies that at each point in space
we must have

∂ρ

∂t
= −∇ · (ρu)

This is the continuity equation, a local expression of mass conservation.
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Eulerian vs Lagrangian; the advective derivative
The continuity equation can be rewritten as(

∂

∂t
+ u · ∇

)
ρ = −ρ∇ · u

or
Dρ

Dt
= −ρ∇ · u

where we define the Lagrangian derivative or advective derivative

D

Dt
≡ ∂

∂t
+ u · ∇

This derivative comes up a lot: D/Dt describes the rate of change of a quantity following
the fluid element, whereas ∂/∂t is the rate of change at a fixed point in space.

There are two different points of view when describing a fluid:

• Eulerian in which we describe the fluid properties at fixed points in space – think
about standing at a fixed spot as the fluid flows past you.

• Lagrangian in which we describe the fluid properties following a fluid element as it
moves – now you jump into the fluid and go with the flow.

Let’s check that D/Dt is indeed the Lagrangian derivative. Consider a quantity f (eg. it
could be density or temperature or a component of velocity), that could depend on both
position and time. Write the path of a fluid element as r(t) = (x(t), y(t), z(t)). The velocity
of the fluid element is therefore

u =
dr

dt
=

(
dx

dt
,
dy

dt
,
dz

dt

)
.

The value of f moving with the fluid element is f(r(t), t). Its rate of change is
∂f

∂t
+

dx

dt

∂f

∂x
+

dy

dt

∂f

∂y
+

dz

dt

∂f

∂z
=

(
∂

∂t
+ u · ∇

)
f =

Df

Dt
.

Streamlines
A useful idea when sketching fluid flows is the streamline, a curve that follows the direction
of u from one position to another. The tangent to the streamline is always in the direction
u at each position r.
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[These are equivalent to magnetic field lines for a magnetic field B.]

For a steady flow (∂/∂t = 0), the fluid elements follow the streamlines. For example,
steady flow around a cylinder:

In that case, a quantity f that is constant along a streamline (u ·∇)f = 0 is also constant
for a fluid element since then D/Dt = 0.

Momentum equation
Now consider the momentum of our small volume of fluid. Since momentum is a vector,
consider the rate of change of momentum in the x-direction as an example:

d

dt

(∫
dV ρux

)
= −

∫
ρux u · dS+ (forces)x

The quantity ρu is the momentum density1. On the left hand side, we integrate the
x-component of this over the volume to get the total momentum in the x-direction. The
first term on the right hand side is the flux of x-momentum across the boundary (into or
out of the fluid element). We also include an extra term on the right hand side in case there
are forces acting on the fluid element: momentum is conserved only if no forces are acting.
Note that the units of the force term are force density (force per unit volume). The same
equation applies for the y or z components of momentum, we just have to substitute uy or
uz instead of ux.

We can again use the divergence theorem to turn the surface integral into a volume integral.
Writing the dot product in component form∫

ρuxuidSi =

∫
dV ∂i (ρuxui)

where the repeated index i means a sum over x, y, and z (Einstein notation) and the vector
∂ = (∂/∂x, ∂/∂y, ∂/∂z). We use the same argument from before that the volume over which
we integrate is arbitrary, and therefore we must have locally

∂

∂t
(ρux) = −∂i (ρuxui) + (forces)x

1Yes, ρu is also a mass flux (as we used it in our derivation of the continuity equation), but in this context
we are using it as the momentum density.
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It is instructive to simplify this equation using the continuity equation. Expand the deriva-
tives on both sides:

ux
∂ρ

∂t
+ ρ

∂ux

∂t
= −ux∂i (ρui)− ρui∂iux + (forces)x

The first term on the left hand side cancels the first term on the right hand side because of
the continuity equation. The remaining terms are

ρ
∂ux

∂t
+ ρui∂iux = (forces)x

or
ρ
Dux

Dt
= (forces)x

which is just Newtons second law F = ma but written for the fluid element.

We see the non-linearity of the fluid equations in the term (u · ∇)u.

For example, if we expand the velocity in Fourier modes eikx, this term is (u · ∇)u ∝ ei2kx.
Different spatial modes are coupled to each other, they don’t evolve independently as in
linear systems (for example solving the diffusion equation using a Fourier expansion). We
see this clearly in turbulence, where stirring on a large scale (eg. stir your coffee) generates
a lot of small scale fluid motion (the milk mixes on very small scales).

This non-linearity also means that qualitatively different flows arise as we change the size of
the velocity. We will see this later.

Different kinds of forces
Now let’s think about what the force term might look like. There are two kinds of forces
that could act on the fluid element:

• Body forces. These act on each particle in the fluid element. The total force is
∫
f dV

where f is the force per unit volume. An example is gravity f = ρg, where g is the
(vector) acceleration due to gravity.

• Surface stress. A force that acts on the surface of the fluid element. We write the
total force as ∫

TijdSj,

where Tij is the stress tensor. The simplest example is

pressure Tij = −Pδij

The delta-function is there because pressure always acts in the same direction as the
normal to a surface. The minus sign is there because the normal vector points outwards
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from a surface, but the pressure force pushes inwards. In this case, the stress tensor
is diagonal (only non-zero components are for i = j). Other kinds of forces will not
be diagonal, e.g. a sideways shearing force applied to a surface. We will see examples
later (see viscosity).

Once again, we can convert the surface integral to a volume integral using the diver-
gence theorem: ∫

TijdSj =

∫
∂jTij dV

which for pressure is
−
∫

δij∂jP dV = −
∫

∂iP dV.

Including both types of forces, the momentum equation becomes

∂

∂t
(ρui) = −∂j(ρuiuj) + fi + ∂jTij

or
ρ
Du

Dt
= f +∇ ·T

If the forces acting are pressure and gravity only, then

ρ
Du

Dt
= ρg −∇P.

The static version of this equation ∇P = ρg is the condition of hydrostatic balance.

Bernoulli’s principle
To end this part of the notes, we are going to put the fluid equations to work and will derive
a famous result known as Bernoulli’s principle.

Take the momentum equation with pressure and gravity forces. If we write the gravity as
the gradient of the gravitational potential g = −∇χ and if we have a constant density fluid
so that ∇P/ρ = ∇(P/ρ), then the right hand side of the momentum equation can be written
as a gradient:

∂u

∂t
+ (u · ∇)u = −∇

(
P

ρ
+ χ

)
Now use the vector identity

(u · ∇)u = −u× (∇× u) +∇
(
1

2
u2

)
11



⇒
∂u

∂t
− u× (∇× u) = −∇

(
P

ρ
+ χ+

1

2
u2

)
= −∇H

where we define
H =

P

ρ
+ χ+

1

2
u2.

Now, the important result is that for a steady flow (∂/∂t = 0), taking the dot product with
u gives

u · ∇H = 0

⇒ H is a constant along streamlines in a steady flow. This Bernoulli’s principle, and
in this context H is known as the Bernoulli constant.

There is an even stronger version, which applies when the flow is irrotational ∇× u = 0.
In that case, ∇H = 0 which implies that H is the same constant on all streamlines
for an irrotational flow.

Example applications:

• A classic example is to calculate how quickly water flows out of a hole at the bottom
of a container. Applying Bernoulli’s theorem you can show that the velocity of the
water flowing out is v2 = 2gH, where H is the height of the water in the container.
(You should think about why it’s okay to apply Bernoulli’s theorem here, after all this
is a time-dependent situation!)

• Venturi tube. Measuring the pressure drop when fluid is forced through a narrow
passage allows the fluid velocity to be determined. Here is my sketch of the set up:

• If you take two sheets of paper, hold them close together and blow into the space
between them, the sheets of paper will move together. The fast moving flow between
the sheets has a lower pressure (perhaps a non-intuitive result!). This is an example
of a “lift force” arising from a pressure difference between two sides of a body arising
from different velocities on each side.
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Questions for this week

1. Give a physical interpretation of the following equations

Dρ

Dt
= −ρ∇ · u

and
ρ
Du

Dt
= ρg −∇P.

2. What is meant by each of the following:

• the Eulerian and Lagrangian descriptions of a fluid

• The advective derivative

• A streamline

3. If we have some scalar property of a fluid f(r) (eg. temperature), what does the expression
u · ∇f = 0 tell you?

4. What is the difference between a body force and a surface stress, and how are they
represented mathematically?

5. What quantity is constant according to Bernoulli’s theorem, and under what conditions?

13



Week 1 Computational exercise - Modelling the Earth
In this exercise, you will integrate the equation of hydrostatic balance to make a model of
the Earth.

(a) The equations of planetary structure are

dP

dr
= −Gmρ

r2
(1)

and
dm

dr
= 4πr2ρ (2)

where P (r) and ρ(r) are the pressure and density at radius r, m(r) is the mass contained
within radius r, and it has been assumed that the planet is spherically-symmetric.

Explain where these equations come from.

(b) To integrate the equations, we need a relation between the pressure and density P (ρ).
The table below from Seager et al. (2007, Astrophysical Journal 669, 1279) gives fits to the
equation-of-state (pressure-density relation) for different materials in the form ρ = ρ0 + cP n

for constants ρ0, n and c as given in the table.

Let’s first assume that the Earth has a uniform silicate composition (MgSiO3). Assuming a
value for the pressure at the centre of the planet Pc, integrate equations (1) and (2) from
the centre to the surface (where the pressure drops to a value ≪ Pc). You will need to try
the integration a few times with different values of Pc until you get the mass (the value of
m at the surface) to be roughly the mass of the Earth (M⊕ = 6.0× 1024 kg).

What is the radius of your Earth model? How does it compare with Earth’s radius R⊕ ≈
6400 km?

Some hints:

• We want to integrate these equations from the centre of the planet at r = 0 to the
surface at r = R. However, if we start at r = 0, we will get a divide-by-zero error if
we try to evaluate the right hand side of equation (1). Instead, we can analytically
step away from the origin by a small amount r0 ≪ R (e.g. try r0 = 0.01 R) and start
the integration at r = r0 rather than r = 0. If the density at the centre of the planet
is ρc (corresponding to the pressure Pc), then the starting value of m at r = r0 is
m = 4πr30ρc/3.

• You can integrate the two coupled ODEs using the integrator scipy.integrate.solve_ivp
from python (see the documentation here).

14

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp


(c) The Earth actually has an iron core surrounded by a silicate mantle. Include an iron
core in your model. What mass of the iron core do you need to match the Earth’s radius?

How does the density profile ρ(r) of your model compare with the density profile of the
Earth? (e.g. see this plot).
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Week 2: Vorticity
This week we will discuss an important quantity in fluids, the vorticity ω ≡ ∇× u.

The vorticity measures the local rotation of the fluid at a given point. A way to see this is to
consider a “vorticity meter”, two infinitesimal rigid rods connected at right angles, initially
placed so that one rod lies along the x-axis and the other along the y-axis.

Now consider how the vorticity meter will be advected by the fluid flow. If there is a gradient
of ux in the y-direction, ∂ux/∂y ̸= 0, then the end of the vertical part of the rod will be
advected in the x-direction relative to the origin (the origin is the point O where the two
rods connect). Similarly, if there is a gradient of uy in the x-direction, ∂uy/∂x ̸= 0, then
the end of the horizontal part of the rod will be advected in the y-direction relative to the
origin. In this way, the vorticity meter will begin to rotate.

The mean angular velocity about the point O is

1

2

(
(∂uy/∂x)δx

δx
+

(−∂ux/∂y)δy

δy

)
=

1

2

(
∂uy

∂x
− ∂ux

∂y

)
=

1

2
ωz.

This shows that the magnitude of the vorticity vector is 2× the instantaneous local
rotation rate of the fluid.

It is very important to note that the vorticity measures the local rotation rate which
is not the same as the global rotation. To see this, consider the following two flows
which involve a rotating fluid:

1. Rigid body rotation (uniform rotation) with angular velocity Ω. In cylindrical co-
ordinates, this has ω = Ωẑ and u = ϕ̂ rΩ, where ẑ and ϕ̂ are unit vectors. The vorticity
is2

ω = ∇× u = ẑ
1

r

∂

∂r
(ruϕ) = ẑ

1

r

∂

∂r

(
r2Ω

)
= ẑ 2Ω

or
ω = 2Ω.

2For reference, I’ve attached a page at the end which gives grad, curl etc. in cylindrical and spherical
coordinates.
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Therefore we infer that there is a local rotation with angular velocity ω = 2Ω at any point.
In fact, this makes sense because the vorticity meter must rotate as it moves around
the rotation axis so that the system is stationary in the rotating frame:

This is just like the Moon, which rotates with the same angular velocity as its orbit, meaning
that from the Earth we always see the same face of the Moon. If we moved into a frame
rotating with the Moon’s orbit, everything would appear stationary.

2. Line vortex flow. Now contrast this with the flow

u = ϕ̂
k

r

for some constant k. This flow has ∇× u = 0 everywhere except at the origin, since

∇× u = ẑ
1

r

∂

∂r
(ruϕ) = 0.

The vorticity meter keeps the same orientation as it moves around the axis:

This is an example of a flow that is globally rotating, but there is no local rotation. It is
called a line vortex flow because the vorticity is concentrated along the line that runs along
the z-axis in cylindrical coordinates.

Vortices are common in real life. For example, if you have been canoeing you will have
seen vortices generated as the paddle moves through the water. A simple idealized model
for a vortex like this can be made from a combination of the two flows above, known as a
Rankine vortex

uϕ =

{
Ωr for r < a

Ωa2/r for r > a
ur = uz = 0
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This has uϕ ∝ r, ωz = 2Ω for r < a, and uϕ ∝ 1/r, ωz = 0 for r > a.

The vorticity equation
The vorticity equation describes the time evolution of ω. We take the curl of the momen-
tum equation in the form we were using when we derived Bernoulli’s equation:

∇×
[
∂u

∂t
− u× (∇× u) = −∇H

]
⇒

∂ω

∂t
−∇× (u× ω) = 0

Using the vector identity

∇× (u× ω) = (ω · ∇)u− (u · ∇)ω + u(∇ · ω)− ω(∇ · u)

with ∇ ·ω = 0 and ∇ ·u = 0 for a constant density (incompressible) fluid, we can also write
this as

Dω

Dt
= (ω · ∇)u

There are two ways we can think about this equation:

1. We can see that the left hand side describes advection of vorticity by the flow. If the
right hand side vanishes, then the vorticity ω of a given fluid element is conserved as the
fluid element moves around. The term on the right hand side is therefore responsible
for changes in the local angular velocity of the fluid.

To see the physics underlying this term, we can align the z-axis with the local direction
of ω, i.e. ω = ω ẑ. Then

D

Dt
(ω ẑ) = ẑ ω

∂u

∂z
.

Now write the fluid velocity as u = ux̂+ vŷ + wẑ

⇒ D

Dt
(ω ẑ) = ẑ ω

∂w

∂z
+ x̂ ω

∂u

∂z
+ ŷ ω

∂v

∂z
.

The first term describes vortex stretching. If the velocity in the direction of the
vortex has a gradient along the vortex, the advection of vorticity stretches the vortex.
Conservation of mass means that the stretched vortex is also squeezed, i.e. its cross-
sectional area will drop. Angular momentum conservation then results in the vortex
spinning faster. So stretching out a vortex amplifies the vorticity. This is illustrated
in the sketch below.
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The second and third terms involving the velocities perpendicular to the vortex describe
vortex tilting. If the perpendicular velocity varies along the length of the vortex, the
shear in the flow will tilt the vortex (as shown in the sketch above). This generates
components of ω in the flow direction.

2. Another way to interpret the vorticity equation is to consider the separation between
two neighbouring fluid elements at positions r1 and r2 = r1 + dℓ.

A time δt later, they are located at r1
′ = r1 + u1δt and r2

′ = r2 + u2δt

⇒ dℓ′ = dℓ+ (u2 − u1)δt.

But, by a Taylor expansion, u2 = u1 + (dℓ · ∇)u1, and therefore
δ(dℓ)

δt
= (dℓ · ∇)u,

where we write u1 as u. The left hand side is a Lagrangian time derivative, since the
δ’s apply to particular fluid elements. Therefore,

D

Dt
dℓ = (dℓ · ∇)u .

This equation has the same form as the vorticity equation! This implies that if at some
time ω is parallel to the separation between two fluid elements, then it will always be
so because ω and dℓ evolve in the same way.

⇒ The vortex lines (the lines that follow the direction of ω at each point) move with
the fluid — we say that they are “frozen” into the fluid.

[We will see later that in a magnetized fluid the same thing also holds for the magnetic
field lines, and the magnetic field B obeys the same form of equation as ω and dℓ.
Indeed, in “magnetohydrodynamics”, one of the basic principles is that magnetic field
lines are frozen into the fluid.]
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Circulation
The integral quantity

Γ =

∮
u · dℓ =

∫
ω · dS

is known as the circulation. Note that the loop integral is over a closed material curve,
i.e. a curve that goes through particular fluid elements (Lagrangian as opposed to Eulerian).
Similarly, the surface integral is over the material surface bounded by the loop.

The circulation is conserved under certain conditions. To see this, we can evaluate
DΓ

Dt
=

D

Dt

∮
u · dℓ =

∮
Du

Dt
· dℓ+

∮
u · Ddℓ

Dt
.

The first term on the right hand side will vanish if Du/Dt is the gradient of a scalar (ie. we
are dealing with conservative forces). An example is a constant density fluid with gravity,
which has

Du

Dt
= −∇

(
P

ρ
+ χ

)
.

For the second term, use the result from the previous page:
Ddℓ

Dt
= δu,

where δu is the difference in velocities between two fluid elements that lie next to each other
on the curve. We can use this to change integration variables to velocity:∮

u · Ddℓ

Dt
=

∮
u · du =

∮
1

2
d(u2) = 0

which vanishes because we are integrating over a closed curve.

We therefore have Kelvin’s theorem

DΓ

Dt
= 0

Circulation is conserved around a material curve if the forces are conservative.

Vorticity generation and destruction
Kelvin’s theorem only holds if the forces are conservative. Similarly, if you go back and look
again at the derivation of the vorticity equation, you’ll see that we assumed that the right
hand side of the momentum equation was curl-free, i.e. we wrote F = −∇H+∇(u2/2) where
F is the force per unit mass Du/Dt = F — e.g. for pressure and gravity forces,

F = −∇P

ρ
+ g.
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For a constant density fluid, F can then be written as the gradient of a scalar: these forces
are conservative.

More generally, ∇ × F may not vanish, and then if you repeat the derivation of the
vorticity equation you will find

Dω

Dt
= (ω · ∇)u+∇× F

This shows that a force with a non-zero curl can induce fluid rotation and therefore generate
(or destroy) vorticity. This hopefully makes physical sense if you think about a force which
has a non-zero integral around a closed loop — it will apply a net torque to the fluid and
induce rotation.

Examples:

• Viscous force. We’ll look at this in detail next week. The viscous force leads to the
diffusion of vorticity and can be a source or a sink.

• Baroclinicity. If the density is not constant, then we have a term

∇× F = −∇×
(
∇P

ρ

)
= −∇P ×∇ρ

ρ2
,

known as the baroclinic vector.

⇒ Vorticity changes when the surfaces of constant pressure and density are
misaligned.

Here is a sketch that tries to illustrate this physically:
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Here, the pressure gradients on the left and right are the same (because they connect
the same two isobars with pressures P1 and P2). However, the lines of constant density
are misaligned with the lines of constant pressure. The pressure gradient on the left
is in a region with a higher density than the pressure gradient on the right. Because
the acceleration of the fluid is ∝ −∇P/ρ, the acceleration is therefore greater on the
right compared to the left. The net effect is to start an anti-clockwise rotation (you
can check for yourself that this is in the direction of the baroclinic vector ∇ρ×∇P ).

This effect is important in geophysical fluid dynamics, e.g. in Hadley cells which
are large scale circulations from the equator to mid-latitudes on Earth caused by
differential heating of the Earth’s surface. Because the solar irradiation is stronger
at the equator, the density at the equator is lower than at mid-latitudes: the surfaces
of constant density become misaligned with the surfaces of constant pressure.

Questions for this week

1. Sketch an example of a flow with

• circular streamlines and ∇× u ̸= 0

• circular streamlines and ∇× u = 0

• parallel streamlines and ∇× u ̸= 0

• parallel streamlines and ∇× u = 0

2. A uniformly rotating fluid has vorticity ω = 2Ω. Why is the factor of 2 there?

3. Explain the physical interpretation of the vorticity equation

Dω

Dt
= (ω · ∇)u.

4. What is Kelvin’s theorem and when does it apply?

5. Give example(s) of when you have encountered vortices in everyday life. Describe what
is happening physically to create or amplify the vortex.
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Week 2 Computational exercise - Fun with vortices

Write a code to model the motion of a collection of vortices in the x-y plane. Assume that
the vortices are line vortices, so that the velocity field associated with a given vortex falls
off as 1/r where r is the distance from the centre of the vortex.

A given vortex moves with a velocity given by the sum of the velocities from all the other
vortices. So a simple algorithm is to loop through each of the vortices, and for each one add
up the velocity contributions from all the other vortices, and sum them to find the velocity
of that vortex. You can then update the vortex position x → x+v∆t for some timestep ∆t.

Hints and tips:

• It might help to implement a minimum distance between two vortices when you calcu-
late the velocity, to avoid very large velocities when two vortices approach each other
very closely.

• You can animate the motion of the vortices with matplotlib in python by doing
something like this:

# plot the starting values and keep a handle 'x1'
x1, = plt.plot(x,y,'ro')
plt.xlim([-200,200])
plt.ylim([-200,200])
fig.canvas.draw()

while count < nsteps:
# ... calculate velocities and update positions...
# and then update the data for 'x1':
x1.set_xdata(x)
x1.set_ydata(y)
# redraw the figure
fig.canvas.draw()
# pause for a short time to give the plot time to redraw
plt.pause(0.001)

• If you include some vortices with ω = 0, they will act as “tracer particles” so you can
see what the fluid flow looks like. (Maybe plot the tracer particles with a different
symbol or colour).

Play around with different numbers and arrangements of vortices and see if you get the
behaviour you expect. Here are some configurations you can try:

1. Two vortices with either parallel or antiparallel rotation.

23



2. Four vortices arranged in a square.

3. A line of vortices.

4. A circle of vortices.

5. A random collection of vortices with the same sign of vorticity.

6. A random collection of vortices with random signs or magnitudes of vorticity.

7. A line of vortices but with one vortex displaced slightly.

In each case, try putting in some tracer particles (especially for number 5) and see if they
behave the way you expect.
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Week 3: Viscosity and viscous flows
Basic idea and estimates of viscosity
In a viscous fluid, the random motions of molecules transport momentum between
adjacent layers that are moving with different bulk velocities.

For example, consider a plane-parallel shear flow u = U(z) x̂. The diagram below shows two
layers of fluid separated vertically by a mean free path λ, which is the average distance over
which molecules move before scattering:

In this example, the upper layer has a larger x-velocity than the lower layer. Therefore,
the molecules coming from the lower layer into the upper layer on average have a smaller
momentum in the x-direction compared to the molecules in the upper layer. After scattering,
the net effect is to slow down the upper layer, reducing the velocity contrast. The same
argument applies in the opposite direction for molecules from the upper layer that move
down in the lower layer and scatter.

The net flux of momentum across the dashed line is

−1

3
nmvth

(
λ
dU

dz

)
,

where n is the number density of molecules, m is the mass of each molecule, and vth is the
thermal velocity vth ≈ (kBT/m)1/2 ≈ cs (the sound speed). Note that in the example shown,
where dU/dz > 0, the momentum flux is downwards, as encoded by the minus sign in the
expression. The factor of 1/3 comes from averaging over directions (the usual 1/3 that comes
up in kinetic theory).

A momentum flux (momentum per unit area per second) is also a force per unit area or
a stress. The momentum flux we are looking at here is the flux of x-momentum in the
z-direction. This corresponds to a stress in the x-direction on a surface whose normal vector
points in the z-direction. This is a tangential stress, giving an off-diagonal term Txz in
the stress tensor.

The shear viscosity (often just called “viscosity”) is the constant of proportionality between
the stress and the velocity gradient:

stress = −µ
dU

dz
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From our expression above, we see that

µ = (dynamical) viscosity =
1

3
nmvthλ = ρ

1

3
vthλ

has units of kg m−1 s−1 = Pa s. We can also define the

kinematic viscosity ν =
µ

ρ
=

1

3
vthλ

which has units m2 s−1.

A fluid that has stress ∝ velocity gradient is known as a Newtonian fluid. Not all fluids
are Newtonian – a famous example which you can make at home is a mixture of corn starch
and water, which behaves as a fluid on long timescales but as a solid on short timescales
(search YouTube for “Non-Newtonian fluid” for some fun videos!)

Here are some values of viscosity for different substances (these are at 20◦C):

µ (g cm−1 s−1) ν (cm2 s−1)
water 0.01 0.01
air 1.8× 10−4 0.15
alcohol 0.018 0.022
glycerine 8.5 6.8
mercury 0.0156 0.0012
molasses ∼ 50-100

Exercise: Have a think about whether these relative values make sense in terms of your own
experience of fluids. You can also use the formula above for the viscosity in terms of the
mean free path to check the value for air.

Viscous stress tensor
We already have the machinery to deal with these tangential kind of surface forces. Recall
that we wrote the momentum equation as

ρ
Du

Dt
= ∇ · T

where Tij is the stress tensor. We can add an additional term to this to account for the
viscous stresses:

Tij = −Pδij + σij

where the viscous stress tensor σij is

σij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
µδij∇ · u+ ξδij∇ · u
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which can also be written as

σij = 2µeij −
2

3
µδij∇ · u+ ξδij∇ · u,

where
eij =

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
is the strain rate tensor.

The viscous stress tensor has different pieces. The first term represents the symmetric part
of the velocity gradient

∂ui

∂xj

=
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
+

1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
The symmetric term represents the deformation of the fluid element and generates viscous
stress. An example is sketched below: the velocity increases in both directions such that the
fluid element is stretched and squeezed:

The antisymmetric term is ∇×u; we saw last week that this represents rotation of the fluid
element, which doesn’t generate any viscous stress. The sketch below reverses the velocity
gradient on one of the axes; the result is now a rotation:

The second and third terms in the viscous stress tensor are both ∝ δij∇ · u, so they are
diagonal like the pressure term in the stress tensor. The reason that the ∇ · u terms are
written as two separate terms like this is to separate out the traceless part of the viscous
stress. If you take the trace σii =

∑
i σii, you’ll see that the terms containing µ cancel,

leaving
σii = 3ξ∇ · u.
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We can think of ξ as the dynamical correction to the equilibrium pressure P . It is known as
the coefficient of bulk viscosity. We can define a mean pressure

P̄ = −1

3
Tii = P − ξ∇ · u.

The “Stokes assumption” is that ξ = 0 (σij is traceless) so that volume changes do not
lead to dissipation. This is true for a monatomic ideal gas for example. Bulk viscosity
arises in cases where some irreversible process happens on compressing a fluid element. For
example, a irreversible chemical reaction that happens on squeezing the fluid would give a
bulk viscosity. It’s often safe to ignore the bulk viscosity ξ and focus on the shear viscosity
µ.

Momentum equation with a viscous term
In the case of an incompressible fluid, ∇·u = 0, you can check that the momentum equation
reduces to

ρ
Dui

Dt
= −∂P

∂xi

+
∂

∂xj

σij = −∂P

∂xi

+
∂

∂xj

(
µ
∂ui

∂xj

)
.

Just as the pressure force arises from differences in pressure from one side of a fluid element
to the other, the same is true for the viscous term. It is the difference in the viscous stress
from one side of the fluid element to the other that gives the net force.

For µ = constant, we therefore have

ρ
Du

Dt
= −∇P + µ∇2u

Focusing on the viscous term only, we see that the evolution of one component of velocity is

∂ui

∂t
= ν∇2ui

a diffusion equation. Viscosity causes diffusion of the velocity field. Just as thermal
diffusion acts to equalize the temperature, so viscosity acts to equalize the velocity.

The characteristic timescale on which viscosity acts is

tvisc ∼
L2

ν

where L is the characteristic scale of the flow (lengthscale on which velocity varies).
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The Reynolds number and different types of flow
The Reynolds number compares the relative sizes of the inertia and viscous terms in the
momentum equation

u · ∇u vs ν∇2u

∼ U2

L
∼ νU

L2

where we use a typical velocity U and lengthscale L for the flow.

The ratio of the two terms gives the Reynolds number

Re =
UL

ν

Re ≪ 1 viscous term dominates

Re ≫ 1 inertia term dominates

In fluid dynamics, there are many such dimensionless numbers that characterize a fluid
flow. They are important because of the idea of dynamical similarity – two flows can have
dramatically-different velocity, length or timescales, but they will evolve similarly if the
underlying dimensionless numbers are the same.

Increasing Re leads to flows with different properties:

• low Re≪ 1 — the flow is reversible (e.g. the experiment with the blobs of dye between
two concentric cylinders that we mentioned in the first week). Microscopic biological
flows are in this regime.

• moderate Re> 1 — for moderate values of Re the flow is laminar (well-defined stream-
lines) and viscous effects occur in thin boundary layers.

• high Re≫ 1 — for high values of Re (typical greater than thousands), the flow becomes
turbulent. We’ll discuss turbulence in detail in a future week.

Viscous boundary layers
At the boundary with a solid surface, a viscous fluid obeys the

no slip condition u∥ = 0

where u∥ is the comoponent of velocity parallel to the boundary. Because the perpendicular
velocity u⊥ = 0 also (fluid can’t penetrate a solid boundary), we have that the total
velocity u = 0 at a solid boundary.
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This may seem counter-intuitive, because we are used to the idea that fluid flows past a solid
surface. However, microscopically right at the solid wall, interactions between molecules will
typically not allow a differential velocity to be maintained. But, you are probably asking,
what about situations where we see fluids flowing past a solid boundary, e.g. think of water
flowing in a container? In those cases, there is actually a thin boundary layer in which the
velocity falls from the bulk velocity to zero right at the boundary. Viscous effects dominate
in this thin layer (whereas inertia dominates in the bulk flow at Re> 1).

We can estimate the width of the boundary layer by equating the viscous time across the
boundary layer thickness ∼ δ2/ν to the flow time along a characteristic length ∼ L/U . This
gives a boundary layer thickness

δ ∼
(
Lν

U

)1/2

∼ L

Re1/2
.

The typical size of a boundary layer is ∼ Re1/2 times smaller than the scale of
the flow.

Often when modelling laminar flows with Re> 1, the thin boundary layers are replaced by a
free slip boundary condition which says that u⊥ = 0 at the solid boundary, but u∥ may take
any value. The viscous terms are then dropped from the fluid equations, since they operate
only in the thin boundary layers that have been absorbed into the boundary condition. We’ll
see some example of this later.

Questions for this week

1. You are having a conversation with a friend about fluids, and they make the statement
“viscosity gives rise to off-diagonal terms in the stress tensor”. Explain whether or not you
agree.

2. What are the differences between high and low Reynolds number flows?

3. You stir your cup of coffee. How long would you expect it to take for the coffee to slow
down due to viscosity? Does your answer make sense?

4. Estimate the Reynolds number for (i) flow past the wing of a jumbo jet, (ii) flow around
a canoe paddle, (iii) a layer of maple syrup draining off a spoon, (iv) a bacteria of size 1 µm
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moving at a speed of 30 µm s−1. Where appropriate, estimate the thickness of the boundary
layer.

Useful equations:
Re =

UL

ν

νwater ≈ 10−2 cm2 s−1

δ

L
≈ 1

Re1/2
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Week 3 Computational exercise - Viscous flow above an
oscillating plate

In this exercise, we will model the flow of a viscous fluid above a rigid plate. The plate
moves with some specified motion in the x-direction, eg. oscillating from side to side with
some frequency, and we want to calculate the fluid velocity u(z)x̂ as a function of distance
z from the plate.

(a) First show that the motion of the fluid obeys a diffusion equation

∂u

∂t
= ν

∂2u

∂z2
,

where ν is the viscosity.

(b) The way we will solve this numerically is by following the velocity at N grid points
separated by ∆z in height, ie. at locations zi = (i − 1) ∗ ∆z, with i = 1, ...N . In the
technique of finite differences, the spatial derivative at grid point i is written

∂2ui

∂z2
=

1

∆z

[
ui+1 − ui

∆z
− ui − ui−1

∆z

]
=

ui+1 − 2ui + ui−1

(∆z)2
,

and we write the time-derivative as

∂ui

∂t
=

un+1
i − un

i

∆t
,

where the superscript n labels the timestep.

Put this together to derive the following scheme for updating the velocities

un+1
i = un

i + α
(
un
i+1 − 2un

i + un
i−1

)
where α = ν∆t/(∆x)2. This is known as an explicit scheme since the velocities at the new
timestep

{
un+1
i

}
are written explicity in terms of the currently known velocities {un

i }.

(c) Write a code that implements this explicit scheme. You will need a boundary condition
at the top of the fluid (at z = (N − 1)∆z). Since we are imagining a finite thickness layer
of fluid sitting on top of the plate, with a free surface at the top, the appropriate boundary
condition is zero stress ∂u/∂z = 0. You can implement this by setting uN = uN−1 at each
timestep. The bottom velocity u1 is set by the assumed velocity of the plate. Velocities u2

to uN−1 are updated each timestep by the scheme above.

Important note: you should choose α ≤ 1/2. For larger values of α, this method is numeri-
cally unstable — try it and see! This is a limitation of explicit methods, we will discuss this
more in a future exercise.
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As a starting problem, set the velocities everywhere on the grid to be ui = 0 except at the
bottom z = 0 where u0 = 1. Evolve the solution forwards in time and see whether you get
the behavior you expect.

(d) Now implement an oscillating lower boundary and see whether the solution behaves as
predicted analytically.

(e) Optional extension: By adding a gravitational acceleration term to your code, solve for
the flow of a viscous fluid on an inlined plane.
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Week 4: Sound waves
This week we are going use sound waves to explore some aspects of waves in fluids.

Linear adiabatic sound waves
Consider a constant density gas at rest, i.e. the fluid has u = 0 and ρ = ρ0 = constant. If we
make a small perturbation in density δρ(r), how does the fluid respond?

The continuity and momentum equations are[
∂

∂t
+ δu · ∇

]
δρ = −(ρ0 + δρ)∇ · δu

[
∂

∂t
+ δu · ∇

]
δu = − ∇δP

ρ0 + δρ
,

where δu and δP are the perturbations to the velocity and pressure.

For small perturbations δρ ≪ ρ0, we can solve these equations by keeping only the linear
terms in the perturbations. This gives

∂

∂t
δρ = −ρ0∇ · δu (3)

∂

∂t
δu = −∇δP

ρ0
(4)

Note in particular that the non-linear term (u ·∇)u has gone away because it is second order
(quadratic) in δu.

To close these equations, we need a relation between δP and δρ. If the perturbations are
adiabatic then

δP

P
= γ

δρ

ρ

since adiabatic changes obey P ∝ ργ where γ is the adiabatic index. Then

∂

∂t
δu = −γP0

ρ0

∇δρ

ρ0
. (5)

Combining equations (10) and (5) (take the time-derivative of (10) and the divergence of (5)
and eliminate δu) gives

∂2δρ

∂t2
=

γP0

ρ0
∇2δρ (6)
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(you can check by eliminating δρ instead that δu obeys the same equation). This is a wave
equation with wave speed given by

c2s =
γP0

ρ0

where cs is the adiabatic sound speed. In air at room temperature, the speed of sound is
≈ 330 m/s.

Dispersion relation, phase and group velocities
Since we have a linear equation, we can decompose the solutions into modes

δρ, δu ∝ eik·re−iωt

Substituting this solution into the wave equation (6) gives

−ω2δρ = c2s(−k2)δρ

⇒ ω2 = c2sk
2

which is the dispersion relation (relation between frequency and wavelength) for sound
waves.

The wave frequency (in Hz) is given by ω/2π; the wavelength is λ = 2π/k where k = |k|.

For any wave, we can define two different velocities. The first one is the velocity at which a
given mode k remains at stationary phase, i.e. the velocity of the frame in which k.r− ωt is
constant. This is the phase velocity which is in the direction of k and has a magnitude

vp =
ω

k
= cs.

The group velocity is the velocity of the peak of a wavepacket, given by

vg =
∂ω(k)

∂k
=

(
∂

∂kx
,

∂

∂ky
,
∂

∂kz

)
ω(kx, ky, kz).

For example, writing the dispersion relation ω2 = c2s(k
2
x + k2

y + k2
z), the x-component of

the group velocity is vg,x = ∂ω/∂kx = cskx/|k|, and similarly for the y and z-components.
Therefore the group velocity for sound waves is in the direction of k and has a magnitude
cs.

Therefore for linear sound waves we have

vg = vp = cs

with both phase and group velocities in the direction of k. Because of the linear dispersion
relation, the velocity is independent of k: the waves are non-dispersive. Because all modes
travel with the same phase velocity, a wavepacket keeps its shape as it moves.
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Non-linear steepening of waves
The derivation above shows that small-amplitude waves are non-dispersive and propagate
without changing shape. For larger amplitude waves, however, the non-linear terms become
significant, leading to wave steepening.

The sketch shows the evolution of the velocity/density profile of a wave packet travelling to
the right. The leading edge steepens as the wave packet travels. In the computational exercise
this week, we’ll solve the fluid equations directly to calculate the evolution of perturbations
and you’ll see this steepening directly in your solutions.

There are a few different ways to think about wave steepening:

• A physical way to think about it is that in the peaks of the wave, the density is larger
and therefore the sound speed is larger. A peak of the wave therefore moves faster and
tries to “catch up” with the trough ahead of it.

• Generation of harmonics: although we might start with a pure mode with frequency
ω and wavevector k, the non-linear term leads to generation of harmonics

u ∝ eikx ⇒ u · ∇u ∝ ei2kx.

The shorter wavelength components result in small-lengthscale features in the profile.

• We can look at solutions of the advection terms in 1D:

∂u

∂t
+ u

∂u

∂x
= 0 Burgers′ equation

Burgers’ equation has a solution of the form u = f(x − ut) for some function f . We
can see this by writing ξ = x− ut and then

∂u

∂t
= f ′∂ξ

∂t
= −f ′

(
u+ t

∂u

∂t

)
⇒ ∂u

∂t
= − ff ′

1 + f ′t
,

∂u

∂x
= f ′ ∂ξ

∂x
= f ′

(
1− t

∂u

∂x

)
⇒ u

∂u

∂x
=

ff ′

1 + f ′t
, (7)

where f ′ is the derivative of the function f with respect to its argument.
Equation (7) shows that the velocity gradient steepens in the part of the wave that
has f ′ < 0 (and becomes more shallow in the part with f ′ > 0). Indeed, the gradient
diverges (becomes infinite) in a time t = −1/f ′ = −(∂u/∂x)−1, the “turnover time”
associated with the velocity profile.
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As the steepening continues, the wave forms a shock: a thin interface in which the fluid
properties change almost discontinuously. In reality, the shock has a small thickness which
is set by diffusion which becomes very efficient when the gradient is very steep and stops
the wave from steepening further. However, this interface is extremely thin. For a shock
thickness ∆, momentum balance gives

u · ∇u ∼ ν∇2u ⇒ U2

∆
∼ νU2

∆2
⇒ ∆ ∼ ν

U
.

But recall that ν ∼ csλ for an ideal gas,

⇒ ∆ ∼ λ
(cs
U

)
which implies that the interface thickness is comparable to the mean free path!

A classical example of shock formation is that of a piston moving into a tube of gas. Even if
the piston moves subsonically, a shock moves ahead of the piston (at speed ∼ cs) to let the
gas ahead of the piston know it is coming.

Questions for this week
1. Explain physically what is happening in a sound wave. Why does the wave propagate?

What is the restoring force?

2. Evaluate the adiabatic sound speed in air and check the number given in the notes.

3. Is the sound speed in water larger or smaller than in air? Why?

4. According to Wikipedia, the sound intensity corresponding to lowest sound intensity
detectable by the human ear is of order I0 ∼ 1 pW/m2. Calculate the velocity ampli-
tude of the sound wave with this intensity and a frequency of 1 kHz. How long would
it take for the wave to steepen to a shock? Does this match your everyday experience
of sound waves? [Hint: the energy flux in a wave is the energy density times the wave
speed]. The intensity in decibels (dB) is given by 10 log10(I/I0). How loud in dB
would a sound need to be to form a shock? Does your answer make sense (look up
some dB values and compare)?
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Week 4 Computational exercise - Sound waves

In this exercise, we will solve the fluid equations to evolve a sound wave in 1D.

Fluid equations in flux-conservative form. For motion in 1D, the continuity and mo-
mentum equations can be written as (you should check this yourself)

∂ρ

∂t
+

∂

∂x
(ρv) = 0

∂

∂t
(ρv) +

∂

∂x

(
ρv2

)
= −∂P

∂x
.

This form of the equations is known as flux-conservative form because they are written in
the form

(rate of change of a density) + (divergence of a flux) = source terms.

This is a useful form for numerical solutions because it guarantees that quantities are con-
served – whatever flux leaves one cell is the same flux that enters the neighbouring cell (and
since the fluid equations are based on conservation of mass, momentum, or energy, this is
perfect for fluids!)

Finite-volume methods and donor cell advection. We divide the volume into cells
such that the grid points xi are the locations of the cell centres, and the cell boundaries are
at the mid-point locations xi±1/2 = (1/2)(xi + xi±1). We then solve the equation

∂f

∂t
= −∂J

∂x
,

in discretized form
fn+1
i − fn

i

∆t
= −

Ji+ 1
2
− Ji− 1

2

∆x
,

where n refers to the current values and n+ 1 to the future values, and we write the flux of
quantity f at the cell boundaries (i± 1/2) as

Ji+ 1
2
=

vn
i+ 1

2

fn
i , if vn

i+ 1
2

> 0

vn
i+ 1

2

fn
i+1, if vn

i+ 1
2

< 0

Ji− 1
2
=

vn
i− 1

2

fn
i−1, if vn

i− 1
2

> 0

vn
i− 1

2

fn
i , if vn

i− 1
2

< 0

This choice for the fluxes is known as donor cell advection or upwind differencing. Depending
on the sign of the velocity, the contents are either advected out of cell i or into cell i from
the left or right neighbour.
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Algorithm. A simple algorithm that you can use to solve the equations is as follows. First
define quantities

f ≡ ρ

g ≡ ρv

(the mass and momentum densities) and assume that P = c2sρ with constant sound speed
cs. The equations to solve are then

∂f

∂t
+

∂

∂x
(vf) = 0

∂g

∂t
+

∂

∂x
(vg) = −c2s

∂f

∂x
.

These are in flux-conservative form with the pressure gradient acting as a source term for
the momentum density g. Note that given f and g, the velocity can be obtained from the
ratio g/f .

The algorithm has two steps:

1. Use donor-cell advection to update f and g. To calculate the velocity at the cell
boundaries, you can take an average of the velocity at the cell centres

vi+ 1
2
=

1

2
(vi + vi+1) .

2. Add an additional update to the value of g from step 1 to take into account the source
term. You can do this by using the new values of f you found in step 1 to calculate
the derivative

∂f

∂x

∣∣∣∣
i

≈ fi+1 − fi−1

2∆x
.

The simplest boundary conditions to use are periodic boundaries (so the flux off the right
hand side is the same as the flux onto the left hand side and vice versa).

Questions

1. Choose an initial condition that has a sinusoidal variation in density and/or velocity.
Check that for small amplitudes, the wave propagates as expected.

2. Do you see steepening at larger wave amplitudes?

3. How large a timestep can you take and still be numerically stable?

4. Do you form a shock in your simulation? What sets its thickness?
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Week 5: Turbulence
Last week we saw the effect of the non-linear term in the momentum equation u · ∇u on
sound waves. By coupling together different wavelengths, it leads to steepening of the wave
profile. The non-linearities in the fluid equations also lead to turbulence, the topic for this
week.

First watch the movie!
First watch the movie on turbulence from the National Committee for Fluid Mechanics.
The movie is quite dated now (made in the 1960s), but keep watching because it gives an
excellent overview of turbulence. We’ll elaborate on some of the points made in the movie
in the notes below. The other movies in this series are also worth watching and cover many
different topics in fluids.

You can stop the movie once it gets to timestamp 22:30. There is also a set of Film Notes
that might be helpful to look at.

Characteristics of turbulence
The movie highlights the following characteristics (or “symptoms”) of turbulence:

• irregularity

• diffusivity

• large Re numbers

• 3D vorticity fluctuations

• dissipation

One important point is that turbulence is a property of the flow, not the fluid.

Energy cascade
Turbulence involves a cascade of energy from large scales to small scales where viscosity
dissipates the energy.

Perhaps the most famous result is the −5/3 scaling of the energy spectrum for isotropic
homogeneous incompressible turbulence. Let’s see how that works.

As mentioned in the movie, the behaviour of the flow at a particular point is not predictable,
but statistical quantities/averages are. One of these is the energy spectrum E(k) were E(k)dk
is the kinetic energy density in modes of wavelength λ = 2π/k. A log-log plot of E(k) against
k looks like:

40

https://www.youtube.com/watch?v=1_oyqLOqwnI&list=PL0EC6527BE871ABA3&index=12&feature=plpp_video
https://web.mit.edu/hml/ncfmf.html
https://web.mit.edu/hml/ncfmf/11TUR.pdf


The outer scale is where the fluid is being stirred, i.e. where energy is being injected with
Re= UL/ν ≫ 1. The inner scale is where viscous dissipation occurs. The typical velocity
vd and lengthscale ℓd there are such that vdℓd/ν ∼ 1.

In a steady cascade, the energy transfer rate ε from scale to scale must be constant. From
dimensional arguments we can write

ε ∼ v3

ℓ
at any scale ℓ, where

v ∼ (εℓ)1/3

is a typical velocity at scale ℓ.

In particular, this applies at each end of the inertial range

ε ∼ U3

L
∼ v3d

ℓd

But we also know that at the dissipation scale vdℓd/ν ∼ 1, giving

ℓd ∼
(
ν3

ε

)1/4

vd ∼ (νε)1/4

These are the size and velocity of turbulent eddies for which the turnover time ℓd/vd is equal
to the viscous time ℓ2d/ν. Viscosity efficiently damps motions on these scales, terminating
the cascade.

The eddy turnover time is
ℓ

v
∼ ε−1/3ℓ2/3
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which is faster and faster as we go to smaller scales.

We can also get the range of lengthscales involved in the cascade by writing(
L

ℓd

)4

= L3 × L× ℓ−4
d = L3 × U3

ε
× ε

ν3
=

(
LU

ν

)3

= Re3

⇒ ℓd =
L

Re3/4
vd ∼

U

Re1/4

In the questions, you’ll estimate the range of scales when you stir a cup of coffee. To give
an astrophysical example, the outer convection zone of the Sun has a size ∼ 1010 cm (about
20% of the radius of the Sun), with velocities U ∼ 103 cm s−1. The corresponding Reynold’s
number is Re ∼ 1012 which then gives ℓd ∼ 10 cm and vd ∼ 1 cm s−1. Note the enormous
range of scales! The turnover time at the dissipation scale is ℓd/vd ∼ 10 seconds compared
to L/U ∼ 107 seconds or months. This makes this a difficult problem to simulate!

The scaling for E(k) now follows. Since E(k)dk is the kinetic energy density at scale k, we
must have

E(k)dk ∼ v2
dk

k
∼ ε2/3k−2/3dk

k
∝ ε2/3k−5/3dk.

This shows that E(k) ∝ k−5/3 which is the famous Kolmogorov spectrum (1941).

The 5/3 scaling was confirmed for turbulent flow in the “Seymour Narrows”, a tidal channel
where there is a large Re∼ 108 by Grant et al. (1961).

If the stirring is kept the same but the viscosity varied, the inertial range remains fixed
but with a different scale for the viscous cutoff. This is illustrated in the movie with two
turbulent jets with different Re – they look identical at large scales, but the larger Re jet
has much finer small scale structure. Another point in the movie is that smaller scales decay
first in freely-decaying turbulence, consistent with the picture above.

Turbulent transport
The other property of turbulence emphasized in the movie was the large increase in the
transport of momentum and scalars such as temperature in a turbulent flow. Let’s try to
understand that.

Decompose the fluid motion into a mean flow U and a fluctuating flow u′

u = U+ u′

We do this in such a way that

⟨u⟩ = U ⟨u′⟩ = 0,
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where the time-average is

⟨u⟩ = 1

τ

∫ t0+τ

t0

dt u

for some suitably large τ . This is called a Reynold’s decomposition.

Now think about the fluid equations with this decomposition. For an incompressible flow,
∇ · u = 0. Averaging this gives ∇ · U = 0, ie. the mean flow and fluctuating flow are
separately incompressible.

The momentum equation is (in component form)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂P

∂xi

Splitting the velocity into mean and fluctuating parts and taking the average gives

∂Ui

∂t
+ Uj

∂Ui

∂xj

= −
〈
u′
j

∂u′
i

∂xj

〉
− 1

ρ

∂P

∂xi

where P is now the mean part of the pressure. The velocity term on the right hand side can
be rewritten using incompressibility as

−
〈
u′
j

∂u′
i

∂xj

〉
= − ∂

∂xj

(〈
u′
iu

′
j

〉)
.

The momentum equation for the mean flow is therefore

ρ

(
∂

∂t
+U.∇

)
U = ∇ ·T

where
Tij = −δijP − ρ⟨u′

iu
′
j⟩

is the stress tensor. We see that the effect of the turbulence is to give a new term in the
stress tensor known as the Reynolds stress.

The Reynolds stress describes the transport of momentum by the turbulent fluctuations.
In particular, we see that correlated velocity fluctuations lead to a transport of momentum.
For example, in the flow in a pipe shown in the movie, the average ⟨u′

zu
′
x⟩ is non-zero

because upwards moving fluid tends to carry an excess of horizontal momentum compared
to downwards-moving fluid. The net effect is that the turbulence transports horizontal
momentum towards the wall of the pipe.

In trying to solve these equations for a turbulent flow we face the “closure problem” – we
need a closure relation to relate the Reynolds stress (fluctuating part) with the mean flow.
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It is often assumed for simplicity that

⟨u′
iu

′
j⟩ = −DT

(
∂Ui

∂xj

+
∂Uj

∂xi

)
,

i.e. the same kind of relation as for microscopic viscosity. The coefficient DT is the Eddy
viscosity. Note that there is a crucial difference compared to a viscous fluid however: even
if a relation like this were valid (probably not – the dependence of the Reynolds stress on
the mean flow is likely much more complex), the Eddy viscosity DT is a property of the flow
unlike the microscopic viscosity ν which is a property of the fluid!

We can also treat the transport of a scalar using the Reynolds decomposition. An example
is heat transport. The equation that describes heat transport is

ρcP

(
∂

∂t
+ v · ∇

)
T =

∂

∂xj

(
K

∂T

∂xj

)
where cP is the specific heat capacity at constant pressure and K is the thermal conductivity.
The left hand side describes advection of heat and the right hand side thermal diffusion.

The Reynolds decomposition for the heat equation gives

ρcP

(
∂

∂t
+U · ∇

)
⟨T ⟩ = ∂

∂xj

(
−ρcP ⟨T ′u′

j⟩+K
∂⟨T ⟩
∂xj

)
The term ρcP ⟨T ′u′

j⟩ is the turbulent heat flux – correlated fluctuations in temperature and
velocity lead to transport of heat. For example, in turbulence with a background temperature
gradient in the vertical direction, rising fluid elements are hotter than sinking fluid elements,
leading to a net heat transport.
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Questions for this week

1. Why and when are fluids turbulent?

2. What are the “symptoms” of turbulence?

3. What is the energy spectrum E(k) and what does it look like for incompressible,
isotropic turbulence?

4. When you stir a cup of coffee, what do you expect to be the smallest lengthscale
associated with the motion?

5. What is meant by the terms Reynold’s stress and Eddy viscosity?

6. Do you have any questions that came up while watching the movie/reading the notes?
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Week 5 Computational exercise - Lorenz attractor

In a famous 1963 paper “Deterministic Nonperiodic Flow”, Edward Lorenz wrote down a
system of three coupled ODEs as a simplified model of thermal convection. These equations
are deterministic in that given a set of initial values, the evolution of the system in time
can be computed exactly. However, they show sensitivity to initial conditions: a tiny
change in the initial conditions leads to a dramatically different evolution in time. This
became known as the “butterfly effect” and launched the field of Chaos Theory. Chaotic
systems show unpredictability and randomness despite being governed by a deterministic set
of equations.

1. Rayleigh Benard convection
The equations that Lorenz wrote down were a very much simplified version of the fluid
equations for thermal convection. In particular, a famous problem in fluids is Rayleigh-
Benard convection in which heat is transported through a fluid that lies between two plates,
the bottom plate hot and the top cold with a temperature difference ∆T . The response of
the fluid depends on the dimensionless Rayleigh number

Ra =
α∆TgH3

κν
,

where H is the thickness of the fluid layer, κ and ν are the thermal diffusivity and viscosity,
α is the thermal expansion coefficient (d ln ρ/dT ) and g is the acceleration due to gravity.

Question

• Take a look at this set of movies showing 2D Rayleigh-Benard convection at increas-
ing values of Ra from 103 to 108. The movies show the temperature (red=hot and
blue=cold) as a function of time as the simulation evolves3. What does the response
of the fluid look like at different Rayleigh number? What are the similarities and
differences in the flow? You should be able to see four different regimes.

2. The Lorenz equations
The simplified equations are

Ẋ = −σX + σY

Ẏ = −XZ + rX − Y

Ż = XY − bZ

3If you are interested in running your own convection simulations, take a look at the Dedalus code which
I used for these simulations.
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where the three variables are

X ∝ intensity of convective motions

Y ∝ temperature differences between ascending and descending currents

Z ∝ deviation of temperature from initial linear profile

There are three parameters: r, which plays the role of Ra, σ which represents the Prandtl
number (ratio of viscosity to thermal diffusivity ν/κ; this is ≈ 7 for water), and b which is
related to the horizontal scale of the motion. Lorenz took σ = 10 and b = 8/3 (related to
the most unstable wavelength in the linear instability theory for convection).

The Lorenz equations have a steady state solution X = Y = Z = 0 for r < 1 and an
additional two steady-state solutions Z = r − 1, X = Y , X2 = b(r − 1) for r > 1.

Questions

• Have a look at the different terms in the Lorenz equations. Given your knowledge of
the fluid equations, can you see where any of these terms might come from?

• Write a code to integrate the Lorenz equations in time. Your code should plot (1) X,
Y and Z against time, and (2) the “phase space trajectory” by plotting X, Y and Z
against each other (either in 3D or in 2D, e.g. plot X against Y ). Mark the steady
state solutions on your plots.

• Start with the same choices for σ and b as Lorenz — σ = 10 and b = 8/3 — and study
the dependence of the solutions on r. Do you see analogous behavior to the Rayleigh-
Benard convection simulations as r increases? What role if any do the steady-state
solutions (“fixed points”) play? Do you see sensitivity to initial conditions? Expanding
to other values of σ and b, how many different types of behavior can you find?
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Week 6: Energy in fluids
This week we’ll discuss energy in fluids and the different forms of the energy equation.

Kinetic energy in inviscid fluids
The kinetic energy density is 1

2
ρu2. To derive an equation for the kinetic energy, take

u · (momentum equation)

or
u ·

[
ρ
∂u

∂t
+ ρ (u · ∇)u = −∇P

]
We’ll ignore the viscous term for now. The three terms are:

u · ρ∂u
∂t

= ρ
∂

∂t

(
1

2
u2

)

ρu · (u · ∇)u = ρu ·
(
−u× (∇× u) +∇1

2
u2

)
= ρu · ∇1

2
u2

−u · ∇P = −∇ · (uP ) + P∇ · u

so we get
ρ
∂

∂t

(
1

2
u2

)
+ ρu · ∇1

2
u2 = −∇ · (uP ) + P∇ · u.

Now add to this (
1

2
u2

)
× (continuity equation)

or
1

2
u2∂ρ

∂t
+

1

2
u2∇ · (ρu) = 0

which gives the kinetic energy equation

∂

∂t

(
1

2
ρu2

)
+∇ ·

(
u

[
1

2
ρu2 + P

])
= P∇ · u

Internal energy and total energy
For the internal energy of the fluid, we can use the first law of thermodynamics

TdS = dE − P

ρ2
dρ

where
E = internal energy per unit mass
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S = entropy per unit mass

The last term is the “PdV” term but again written per unit mass (volume per unit mass
1/ρ).

Consider first an adiabatic flow which has

T
DS

Dt
= 0.

The first law of thermodynamics then gives

⇒ DE

Dt
=

P

ρ2
Dρ

Dt
= −P

ρ
∇ · u

⇒ D

Dt
(ρE) = ρ

DE

Dt
+ E

Dρ

Dt
= −P∇ · u− ρE∇ · u

⇒ ∂

∂t
(ρE) + u · ∇ (ρE) + ρE∇ · u = −P∇ · u.

We arrive at the internal energy equation

∂

∂t
(ρE) +∇ · (uρE) = −P∇ · u.

For a non-adiabatic flow, we can add back in the DS/Dt term

∂

∂t
(ρE) +∇ · (uρE) = −P∇ · u+ ρT

DS

Dt

The term
P∇ · u = −P

ρ

Dρ

Dt

represents P dV work. It appears in both the kinetic energy and internal energy equations
but with opposite sign: P dV work transfers energy from the bulk kinetic energy to internal
energy and vice versa.

The total energy equation is given by adding the kinetic energy and internal energy
equations

∂

∂t

(
ρE +

1

2
ρu2

)
+∇ ·

(
u

[
ρE + P +

1

2
ρu2

])
= ρT

DS

Dt

The left hand side is in flux-conservative form but notice that the energy flux has a pressure
term in it. The energy flux is actually kinetic energy flux plus enthalpy flux where the
enthalpy is the quantity E + P/ρ (per unit mass). This takes into account the P dV work
as fluid moves around. We saw the enthalpy appear earlier in Bernoulli’s constant.
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Thermal diffusion and volumetric heating. An example of a DS/Dt term is heat flow
from thermal diffusion. The heat flux in that case is

F = −K∇T

were K is the thermal conductivity. Then

ρT
DS

Dt
= −∇ · F

since the heat deposited in a local volume is the integral of the heat flux over the surface. We
can also add a volumetric heating or cooling term ε (J/kg/s) e.g. from chemical reactions,
giving

ρT
DS

Dt
= −∇ · F+ ε

Adiabatic flows. If the flow is adiabatic, we can write

DS

Dt
= 0 =

D

Dt

(
P

ργ

)
where γ is the ratio of specific heats CP/CV . This gives

1

P

DP

Dt
=

γ

ρ

Dρ

Dt

A good approximation if the flow time is much shorter than the time for heat genera-
tion/diffusion in the fluid.

Viscous dissipation
With viscosity included, there is an extra term in the kinetic energy equation

ui
∂

∂xj

σij = ui
∂

∂xj

(2µeij)

(you might need to go back and look again at the notes on viscosity to get a reminder of
the viscous stress tensor σij). We’re using index notation because we’re now dealing with
tensors. It is helpful to rewrite this term as

ui
∂

∂xj

(2µeij) =
∂

∂xj

(2µuieij)− 2µeij
∂

∂xj

ui.

The first term is the divergence of a flux and adds to the divergence term on the LHS of the
kinetic energy equation. The second term represents viscous dissipation: loss of energy to
heat when fluid elements are deformed. If you look back at the kinetic energy equation for
inviscid fluid, a similar thing happened to the pressure term when we wrote

−u · ∇P = −∇ · (uP ) + P∇ · u.
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Just as P∇ · u represents P dV work that changes the internal energy of fluid elements,
the same thing happens with shearing distortions of fluid elements that involve viscous
dissipation.

The viscous dissipation term can be written in a simpler form using the fact that eij is
symmetric:

−2µeij
∂ui

∂xj

= −2µ× 1

2

[
eij

∂ui

∂xj

+ eji
∂uj

∂xi

]
= −2µeij ×

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
= −2µeijeij

= −2µ(eij)
2

Note that this term is always negative, so viscous dissipation always acts to decrease the
kinetic energy. This energy goes into internal energy.

The viscous dissipation rate is defined as the positive quantity

ΦV = σij
∂ui

∂xj

= 2µ(eij)
2.

Note that there is a double sum implied here over i and j, so that ΦV is a scalar quantity.
It gives the energy per unit volume per second dissipated as internal energy and removed
from the kinetic energy by viscous effects.

Questions for this week

1. Derive equations for the kinetic energy, internal energy, and total energy for an adia-
batic flow in a gravitational field. How does your answer relate to Bernoulli’s theorem?

2. A fluid has a constant kinematic viscosity ν. Derive an expression for the viscous
dissipation rate in terms of ν and the velocity gradients.
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Week 6 Computational exercise - Advection-diffusion
The problem we want to look at this week is the following:

A fluid flows at constant velocity through a pipe that is heated at the far end.
Calculate the temperature distribution in the fluid along the pipe.

We’ll use this to look at two numerical techniques: implicit methods and operator splitting.

Equation and boundary conditions. Treating this as a 1D problem, the equation to
solve is

∂T

∂t
= −v

∂T

∂x
+D

∂2T

∂x2
,

with constant thermal diffusivity D and fluid velocity v. The coordinate x measures the
distance along the pipe. Assume that the temperatures at each end of the pipe are fixed:
T = 0 at x = 0 and T = T0 at x = L. As in earlier exercises, we can solve this equation with
finite differencing, where we follow the temperatures on a grid and calculate the spatial and
time derivatives with finite differences. The notation T n

i denotes the temperature at grid
point i at time n.

Operator splitting. A straightforward way to advance the solution in time is to use
operator splitting, in which we apply each operator (diffusion and advection) in turn. We
start with the temperatures on the grid at time n. We update them using the diffusion term
with time-step ∆t to obtain intermediate values which we then use as input to an advection
step for time ∆t. This has the advantage that we can develop our numerical techniques for
advection and diffusion separately rather than having to come up with a scheme to solve
both at once.

Diffusion step. We looked at diffusion previously when we calculated the flow of viscous
fluid. The finite-differenced version of the diffusion equation is

T n+1
i − T n

i

∆t
= D

T n
i+1 − 2T n

i + T n
i−1

(∆x)2

giving
T n+1
i = T n

i + α(T n
i+1 − 2T n

i + T n
i−1) = αT n

i+1 + (1− 2α)T n
i + αT n

i−1

where α = D∆t/(∆x)2. This is an explicit method where we write the new values of
temperature explicitly in terms of the old values. Note that we can write this as a matrix
equation

Tn+1 = A ·Tn

where Tn is the vector of temperature values at time n and the tri-diagonal matrix A is

A =


. . .

1− 2α α
α 1− 2α α

α 1− 2α
. . .
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The endpoints of the matrices are where we implement the boundary conditions. For exam-
ple, the first grid point i = 1 has an update equation T n+1

1 = T n
1 since it doesn’t change with

time. Therefore we need the top left of the matrix to implement this:

A =


1 0 0 0 · · ·
α 1− 2α α 0 · · ·
0 α 1− 2α α · · ·
... ... ... ... . . .


Similarly for the bottom right. Then we can set the boundary values of temperature at the
start of the calculation and they will not change over time which is the boundary condition
we have for this problem4.

The disadvantage of the explicit scheme is that it has a limit on the timestep – we need
α ≤ 1/2 to avoid numerical instabilities. In an implicit scheme, we instead write

T n+1
i = T n

i + α(T n+1
i+1 − 2T n+1

i + T n+1
i−1 )

so that the diffusion term is evaluated using the future values of T rather than their current
values. This method is stable for large timesteps α > 1. The solution for α ≫ 1 is the steady
state ∂2T/∂x2 = 0, so although you lose accuracy on small scales by taking large timesteps,
the solution evolves to steady-state which is usually the correct outcome.

In matrix form the implicit update is

B ·Tn+1 = Tn

with

B =


. . .

1 + 2α −α
−α 1 + 2α −α

−α 1 + 2α
. . .

 .

Once again you need to make sure that the edges of the matrix are adjusted so that the
boundary conditions are satisfied.

We can take the timestep using the inverse matrix:

Tn+1 = B−1 ·Tn.

In python, it’s even easier because we can call np.linalg.solve which will do the matrix
inversion for us. The routine np.eye is also really useful to construct tridiagonal matrices.

4Other boundary conditions, such as insulating boundaries T1 = T2 can be implemented in a similar
way by adjusting the matrix entries so that when you multiply out the matrix equation you get the correct
equations for the boundary points.
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Advection step. Although it seems like the advection term should be straightforward,
in fact advection is extremely hard to do accurately. The simplest differencing you could
imagine

T n+1
i − T n

i

∆t
= v

T n
i+1 − T n

i−1

2∆x

(where we use a second-order accurate derivative on the right hand side) turns out to be
numerically unstable for any choice of timestep! One method that is stable is the Lax
method:

T n+1
i =

1

2
(T n

i+1 + T n
i−1)−

β

2
(T n

i+1 − T n
i−1)

where β = v∆t/∆x. This is stable as long as β ≤ 1.

Questions

• Write a code to solve the advection-diffusion problem using operator splitting, the Lax
method for the advection step and implement both explicit and implicit methods for
the diffusion step so that you can compare them.

• Try running first with v = 0, ie. diffusion only. Compare the explicit and implicit
methods. You should find that you can take much bigger timesteps with the implicit
method without running into stability problems.

• Now turn on advection only (D = 0). What happens?

• With both advection and diffusion turned on, does the solution behave the way you
expect? How does the temperature profile depend on the ratio v/D? Compare with
the analytic solution for the steady-state.

• If you have time, try to implement a different boundary condition (e.g. insulating
boundary or fixed heat flux rather than temperature) and see what happens.
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Week 9: Compressible flows

Part I: Traffic flow simulation

(a) A simple way to model traffic flow is a “car following” model. For a 1D traffic flow, the
acceleration of car i depends on its velocity difference and separation from the car in front
of it i+ 1 according to

dvi
dt

= C
vi+1 − vi
xi+1 − xi

(8)

where C is a constant (e.g. a classic paper is Gipps 1981 http://www.sciencedirect.com/
science/article/pii/0191261581900370).

Implement this method in python for a line of cars, equally-spaced and moving with the
same speed initially. Calculate what happens when the lead car suddenly changes its speed
(up or down). You should find the cars evolve towards a new steady state. (For plotting
purposes, it may be helpful to set the x = 0 point to be the location of the first car after
every timestep, also a plot of v against x is helpful to look at.)

(b) As a function of the speed of the lead car v, find the steady-state separation ∆x, and the
flux of cars J (number of cars per second, or the velocity divided by the average spacing).
Plot J and ∆x against v.

(c) Discuss the shape of the J(v) curve. Does it make sense? How does it depend on the
constant C? By inspecting the plots can you come up with an analytic form for ∆x and J
as a function of v?

Part II: Compressible fluids

(a) Write down the continuity and momentum equations for a 1D isentropic gas. In the
momentum equation, the only force you need to consider is the pressure gradient, which you
can then rewrite in terms of the density gradient (dP = c2s dρ for adiabatic changes).

(b) For a steady flow, show that

dJ

dv
= ρ

(
1− v2

c2s

)
, (9)

where J = ρv is the mass flux. Solve for and plot J(v) and ρ(v). For what v is the flux J
maximum, and what is the value of the maximum flux?

(c) Discuss the connection between Parts I and II. Do you see how you could write down a
continuum model for a traffic flow? Is the analogy with a compressible fluid exact? Is there
an equivalent to a sound speed for the model in Part I?
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Week 10: Internal Gravity Waves
The week, we’ll discuss internal gravity waves, which arise in stratified fluids such as the
atmosphere or the ocean. As you will see, they have some interesting properties and it will
also give us a chance to tackle an eigenvalue problem numerically.

Eulerian and Lagrangian Perturbations
An important concept that we need to investigate internal gravity waves is the idea of
Lagrangian perturbations. We already used the idea of Eulerian perturbations when we
discussed sound waves. An Eulerian perturbation describes a perturbation to a fluid quantity
at a fixed point in space, e.g. density

δρ(r) = ρ(r)− ρ0(r),

where ρ0 is the density in the unperturbed flow, and ρ the density in the perturbed flow.
Now extend this idea to perturbations of particular fluid elements. If the fluid element has

a location r0 in the unperturbed flow and location r in the perturbed flow, the displacement
of the fluid element between the two flows is

ξ = r− r0.

The Lagrangian perturbation is

∆ρ(r0) = ρ(r)− ρ0(r0).

Using r = r0 + ξ and expanding assuming small displacements gives

∆ρ(r0) = ρ(r0 + ξ)− ρ0(r0)

= ρ(r0) + ξ · ∇ρ0 − ρ0(r0)

= δρ(r0) + ξ · ∇ρ0,

which relates the Eulerian perturbation δρ to the Lagrangian perturbation ∆ρ. To clean up
the notation, we can drop the subscripts and write simply

∆ρ = δρ+ ξ · ∇ρ

As an example, consider an incompressible fluid, which must have ∆ρ = 0. If there is a
density gradient in the fluid, the Eulerian perturbation δρ can be non-zero because a fluid
element displaced in the direction of the density gradient will have a different density than
the background fluid once it gets to its new location.
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Dispersion relation for internal gravity waves
Perturbation equations. Now consider a fluid in which the density varies with height
ρ(z). For example, this could arise in the ocean because of variations in temperature or in
salt concentration. If the timescale associated with perturbations is short compared to the
time for the density to adjust to its surroundings, e.g. by thermal diffusion or salt diffusion,
then the fluid elements obey

∆ρ = 0

The perturbed continuity equation is

∂δρ

∂t
+ δv · ∇ρ = −ρ∇ · δv.

In a Lagrangian picture, the velocity perturbation is related to the displacement of fluid
elements by δv = ∂ξ/∂t, and so

δρ+ ξ · ∇ρ = −ρ∇ · δξ.

The left hand side is ∆ρ = 0, and so

∇ · ξ = 0

which is another statement that the perturbations are incompressible.

The perturbed momentum equation is

ρ
∂δv

∂t
= −∇δP − δρg.

The boxed equations describe the evolution of the perturbations.

WKB approximation. The perturbation equations have wave-like solutions of the form

δρ ∝ e−iωteikxxf(z),

and similarly for δP and δv. Here kx is the horizontal wavevector (from the symmetry we
are free to chose the alignment of the horizontal axes so that ky = 0).

The vertical part of the solution f(z) in general depends on the background density profile
ρ(z). However, if the lengthscale on which the background density is changing (i.e. the density
scale height dz/d ln ρ) is much larger than the vertical wavelength we are considering, then
we can approximate the solution as a plane wave in the vertical direction also

f(z) ∝ eikzz.

This is known as the WKB approximation (you may have seen this for example in a quantum
class when solving the Schrödinger equation).
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Questions

Question 1. (a) Making the WKB approximation, use the perturbation equations to cal-
culate the dispersion relation of the waves, i.e. the relation between ω, kx and kz. A useful
quantity which you can use to simplify your expression is the Brunt-Väisälä frequency or
buoyancy frequency, defined as

N2 = −g

ρ

dρ

dz
.

(b) Calculate the phase velocity vp and the group velocity vg. Calculate vp ·vg and interpret
your answer.

Question 2. (a) Now consider a layer of fluid of thickness H with a constant value of N2.
The layer is in hydrostatic balance so dP/dr = −ρg. Show that the vertical dependence of
the perturbations δρ(z), δP (z), ξz(z), and ξx(z) are given by the equations

dξz
dz

=
k2
x

ρω2
δP (10)

dδP

dz
= −ρ(N2 − ω2)ξz (11)

with ξx = ikxδP/ρω
2 and δρ = ρN2ξz/g.

(b) Integrate the two coupled ODEs equations (10) and (11) numerically to determine the
spectrum of oscillation frequencies and corresponding eigenfunctions. You need to look for
the values of ω for which the boundary conditions are satisfied. One way to do that is to
start at the bottom of the layer, integrate across the layer assuming a value of ω, and then
check at the top whether the solution satisfies the boundary condition. By varying ω, you
should find solutions where boundary conditions are satisfied on both sides. This is known
as a shooting method.

The boundary condition at the base of the layer assuming a rigid lower boundary is ξz = 0.
At the top, assuming there is a free surface, we can write ∆P = 0, or

∆P = δP + ξz
dP

dz
= δP − ρgξz = 0 ⇒ δP = ρgξz.

Calculate the oscillation frequencies ω and inspect the eigenfunctions δP (z), and ξz(z). Do
they approach the WKB form for short wavelengths? How does the frequency depend on
the number of nodes?
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Week 11: Waves and Instabilities
We’ve seen two examples of waves in the course so far: sound waves in week 4 and internal
gravity waves last week. The approach we took in each case was to consider small pertur-
bations to the fluid and look for solutions ∝ e−iωt. The relation between the frequency ω
and the wavevector k is the dispersion relation for the wave. For sound waves this took
the simple form ω2 = c2sk

2 with both phase and group velocities equal to the sound speed
cs; for internal gravity waves, the behavior is more complicated and we saw that the group
and phase velocities are orthogonal in that case.

In some problems, the dispersion relation is such that ω2 is negative, implying that ω
is imaginary. If we write ω = iσ, this means that the time-dependence is ∝ eσt, and small
perturbations grow exponentially – there is an instability.

Some examples of waves and instabilities in fluids
1. Internal gravity waves

Background state being perturbed: A stratified fluid in hydrostatic balance. It can be constant
density like the ocean or compressible like the atmosphere. The important thing is that
entropy should increase upwards so that perturbations are stable and create waves rather
than convection (see convective instability, number 4).
Form of the fluid equations: These waves are not driven by compression (as are sound waves
for example), so the perturbations can be taken as incompressible (∇· ξ = 0). Otherwise, in
the momentum equations we need the pressure gradient and gravity terms. In the gravity
term, δρ can be found from the relation between density and pressure perturbations, ∆ρ/ρ =
(1/γ)(∆P/P ) (for adiabatic perturbations).
Dispersion relation:

ω2 = N2k
2
⊥
k2

where k⊥ is the component of the wavevector in the horizontal direction, k2 = k2
⊥ + k2

z , and
the Brunt-Väisälä frequency or buoyancy frequency N is given by

N2 = g

(
1

γ

d lnP

dz
− d ln ρ

dz

)
.

For incompressible fluid (ocean case) γ → ∞ and N2 only has a density term. Note that this
dispersion relation has the interesting property that the phase velocity and group velocity
are perpendicular to each other.
Basic physics The restoring force for the wave comes from the fact that when a fluid element
is displaced upwards, it is denser than the surroundings and falls back due to gravity. The key
assumption is that the fluid element maintains constant entropy (adiabatic perturbations)
because the time for heat transport is long compared to the oscillation period. The condition
for the fluid element to be denser than its surrounding at the new location and so want to
fall back is N2 > 0.
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2. Capillary waves

Background state being perturbed: An interface between two fluids for which there is a surface
energy and an associated surface tension. The classic case is capillary waves on the surface
of water.
Form of the fluid equations: The simplest case is a layer of constant density fluid with air
(vacuum) above it. With gravity waves last week, we had the surface boundary condition
∆P = 0; here we instead must have

∆P = −T
∂2ξz
∂x2

so that when the surface is deformed, the pressure of the fluid element at the surface increases
or decreases as needed to balance the surface tension.
Dispersion relation:

ω2 = k3
⊥
T

ρ

(assuming short wavelengths compared to the height of the fluid layer). Note that these
waves are dispersive: vp ∝ k

1/2
⊥ .

Basic physics: Basically what we are doing is squeezing (in the crests, or “un-squeezing” in
the troughs of the wave) columns of fluid in the layer. A column that is squeezed gets slightly
taller, pushing the surface upwards, whereas the column next to it gets slightly shorter and
less tall. The surface tension acts as a restoring force because it resists the deformation of
the surface (because the lowest energy state is minimum surface area, or a flat surface).

3. Rossby waves

Background state being perturbed: A thin shell on a rotating sphere supports Rossby waves.
Form of the fluid equations: Often, a local region is considered in a plane-parallel approxi-
mation using the shallow water approximation in which the layer is assumed to be vertically
thin. Rossby waves come from the latitudinal variation of the vertical component of rota-
tion. The background has a vertical component of Ω which is written as 2Ω sin θ = f + βy
(because of the β term, this is called the β-plane). The shallow water momentum equations
are then: (

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
u− (f + βy)v = −g

∂h

∂x(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
v + (f + βy)u = −g

∂h

∂y
.

A term proportional to β then appears as a source term in the vorticity equation.
Dispersion relation:

ω = − βkx
k2
x + k2

y

.
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An interesting property is that the phase velocity of the wave is always negative (backwards
compared to the rotation) (the group velocity can be in either direction depending on the
relative size of kx and ky).
Basic physics: On a rotating sphere absolute vorticity 2Ω+ω is the conserved quantity, not
just the relative vorticity ω = ∇ × u. When a fluid element is perturbed northwards for
example, towards the pole, it has more vertical component of Ω and so its relative vorticity
must decrease. This changes the velocity field in such a way that neighbouring fluid elements
are displaced. They change the flow in such a way that the original fluid element is advected
back towards its original location, giving a restoring “force” for the wave.

4. Convective instability

Background state being perturbed: A stratified fluid. This is a very close cousin of number
1. internal gravity waves, except now the fluid has entropy decreasing with height. This
situation naturally arises when you heat a fluid from below, so you get hot high entropy
material underneath cold low entropy material.
Form of the fluid equations: Pressure and gravity are all that is needed in the momentum
equations to get the basic instability; viscosity may be important, acting to stabilize the
convection. There are two versions of this for constant density (e.g. water) or compressible
(e.g. air) fluids. For compressible fluid in the atmosphere or a star for example, we assume
the perturbations are adiabatic (∆P/P = γ∆ρ/ρ) and heat transport and viscosity can be
neglected. For water, viscosity and thermal diffusion may be important. Although water is
basically incompressible, convection relies on the slight decrease in density when the fluid is
heated. Usually the density change is written in terms of the coefficient of thermal expansion
δρ/ρ = 1−αδT where α ∼ 10−4 for water. In all cases, the density perturbation need only be
put into the gravity term of the momentum equation; for continuity it is enough to assume
incompressible (no sound waves).
Dispersion relation: For adiabatic perturbations in an atmosphere for example, we get the
same as 1., but now N2 < 0 so that ω is imaginary. For situations in which viscosity and
thermal conductivity must be considered, the extra derivatives in the fluid equations give a
more complicated dispersion relation (something like 6th order), but the instability criterion
can be written in a simple way:

Ra =
αg∆TH3

νκ
> Rac,

where Ra is the Rayleigh number, ∆T is the temperature difference across the layer of height
H and κ is the thermal diffusivity.
Basic physics: When entropy decreases upwards, a fluid element that is adiabatically dis-
placed will arrive at its new location to find itself lighter than its surroundings. The buoyancy
force will then keep accelerating it upwards: the background profile is unstable to small per-
turbations. For water, the hotter water in a layer heated from below is less dense (by a
tiny amount) and wants to rise. Thermal diffusion and viscosity can kill the instability by
either equalizing the temperature and therefore density, or by slowing down the rising fluid
elements.
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5. Salt-fingering or doubly-diffusive convection

Background state being perturbed: Hot salty water on top of cold fresh (non-salty) water. This
can happen for example when a river flows into the ocean. Note that there are two things
going on here: cold water on top of hot water (a stable situation) and salty (heavier) water
on top of fresh (lighter) water (an unstable situation). The background for this instability is
one in which the stabilizing temperature gradient overcomes the destabilizing composition
gradient, so that the background state is stable to convection in the sense of instability
number 4.
Form of the fluid equations: As implied by the name “doubly-diffusive” it is crucial to include
the diffusion of heat in the energy equation and the diffusion of chemical (here salt). For
convection, we would usually assume adiabatic perturbations: here the key thing is that heat
can diffuse out of or into a perturbed fluid element.
Dispersion relation: The dispersion relation is more complex that the case of convection; the
growth rate depends on the diffusivities of both heat and salt. E.g. see Huppert and Turner
1981 J. Fluid Mech. 106, 299 for more details.
Basic physics: As mentioned before, the background state is stable to convection, but once
the diffusion of heat is included instability can develop. A fluid element displaced downwards
from the salty layer into the fresh layer can come into thermal equilibrium faster than
chemical equilibrium. Heat diffuses until the temperature of the perturbed fluid element
matches the background; at that point we have a salty fluid element at the same temperature
as the background fresh water – it is therefore more dense (contains salt) and will sink further.
The instability develops in the form of thin “fingers” that slowly penetrate the underlying
layer, hence the name.

6. Kelvin Helmholtz instability

Background state being perturbed: Two layers of fluid moving with different velocities. Per-
turbations of the interface are unstable.
Form of the fluid equations: Incompressible; pressure gradient in the momentum equation.
One aspect of the calculation is that because there is a non-zero velocity U in the background,
the nonlinear term gives a contribution Udδu/dx = ikUδu. Combined with the ∂/∂t term,
you’ll get acceleration terms that look like i(ω − kU)δu instead of just iωδu.
Dispersion relation:

ω2 + 2kx
ρ1U1 + ρ2U2

ρ1 + ρ2
ω + k2

x

ρ1U
2
1 + ρ2U

2
2

ρ1 + ρ2
= 0.

The simplest case is when ρ1 = ρ2, then you can show that there is always instability, with
a growth rate ∝ kx(U2 − U1) so that short wavelengths grow fastest.
Basic physics: A good way to think about why this situation is unstable is in terms of
energy. If you calculate the kinetic energy for the two layers and then mix the two layers
conserving momentum, you should find that the mixed state has a smaller kinetic energy.
So the instability releases energy.
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Extensions: Surface tension will stabilize the shortest wavelengths, and if gravity is included
and ρ1 ̸= ρ2, long wavelengths are stabilized. For a background with a shear dU/dz rather
than a sharp jump in velocity, the growth rate turns out to be ∼ (dU/dz), and for a shear
in a stratified background, a famous criterion for shear instability is that Ri < 1/4 where
the Richardson number is Ri = N2/(dU/dz)2. This just says that large stratification (as
measured by N2) stops the instability because the kinetic energy released is overcome by the
gravitational energy used to mix the two fluids.

7. Stability of Couette flow

Background state being perturbed: Couette flow is the steady flow between two rotating
concentric cylinders, with uϕ = rΩ(r).
Form of the fluid equations: Inviscid flow (no viscosity) in cylindrical geometry. This is an
axisymmetric instability, so consider perturbations with ∂/∂ϕ = 0.
Dispersion relation: The Rayleigh criterion is a famous condition for instability of this flow:

d

dr
(r2Ω)2 < 0,

so that the flow is unstable if angular momentum decreases outwards.
Basic physics: If angular momentum in the background flow decreases outwards, a fluid
element that is displaced outwards conserving angular momentum will be rotating faster
than its surroundings. The centrifugal force on it will therefore be larger that the pressure
gradient in the background, which is balancing the background centrifugal force. So the fluid
element has a net outwards force and will keep going.
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Summary of topics covered
The fluid equations
Basic ideas. A fluid as a continuum. Mean free path much smaller than macroscopic
lengthscales.

Lagrangian and Eulerian points of view. The advective derivative

D

Dt
=

∂

∂t
+ v · ∇.

Definition of a streamline.

Continuity equation (mass conservation).

Dρ

Dt
= −ρ∇ · u ∂ρ

∂t
= −∇ · (ρu)

Momentum equation. Body forces and surface stresses.

ρ
Du

Dt
= f +∇ ·T.

The stress tensor Tij. Stress tensor for pressure Tij = −Pδij. With gravity and pressure

ρ
Du

Dt
= ρg −∇P.

Hydrostatic balance. Isothermal atmosphere with scale height H = kBT/µmpg. Ocean
P = P0 + ρgz.

Bernoulli’s principle. The Bernoulli constant

H =
P

ρ
+

1

2
u2 + χ

is constant along streamlines in a steady flow, where g = −∇χ. For irrotational flow, H
is the same constant on all streamlines. Examples: water flowing out of a hole in a vessel;
Venturi tube; lift force.

Vorticity and circulation
Vorticity. ω = ∇ × v. Measures local rotation of the fluid element; value of vorticity is
two times the local angular velocity. For a rigidly rotating fluid, ω = 2Ω. The circulation
Γ =

∮
u · dl. Kelvin’s theorem DΓ/Dt = 0 for a material loop.

The vorticity equation.
Dω

Dt
= (ω · ∇)u.
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The same equation is obeyed by the separation dl between two fluid elements, which implies
that vortex lines are “frozen” into the fluid. The term on the right hand side represents
“vortex tilting” and “vortex stretching”.

Line vortex flow u = (k/r)θ̂ (which is irrotational except at the origin). The Rankine vortex
as a simple model for a vortex.

Generation of vorticity by a force with a non-zero curl. Viscosity causes diffusion of
vorticity. The baroclinic vector (∇ρ×∇P )/ρ2 and why baroclinicity changes vorticity.

Viscosity and viscous flow; energy equation
Viscosity. The microscopic origin of viscosity. Kinematic viscosity ν and dynamical viscos-
ity µ = ρν. Viscosity of water 10−2 in cgs units. A Newtonian fluid has stress proportional
to velocity gradient.

Viscous timescale tvisc ∼ L2/ν where L is the lengthscale on which the velocity changes

Stress tensor with viscous stress Tij = −Pδij+σij. For an incompressible fluid, σij = 2µeij
where the deformation tensor is

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
.

For constant viscosity, the momentum equation is

ρ
Du

Dt
= −∇P + µ∇2u.

Reynolds number Re = UL/ν. Dimensionless numbers and dynamical similarity.

No slip boundary condition for viscous flow. Free slip boundary condition for irrotational
flow. Boundary layer width is ∼ L/Re1/2.

Similarity solutions when a problem has no intrinsic lengthscale. For example, viscous
diffusion of momentum/vorticity from an impulsively moved boundary has a solution in
terms of η = x/

√
νt.

Energy equation. Kinetic energy

∂

∂t

(
1

2
ρu2

)
+∇ ·

(
u ·

(
1

2
ρu2 + P

))
= P∇ · u− ΦV

Internal energy
∂

∂t
(ρE) +∇ · (uρE) = −P∇ · u+ ΦV
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Viscous dissipation ΦV = 2µ(eij)
2. In a steady flow, the total viscous dissipation in the flow

matches the work done to keep the flow moving.

Cylindrical flow, uθ(r) = rΩ(r). Steady state solution Ω = A + B/r2. Viscous stress
τ = µrdΩ/dr. Viscous dissipation ΦV = µr2(dΩ/dr)2.

Sound waves and steepening; other types of waves and instabilities
Linear sound waves. The general idea of linear perturbation theory. Eulerian and La-
grangian perturbations and the relation between them. The dispersion relation ω(k) and
how to find the phase velocity vp = ω/k and group velocity vg = ∂ω/∂k (including in >1D).
Waves in a compressible constant density fluid. The wave equation

∂2δu

∂t2
= c2s∇2δu.

Sound speed c2s = ∂P/∂ρ. Adiabatic sound speed c2s = γP/ρ. Dispersion relation ω2 = c2sk
2.

The basic physics driving the wave.

Steepening and nonlinear waves. The nonlinear advection term causes steepening. This
can be balanced by in some way to create a non-linear structure that propagates without
change of shape, a nonlinear wave. Shocks are an example, described by Burger’s equation
which includes steepening from the nonlinear term and diffusion

∂u

∂t
+ u

∂u

∂x
= −ν

∂2u

∂x2
.

Shock thickness δ2/ν ∼ δ/v.

Compressible flow. The different behavior of incompressible vs. compressible flows (e.g. rivers
vs. traffic),

dJ

dv
= ρ

(
1− v2

c2s

)
(you should be able to derive this). When a flow can be considered incompressible or not
(ie. very subsonic flow is incompressible).

Internal gravity waves. The dispersion relation ω2 = N2k2
z/k

2 and its implications,
i.e. frequency decreases with decreasing wavelength, phase and group velocities are perpen-
dicular.

WKB approximation. The WKB approximation as the approximate solution for short-
wavelength waves.

Instabilities. The idea of a complex ω leading to instability. Different examples of waves
and instabilities, their dispersion relations, the physics driving the wave/instability.

66



Turbulence and nonlinear dynamics
Turbulence Characteristics of a turbulent flow: irregular, highly diffusive, large Re number,
three-dimensional in nature, dissipative. Turbulence is a property of the flow not the fluid.

The idea of an energy cascade. The scaling arguments that lead to the Kolmogorov result
E(k) ∝ k−5/3. The stirring or outer scale L, inertial range with E(k) ∝ k−5/3 and inner scale
ld = L/Re3/4. Typical Eddy velocity v ∼ (ϵl)1/3 on scale l.

Turbulent transport. The Reynolds decomposition into a mean flow and fluctuating flow.
Transport of momentum or heat comes from correlated fluctuations, e.g. Reynolds stress is
Tij = −ρu′

iu
′
j, heat flux is Fj = ρcPT ′u′

j.

Transition to turbulence. The Lorenz equations for convection as a simple model. The
idea that chaotic behavior and unpredictability can arise in a deterministic system.

Numerical techniques

Finite differencing. First and second order derivatives.

f ′
j =

fj+1 − fj
∆x

=
fj − fj−1

∆x
+O (∆x) f ′

j =
fj+1 − fj−1

2∆x
+O

(
∆x2

)
f ′′
j =

fj+1 − 2fj + fj−1

2∆x
+O

(
∆x2

)
The difference between an explicit and implicit scheme.

Boundary conditions. How to use boundary conditions to obtain quantities just off the
grid (e.g. grid cell N + 1) which you need to update the boundary grid point.

Advection. The Lax method

fn+1
j =

1

2

(
fn
j+1 + fn

j−1

)
− v∆t

2∆x

(
fn
j+1 − fn

j−1

)
.

The Courant condition ∆t ≤ ∆x/v. The idea of numerical dissipation and numerical viscos-
ity (∼ ∆x2/∆t). Upwind differencing.

Diffusion. Explicit schemes and limitations on the timestep ∆t ≤ ∆x2/2D,

fn+1
j − fn

j

∆t
=

D

(∆x)2
(
fn
j+1 − 2fn

j + fn
j−1

)
.

Why this is slow for a large number of grid cells. Implicit methods: how to solve them and
perform a timestep using matrix inversion A · fn+1 = fn → fn+1 = A−1fn
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Operator splitting. How to combine, for example, advection and diffusion, e.g. to solve
the advection-diffusion equation

∂f

∂t
= −v

∂f

∂x
+D

∂2f

∂x2
.

Finite volume methods. Flux conserving formulation

fn+1
j − fn

j

∆t
=

J
n+1/2
j+1/2 − J

n+1/2
j−1/2

∆x

and why this conserves the quantity f . Different ways to choose the fluxes. Donor cell
advection, e.g.

Jj±1/2 = vj±1/2f
n
j (vj±1/2 > 0) Jj±1/2 = vj±1/2f

n
j+1 (vj±1/2 < 0).

Integration of ODEs. The example of integrating hydrostatic balance for some equation
of state P (ρ). How to solve a two-point boundary value problem with a shooting method,
e.g. finding the eigenvalues and eigenfunctions for internal gravity waves.
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Practice problems



Week 1 Problems
1. Hydrostatic balance: Isothermal atmosphere and ocean

(a) Write down the momentum equation for a plane-parallel atmosphere with constant
gravity g where the gas is at rest v = 0 and there is no time-dependence ∂/∂t = 0. Assume
an ideal, isothermal gas (same temperature T everywhere). Show that the density of the gas
as a function of height z from the surface at z = 0 is

ρ = ρ0e
−Mgz/kBT

where M is the mass of an air molecule. Give a physical interpretation of this result.
(b) In the ocean the density of water ρ is very close to a constant. What is the pressure

as a function of depth in the ocean in this case?
(c) Plug in some numbers: I’ve included a figure on the next page showing the pressure

against height for the Earth’s atmosphere (this from the book “An Introduction to Earth’s
Atmosphere” by Liou). Does your formula roughly match the figure? How far up in the
atmosphere do you have to go for pressure to drop by 1/e? How far down in the ocean do
you have to go for pressure to increase by the same factor?

2. Streamlines etc.
(Acheson question 1.8) Consider the unsteady flow u = u0, v = kt, w = 0, where u, v

and w are the Cartesian components of velocity, and u0 and k are positive constants. Show
that (a) the streamlines are straight lines, and sketch them at two different times, and (b)
that a given fluid element follows a parabolic path as time proceeds.

3. The coffee pot
Watch the video I made when I went to get coffee in the Trottier building. You can

find it at this link: http://www.physics.mcgill.ca/~cumming/teaching/432/coffee.
mov. Make some numerical estimates and see whether you can understand what is happening.

4. A rotating bucket of water
(This one is Acheson question 1.2.) An ideal fluid is rotating under gravity g with

constant angular velocity Ω so that relative to fixed Cartesian axes u = (−Ωy,Ωx, 0). We
wish to find the surfaces of constant pressure, and hence the surface of a uniformly rotating
bucket of water (which will be at atmospheric pressure).

(a) Consider the following argument: “By Bernoulli” p/ρ + (1/2)u2 + gz is constant, so
the constant pressure surfaces are

z = constant− Ω2

2g
(x2 + y2).

But this means that the surface of a rotating bucket of water is at its highest in the middle,
whereas we know from experience that it is lowest in the middle. What is wrong with the
argument?

(b) Write down the momentum equations in component form, integrate them directly to
find the pressure p, and hence obtain the correct shape of the free surface.
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Additional questions:

5. Polytropic atmospheres
(a) A useful equation of state in many problems is a polytropic equation of state which

has P ∝ ργ. What values of the constant γ should be chosen to model an incompressible
fluid or an isothermal fluid?

(b) Calculate the density and pressure as a function of height for a polytropic atmosphere
with arbtrary γ. Assuming that the pressure vanishes P = 0 at the top of the atmosphere,
derive an expression for the thickness ∆z of the atmosphere.

(c) Are your answers to part (b) what you expect if you choose γ to be the right values
for an isothermal gas or for an incompressible fluid?

6. Bernoulli for compressible flows
In the notes it is assumed that the density ρ is constant when deriving Bernoulli’s prin-

ciple. Generalize that to compressible flows as follows:
(a) For a flow which is adiabatic, P ∝ ργ, where the constant γ is the adiabatic index.

Derive the form of Bernoulli’s constant in that case.
(b) An adiabatic flow is one in which the entropy is constant for any given fluid element.

Use the first law of thermodynamics TdS = dU + PdV and the definition of enthalpy (per
unit mass h = u + P/ρ, where u is the internal energy per unit mass) to show that the
Bernoulli constant for an adiabatic flow can be written H = h + 1

2
u2 + χ, where h is the

enthalpy per unit mass.
(c) For a barotropic flow, P is a function of ρ only. Derive the form of Bernoulli’s principle

for this case.
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Week 2 Problems

The vorticity equation for a compressible fluid
(Acheson question 1.5) Use the momentum and continuity equations to show that

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· ∇

)
u− 1

ρ
∇

(
1

ρ

)
×∇p.

(In the momentum equation, assume that pressure gradient and gravity are the only forces.)
How is this result different from the vorticity equation for an incompressible fluid? In-

terpret this difference physically.

Vortex dynamics
(a) A pair of line vortices with the same circulation Γ are placed next to each other.

What happens?
(b) What happens if the two vortices have equal and opposite circulations?
(c) Consider a set of line vortices spaced out equally along a line. What happens?
(d) Now imagine one of the vortices in the line is displaced upwards slightly. What

happens?

Vorticity on a rotating sphere
On the surface of a rotating sphere, the momentum equation can be written

Du

Dt
+ 2Ω× u+Ω× (Ω× r) = −∇P

ρ
+ g.

Show that the fluid obeys a vorticity equation with vorticity ω = ∇× u replaced by the
absolute vorticity ωa = ω + 2Ω.

A vortex near the equator on a rotating sphere moves upward towards the pole. What
happens to it?

Tornado explosions
(This is question 2 in chapter 5 of Kundu’s book). A tornado can be idealized as a

Rankine vortex with a core of diameter 30m. The gauge pressure at a radius of 15m is
−2000N/m2 (atmospheric pressure would correspond to zero pressure on this scale).

(a) Show that the circulation around any circuit surrounding the core is 5485 m2/s. [Hint:
apply Bernoulli between infinity and the edge of the core]

(b) Such a tornado is moving at a linear speed of 25 m/s relative to the ground. Find
the time required for the gauge pressure to drop from −500 to −2000N/m2. Neglect com-
pressibility effects and assume an air temperature of 25◦C.

[Note that the tornado causes a sudden decrease of the local atmospheric pressure. The
damage to structures is often caused by the resulting excess pressure on the interiors of walls,
which can cause a house to explode].

Image vortices
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(Another one from Kundu’s book, question 4 in chapter 5, I’ve rewritten it to try to
make it easier to follow). Consider fluid in a 90 degree angle in the x-y plane. A vortex is
initially at location (x, y). Show that the vortex will move and follow a trajectory given by

1

x2
+

1

y2
= constant.

74



Week 3 Problems

Flow down an inclined plane
A layer of viscous fluid of thickness H flows down an incline that is at angle α to the

horizontal. Assume that the flow is steady, gravity acts vertically downwards, and that the
flow variables are functions of y only, where the x and y axes are defined in the diagram
below:

(a) Does it make sense to assume that there is no dependence on x?
(b) Use the continuity equation to argue that the flow velocity is only in the x-direction

u = u(y)x̂.
(c) Use the y-component of the momentum equation to show that the pressure decreases

linearly with y.
(d) Use the x-component of the momentum equation to calculate the velocity profile in

the layer u(y).
(e) What is the velocity at the top of the layer of fluid? Interpret your expression

physically.
(f) What is the viscous stress at the base of the layer? Interpret your expression physically.

Bonus: (h) Now consider two layers of fluid on top of each other with thicknesses h1 and h2

and viscosities µ1 and µ2. You can assume they have the same density ρ. Redo the problem,
and in particular show that the velocity of the lower fluid is dependent on the depth h2 but
not the viscosity of the upper fluid. Why is this?
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Flow near an impulsively moved plane
A semi-infinite layer of viscous fluid lies stationary on a flat plate. At time t = 0 the

plate starts moving to the right with speed U0.
(a) Show that the subsequent motion of the fluid is governed by the diffusion equation,

∂u

∂t
= ν

∂2u

∂y2
.

(b) In this problem, you will find a so-called similarity solution in which the velocity is
a function of the combination

η =
x√
νt

,

i.e. u = f(η) where f is a function that is to be determined. Can you explain why this
might be a reasonable guess for the solution?

(c) Show that f(η) satisfies
f ′′ +

1

2
f ′η = 0

(d) Solve the equation to arrive at an expression for u(x, t). Sketch the velocity profile
at different times to show how it evolves.

(e) What does the vorticity look like as a function of time?
(f) Now consider a layer with finite thickness H. What is ω(x, t) now? Hint: you can

use the method of images from electrostatics to immediately write down the solution using
your previous answer.

(g) Use your answer from (f) to calculate the velocity profile u(y), and plot the velocity
profile as a function of time, and the velocity at the surface of the fluid as a function of time.

Bonus: (h) What would the solution be if the plate started oscillating

U0 ∝ cos(ωt)

at time t = 0 instead of moving at constant velocity.
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Week 4 Problems

1. Damped sound waves

(a) Consider adiabatic perturbations to a uniform density gas initially at rest. Show that
the velocity perturbations δu obey the same wave equation as the density perturbations δρ.

(b) Why is it a good assumption to assume that the perturbations are adiabatic? Another
assumption we could make would be isothermal perturbations δT = 0. When would this be
appropriate? Show that this gives

δP

P
=

δρ

ρ
,

and derive an expression for the sound speed. Which is a more appropriate choice for sound
waves in air, adiabatic or isothermal perturbations?

(c) A possible source of damping of sound waves in air is viscosity. Show that when the
viscous term is included in the momentum equation, the dispersion relation for adiabatic
sound waves in a uniform medium is

ω2 − iνk2ω − c2sk
2 = 0,

where cs = γP/ρ is the adiabatic sound speed and ν is the kinematic viscosity. Use this to
calculate the distance over which a 400 Hz sound wave will damp in air.

2. Steepening and shocks
We saw in the notes that a velocity field evolving according to

∂u

∂t
+ u

∂u

∂x
= 0 (12)

steepens over time in regions where du/dx < 0, eventually forming a discontinuity, or shock.
In reality, viscosity will cause diffusion that acts against the steepening from the non-linear
term, giving the shock a width.

(a) To model the combination of steepening and viscosity, we can add a viscous term to
equation (1),

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,

and look for a solution that has u = U0 at x = −∞, and u = 0 for x = ∞. Show that the
solution u = f(x− V t) where

f(ξ) = U0 (1 + exp(ξ/∆))−1
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satisfies the equation and these boundary conditions, and derive expressions for the shock
speed V and width ∆ in terms of U0 and ν.

(b) A sonic boom is a shock created by a supersonic aircraft. Estimate the width of such a
shock assuming it is limited by the viscosity of air. Comment on whether it is appropriate
to treat air as a fluid on these lengthscales.
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Week 5 Problems

1. Scalings in turbulence

(a) In the movie on turbulence, they show two jets with Reynolds numbers different by a
factor of 50 (you can also see this in Figure 7 in the film notes). They look the same on
the large scale, but one has finer structures than the other on small scales. Explain this
observation in terms of the energy spectrum of the turbulence (sketch it for each case on the
same plot). How much finer is the small scale structure in the larger Re number jet?

(b) Also discussed in the film was the use of models in simulating exploding ships or erupt-
ing volcanoes for movies. Consider a real volcano eruption and a model volcano eruption.
Assuming the microscopic properties of the fluid is the same in each, sketch the energy
spectrum of the turbulence on the same plot. Estimate the outer and inner scales and the
number of order of magnitudes in scale covered by the inertial range.

(c) A fluid is stirred, generating a turbulent cascade. At time t = 0 the stirring is stopped,
and the turbulence begins to decay. Sketch the energy spectrum E(k) against k that you
expect at different times. In particular, how does the smallest lengthscale scale with time?

2. Turbulence in a cloud

Estimate the energy dissipation in a cumulus cloud, both per unit mass and for the entire
cloud. You’ll need to estimate or look up typical lengthscales and velocities for the fluid
motion. Also estimate the inner scale of the turbulence.

79



Week 6 Problems

1. Viscous flow down an inclined plane

For the problem of a viscous fluid flowing down an inclined plane that we looked at in week
3, calculate the viscous energy dissipation rate as a function of position. What is the total
energy dissipation rate? Interpret it physically.

2. Rotating cylinder

Consider a solid cylinder of radius R steadily rotating at angular speed Ω in an infinite
viscous fluid. Show that the work that must be done to keep the cylinder rotating is equal
to the energy dissipated in the fluid by viscous dissipation.

Some useful formulae in cylindrical coordinates are included on the next page (taken from
Acheson’s book).
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Solutions to practice problems



Week 1 Problem solutions

Hydrostatic balance: Isothermal atmosphere and ocean
(a) dP/dr = −ρg with the ideal gas equation of state P = ρkBT/M gives the solution.
(b) P = ρgz
(c) For the scale height (distance over which pressure varies by 1/e), you should get about

10 km for the atmosphere but only 10m for the ocean.

Streamlines etc.
(a) To find an equation for the streamlines, write the streamline as x(s) (where s is a

coordinate measuring distance along the streamline) where

dx

ds
= u.

Integrating gives an equation for a straight line

kt

u0

(x− x0) = y − y0.

(b) The coordinates of a fluid element as a function of time are given by x(t) =
∫
u(t)dt,

which gives a parabola.

The coffee pot
The exit speed of the coffee can be estimated from the time taken to fill the cup and

an estimate of the area of the stream. Bernoulli then gives the pressure drop, which can be
compared to the drop in the level of the indicator (∆P ≈ ρg∆z).

A rotating bucket of water
(a) Bernoulli’s constant is constant along streamlines. In general each streamline has a

different value of the constant (unless ∇× u = 0 which does not apply here).
(b) Constant pressure surface has a height z = (Ω2/2g)(x2 + y2).

Polytropic atmospheres
(a) Isothermal γ = 1; incompressible γ = ∞.
(b)

P = Pb

[
1−

(
γ − 1

γ

)
z

Hb

]γ/(γ−1)

,

∆z = Hbγ/(γ − 1), Hb = Pb/ρbg
(c) For γ = 1 you will need the result (1 + ϵx)1/ϵ → ex as ϵ → 0.

Bernoulli for compressible flows
(a)

H =
γ

γ − 1

P

ρ
+

1

2
u2 + χ
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(b) The specific enthalpy h satisfies dh = Tds + dP/ρ, or dh = dP/ρ for an isentropic
flow.

(c) If P (ρ) then ∇× (∇P/ρ) = 0 therefore there must be a function f such that ∇f =
∇P/ρ and then

H = f +
1

2
u2 + χ

.
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Week 2 Problem solutions

The vorticity equation for a compressible fluid
The vorticity equation is derived by taking the curl of the momentum equation, so start

there. The key steps are (1) write (u · ∇)u in terms of ∇u2/2 and ω × u using a vector
identity, (2) take the curl of the momentum equation, (3) use the continuity equation to
replace ∇ · u with Dρ/Dt, and (4) use the chain rule to combine Dω/Dt and Dρ/Dt.

For the physical interpretation, think about a constant density fluid first, and why vortex
stretching leads to spin up (see notes if you need a reminder). Now think about a fixed volume
cylinder of fluid and change the density of the fluid without stretching or tilting the vortex.
How would the rotation respond if angular momentum is conserved? You should be able to
argue that ω ∝ ρ, and that therefore the incompressible vorticity equation is modified to the
equation shown.

Vortex dynamics
Use the fact that any given vortex is advected by the flow induced by the other vor-

tex/vortices to try to predict the vortex trajectories.
(a) They orbit around each other.
(b) They move parallel to one another (e.g. vortices created by canoe paddle).
(c) This is a stationary state for an infinitely long line of vortices.
(d) The vortex line is unstable to small perturbations.
You look at these different situations in the computational exercise for this week.

Vorticity on a rotating sphere
As in question 1, take the curl of the momentum equation.
As a vortex moves towards the pole, it has a larger contribution from Ω to ωa. Therefore

ω must decrease and the vortex rotates more slowly.

Tornado explosions
Bernoulli’s principle can be used here because the u ∝ 1/r part of the flow is curl free,

and so Bernoulli’s constant is the same on all streamlines. At large distance from the vortex,
Bernoulli’s constant vanishes (using gauge pressure as the zero-point of pressure). Use that
to determine the velocity at the edge of the vortex.

Image vortices
First convince yourself that you can replace the 90 degree boundary with a set of image

vortices, just like an image problem in electrostatics. Evaluate the velocity at the vortex
location and show that dy/dx = −y3/x3 which gives the result when integrated.
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Week 3 Problem solutions

Flow down an inclined plane

(a) As long as the layer is thin, so the horizontal extent is much greater than the vertical
extent, then we can treat the layer as infinite in the horizontal direction, in which case there
should be no dependence on the particular x location we are working at.

(b) Continuity is
∂u

∂x
+

∂v

∂y
= 0

but since there is no x-dependence, then ∂v/∂y = 0 ⇒ v must be independent of y. But
there can be no perpendicular flow at the solid boundary ⇒ v = 0 everywhere.

(c) The y-component of the momentum equation is

0 = −ρg cosα− ∂P

∂y

where α is the angle of the slope. Therefore we must have a linear dependence of P on y.
Integrating gives

P = P0 + ρg(H − y) cosα

where P0 is the atmospheric pressure (at y = H).

(d) The x-component of momentum is

µ
∂2µ

∂y2
+ ρg sinα = 0

which we can solve with boundary conditions: u = 0 at y = 0 (no slip) and ∂u/∂y = 0 at
y = H (free surface so there is no viscous stress). The answer is

u(y) =
g

ν

(
H − y

2

)
y sinα.

A quadratic dependence on height.

(e) The velocity at the top y = H is

u =
1

2
g sinα

H2

ν
.

Writing it this way gives a physical interpretation: the velocity is (1/2)at2 where a is the
acceleration and the time is the viscous time across the layer. The velocity reached by the
top of the layer is the velocity reached after accelerating due to gravity for a viscous time
across the layer. This is very similar to the terminal velocity of a sky diver.
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(f) Viscous stress at the base is

µ
∂u

∂y

∣∣∣∣
y=0

= ρgH sinα

which is the stress required to balance the component of the weight of the fluid along the
surface.

(g) This part is optional because it’s quite a lot of slightly painful algebra, but I recommend
you try it to make sure you understand these kind of problems. The boundary condition at
the interface between the two layers is that the velocity must be continuous there and the
viscous stress must be continuous there. The solution is

u1 =
ρg sinα

µ1

(
h1 + h2 −

y

2

)
y

u2 = ρg sinαh1

(
h1

2
+ h2

)(
1

µ1

− 1

µ2

)
+

ρg sinα

µ2

(
h1 + h2 −

y

2

)
y

where 1 refers to the lower layer and 2 the upper layer. (You can check that these solutions
satisfy the boundary conditions and become equal in the limit µ1 → µ2). The velocity of the
lower layer does not depend on the viscosity of the upper layer because the stress the lower
layer has to apply to the upper layer depends only on the mass (weight) of the upper layer.
It doesn’t matter how quickly the stress is communicated through the upper layer.
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Flow near an impulsively-moved plane

(a) We have the same symmetry and same equation as the first problem, but without the
gravity term.

(b) The layer is semi-infinite, meaning that there is no intrinsic lengthscale set by the height
of the layer. The ony lengthscale in the problem is therefore the diffusion length

√
νt so it

makes sense that the solution would be in terms of this lengthscale. We could also apply
this to the early-time behaviour of a finite thickness layer (i.e. for times t ≪ H2/ν).

(c) Change variables using
∂u

∂t
= f ′∂η

∂t
= −f ′ y

2ν1/2t3/2

∂u

∂y
= f ′∂η

∂y
= f ′ 1

ν1/2t1/2

⇒ ∂2u

∂y2
=

f ′′

νt

⇒ f ′′

νt
= −1

ν
f ′ y

2ν1/2t3/2

which reduces to
f ′′ +

1

2
f ′η = 0

(d) Integrating once gives f ′ = Be−η2/4 for some constant B. Integrating again gives

f = A+B

∫ η

0

e−s2/4ds

The boundary conditions determine the constants A and B: since the velocity vanishes either
at early times or large distances from the plate, we need f(∞) = 0. The lower boundary is
f(0) = U0. Implementing these gives

u = U0

[
1− 1√

π

∫ η

0

e−s2/4ds

]
or

u = U0

[
1− erf

(η
2

)]
in terms of the error function erf. This is a fixed function when plotted in terms of η, but
when you plot in terms of y you get a similar profile at different times, it is just stretched
along the y axis at larger and larger times.

(e) Vorticity here is
ω = −∂u

∂y
=

U0

(πνt)1/2
e−y2/4νt
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which shows that vorticity diffuses away from the wall.

(f) For a finite thickness layer, we need to have du/dy = 0 at y = H. We can arrange this
by adding another boundary at y = 2H with opposite vorticity (like an image charge in
electrostatics):

ω =
U0

(πνt)1/2

[
e−y2/4νt − e−(y−2H)2/4νt

]
which satisfies ω = 0 at y = H for all time.

(g) Again, a bit of algebra for this one. You have to integrate the expression for ω = −du/dy
from y = 0 where u = U0 to some value y where u = u(y). The answer is

u(y) = U0

[
1− erf

(
y

2
√
νt

)
+ erf

(
y − 2H

2
√
νt

)
+ erf

(
H√
νt

)]
You can see that u = U0 for y = 0 (note erf is an odd function erf(−x) = −erf(x)), u = 0
for t = 0.

(h) To solve this one, you can look for an oscillatory solution u = eiωtf(y) ⇒ iωf = νf ′′.
The solution is

f(y) = Aeky +Be−ky

where k = (iω/ν)1/2 = (1+i)(ω/2ν)1/2. Then the boundary conditions give A = 0 (otherwise
the solution blows up at infinity) and B = U0 since u = U0e

iωt at y = 0. The solution is
therefore

u = U0e
iωte−iy/ℓe−y/ℓ

where ℓ = (2ν/ω)1/2. The velocity is given by the real part

u = U0 cos
(
ωt− y

ℓ

)
e−y/ℓ

You should compare this with your numerical solution from the numerical exercise this week!
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Week 4 Problem solutions

Damped sound waves

(a) We can do the opposite to what we did in the notes: take the time-derivative of equation
(2) in the notes and combine with equation (1). It’s a bit tricky because whereas before we
ended up with ∇ · (∇δρ) = ∇2δρ, we now end up with

∇(∇ · δu)

which is not obviously the same as ∇2δu. However, we can use the vector identity

∇(∇ ·A)−∇× (∇×A) = ∇2A

which gives the result we want because ∇× δu ∝ ∇× (∇δρ) = 0.

(b) Whether adiabatic or isothermal is a good assumption depends on how the timescale
for heat loss compares with the oscillation period. An isothermal gas has P ∝ ρ and so the
result in the question follows. The sound speed this time is c2s = P/ρ (the same expression
as adiabatic sound waves but with γ = 1).

To assess whether sound waves in air are adiabatic or not, choose a frequency, e.g. νs =
400 Hz. The wavelength of the wave is then λ = cs/νs = 0.825 m for cs = 330 m s−1. The
thermal diffusion timescale on that lengthscale is λ2/κ where κ ≈ 2 × 10−5 m2 s−1 is the
thermal diffusivity of air (I looked up the value on wikipedia). This gives a thermal diffusion
time of ≈ 9.5 hours, obviously much longer than the oscillation period! The sound waves
are adiabatic.

(c) With the viscous term included in the momentum equation, the perturbation equations
are

∂

∂t
δρ = −ρ0∇ · δu

∂

∂t
δu = −∇δP

ρ0
+ ν∇2δu.

Putting in a plane wave dependence eik·re−iωt for the perturbations will give you the disper-
sion relation in the question [except for a typo! The viscous term should have a plus
sign not minus sign..]

One way to approach the next part is to write the frequency as ω = ωR + iσ with real
and imaginary parts ωR and σ respectively. Because the viscous term is a small correction,
we have σ ≪ ωR. Inserting this form for ω into the dispersion relation and taking the real
and imaginary parts of the equation gives

ω2
R ≈ c2sk

2

and
σ ≈ −νk2

2
.
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This shows that the wave is ∝ e−νk2t/2, so decays by one e-folding on a timescale ∼ λ2/2π2ν or
over a distance ∼ csλ

2/2π2ν. For the 400 Hz wave we looked at above, we had λ = 0.825 m,
cs = 330 m s−1, and with viscosity ν = 1.5× 10−5 m2 s−1, the decay distance is ∼ 800 km.

Steepening and shocks

(a) First change variables: ξ = x− V t gives

∂

∂t
= −V

d

dξ

∂

∂x
=

d

dξ

⇒ −V u′ + uu′ = νu′′.

Then check the solution works:
f =

U0

1 + eξ/∆

f ′ =
−f

1 + eξ/∆
eξ/∆

∆
= − f

∆
+

f 2

U0∆

(the strategy here is to write things in terms of f as much as possible which avoids lots of
exponential factors in the equations and makes it a bit easier..)

f ′′ = −f ′

∆
+

2ff ′

U0∆

By comparing with the equation, we see that this solution does indeed work as long as

ν

∆
= V,

2ν

U0∆
= 1

or
∆ =

2ν

U0

, V =
U0

2

which gives the shock speed and width.

(b) With the viscosity of air ∼ 10−5 m2 s−1 and cs ≈ 300 m s−1, ∆ ∼ 10−5/300 ∼ 3×10−8 m.
This is actually comparable to the mean free path in air! Another way to see this is that for
a gas, the viscosity is ν ≈ csλmfp and so the shock thickness is of order the mean free path
by necessity. Of course, at these scales the fluid approximation breaks down so we should
be careful if we really want to look at what’s happening on the scale of the shock itself.
In many applications, we can treat the shock as a discontinuity and use conservation laws
to map density and velocity etc. from one side to the other (you can look up “shock jump
conditions” if you want to learn more about this).
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Week 5 Problem solutions

Scalings in turbulence

For (a) and (b) you need the idea that the energy spectrum extends to a smaller cutoff scale
for larger Reynolds number; ℓd = L/Re3/4.

For (c), the dissipation scale moves to larger scales over time as the small scale energy
dissipates. At time t, the scale that is dissipating is the one with ℓ/v ∼ t, and since v ∝ ℓ1/3,
the shortest lengthscale therefore is ℓ ∝ t3/2. Note that this is faster than viscous decay
alone which would give ℓ ∝ t1/2!

Turbulence in a cloud
Your answer will obviously depend a lot on the values you assume for wind speed and

size of the cloud. With speed 1 m s−1 and size 300 m, the energy dissipation rate per unit
volume is

ρu3

ℓ
∼ 0.003 W m−3.

With a volume (300 m)3, the total energy dissipation rate is ∼ 100 kW. (For scale, we can
look up the amount of energy per unit area from the solar irradiation, it’s about 1 kW m−2).

With viscosity ν ∼ 2 × 10−5 m2 s−1, the Reynolds number is Re ∼ 107, giving an inner
scale ∼ 300 m/Re3/4 ∼ 1 mm.
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Week 6 Problem solutions

Viscous flow down an inclined plane

(a) From the solutions to Week 3, the velocity is

u(y) =
g

ν

(
H − y

2

)
y sinα.

The viscous dissipation rate per unit volume is

ΦV = µ

(
∂u

∂y

)2

=
(ρg sinα)2

µ
(H − y)2 .

Integrate over height to get the viscous dissipation per unit area:

(ρg sinα)2

µ

∫ H

0

(H − y)2 dy = (ρg sinα)2
H3

3µ
.

This energy is supplied by the work done by gravity on the fluid∫ H

0

dy u(y) ρg sinα =
(ρg sinα)2

µ

∫ H

0

dy y
(
H − y

2

)
=

(ρg sinα)2

µ

H3

3
.

Rotating cylinder

The flow in the fluid is that of a vortex with circulation Γ = 2πR×RΩ, ie.

uϕ(r) =
Γ

2πr
=

R2Ω

r
r ≥ R

You can argue this either (1) based on the symmetry of the problem and then evaluating
the circulation at the surface of the cylinder and at some radius r and setting them equal or
(2) by writing down the momentum equation for a steady flow

∂uϕ

∂t
= 0 = ν

[
∂2uϕ

∂r2
+

1

r

∂uϕ

∂r
− uϕ

r2

]
which has a general solution uϕ = Ar + B/r, the constants A and B can be obtained from
the boundary conditions.

The viscous dissipation rate per unit volume is

µ r2
(

d

dr

(uϕ

r

))2

.

Integrating to get the dissipation per unit length along the cylinder gives 4πµR4Ω2.
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To compare this to the work done on the cylinder, we need the viscous stress at the
surface of the cylinder, which is

τ = µ r
d

dr

(uϕ

r

)
.

To get this, you can use σij = 2µeij and take the rθ component of eij from the cylindrical
geometry formulae included with the question.

Evaluate the viscous stress at r = R to get the force per unit area acting on the surface
of the cylinder (trying to slow it down). You can then calculate the rate of work done by this
force on the cylinder (again per unit length along the cylinder) which should give you the
same answer as the viscous dissipation. To keep the cylinder spinning at a constant angular
velocity requires work to replace the energy lost to viscous dissipation.
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