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Stochastic Seasonal to Interannual Prediction System



StocSIPS* with SLIMM**

*StocSIPS= Stochastic Seasonal and Interannual Prediction System
**SLIMM= ScaLIng Macroweather Model

10% of the information needed for global seasonal temperature 

forecasts   comes from fluctuations more than 300 years old…

But we can (almost) do it!

Forecasts from months to decades: 

The unsuspected Elephantine (“long range”) 
memory



Vortices in strongly turbulent fluid
(M. Wiczek, numerical simulation, 2010)

Statistical Mechanics
Low level (fundamental)

Fluctuations ≈ (turbulent flux) x (scale)H

Higher level 

Laws of turbulence

High Reynolds 

number limit

Richardson, Kolmogorov, Corrsin, Obukhov, Bolgiano

Long time limit 
>10days

Space-time factorization

Macroweather laws

Continuum mechanics

Thermodynamics

Higher level 

Continuum limit

deterministic

stochastic

stochastic



Temperatures 
10-13 to 5x10-5 Hz

(12 hrs to 240 kyr)

20th C reanalysis

GRIP 18O

Lovejoy and Schertzer 2011
Two data sources only GRIP, 20CR

Macroweather

Atmospheric dynamics:
Trichotomy - not dichotomy

Orbital forcing

75oN

mw

10-410-5 10-3 10-2 10-1 1 10 2

≈10 days
≈10 -100 yrs

Macroweather regime
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Trichotomy:
Weather – macroweather - climate

1 Century,
Vostok, 
20-92kyr BP

Climate
(30-100 yrs to 
50,000 yrs)

20 days,
75oN,100oW, 
1967 - 2008Macroweather
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Lovejoy, 2013, EOS

1 hour,
Landers, 
10 Feb.-12 
March, 2005

0.067 s,
Rutherford 
Physics, 
5:05 pm
Nov. 4, 2004

Weather
(up 10 days)

H ≈ 0.4: Fluctuations Growing

H ≈ 0.4: Fluctuations Growing

H ≈ -0.4: Fluctuations Decreasing

= constantFluctuation

DI = j Dt
H



100 yrs

Temperature Change (oC)

5oC

1 oC

1yr

EPICA
(Antarctic)

1061000 yrs

10 yrs

10 days
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Ice ages
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Power laws

H=0.4

H=-0.4
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H = -0.7



100 yrs

Temperature Change (oC)

5oC

1 oC

1yr

EPICA
(Antarctic)

1061000 yrs

10 yrs

10 days
10,000 yrs

100,000 yrs

2oC

0.5oC

2ox2o

(75oN)

Montreal

2 hours

Weather Macroweather climate macroclimate

±2K

±3K

Ice ages

Time scale



Beyond their deterministic limit:
GCMs                stochastic

Weather systems (<10 days) generated by GCMs
= random weather noise (statistics)…
but not fully realistic

Scaling laws  generate 
realistic (empirically 
based) statistics (noise)

Model 
climate

Our climate

Averages: slow convergence to 

Potential advantages of direct stochastic macroweather (>1 month) forecasting: 
a) More realistic weather “noise” (statistics: based on empirical data, not 

constrained by model).
b) Ability to use empirical data to force convergence to the real climate.

“Brute force”



Statistical characteristics of 
Macroweather

Temporal domain

- Low intermittency Gaussian theory (except for extremes).

- Scale symmetry ≈ 1 month- >100 years (anthropocene ->30 years)
Fluctuations tend to cancel: H<0.

- Theoretical stochastic limits to forecast skill: theoretical “benchmark”

Spatial domain

- Scale symmetry up to ≈ 4000 km.
- Strong (multifractal) intermittency: climatic zones

- Scale symmetry: huge memory

Space-time

- Statistical space-time Factorization.
Strong spatial correlations do not give useful information for forecasting:
single grid or single station forecasts close to the theoretical maximum.



Statistical space-time Factorization
(Ex: factorization of second order statistics)

Spectral densities:    
2

, ,xtP k T k 

Macroweather: factorization

     ,xt t xP k P P k= 

Structure Functions:
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Space-time Scale function

Typical form

Implies size – lifetime relation

No relation between size and lifetime



Factorization of temperature anomaly 
fluctuations (EW)
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Deterministic predictability limits for 
Weather forecasts

Sensitive dependence on initial conditions leads to limits (“butterfly effect”).

Fundamental limit = error doubling time.

The doubling time increases with the lifetime (hence size).

For planetary structures ≈ 10 days.

Weather forecast skill can be judged by how close the doubling time is to the 10
day limit.

This is the basic benchmark for deterministic weather forecasts



Stochastic predictability limits for 
Macroweather forecasts

Temporal scaling and statistical space-time factorization imply 
stochastic predictability limits.

Skill = 1 - (forecast error variance)/(temperature variance)

Theoretical skill = F (lead time, H(x))

Can GCM’s improve on the theoretical stochastic limits?

This is the basic benchmark for macroweather forecasts

the exponent H(x) and hence skill
varies with position x.

-For 5ox5o resolution monthly and seasonal StocSIPS forecast skill =25%, 18%: theoretical 
limits = 29%, 21%, respectively.  

-StocSIPS forecasts are on average 86% of the theoretical limit. 

Comments: 
-The skill has only a weak dependence on spatial resolution… hence we can avoid downscaling.

Not obvious since the GCM’s appear to satisfy space-time factorization and temporal scaling



August 2015



Hasselman (1976) type stochastic 
Macroweather processes

b=2

log10

log10E()

(10 days)-1

b=0

macroweather weather

Low frequency (b=0)    T t t 
White noise (no predictability)

(Orenstein Uhlenbeck processes, Linear Inverse Modelling,
Auto Regressive processes)

The Hasselman (1976) type stochastic approach:

White noise

E()≈b



b=2

log10

log10E()

(10 days)-1

b=0

macroweather weather

Hasselman type process

Scaling stochastic Macroweather 
processes

E()≈b

   
 

 
1/2

t
H

T t t t t dt
 



    
red noise (potentially huge 
predictability)

White noise

Scaling, stochastic approach
(Ignoring intermittency)

-1/2<H<0 (fluctuation exponent)

b≈1+2H

b≈1.8
Empirical, turbulence

Empirical, macroweather
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Fluctuations contributing to 90% of the 

theoretical maximum skill
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Preprocessing of the data:

Raw Data

Ref: (NCEP/NCAR) Example for the grid point (-72.5, 47.5), Montreal



Preprocessing of the data:

Raw Data and Annual Cycle

Ref: (NCEP/NCAR) Example for the grid point (-72.5, 47.5), Montreal



Preprocessing of the data:

Raw Data and Annual Cycle Trend

Annual Cycle Anomalies

Ref: (NCEP/NCAR) Example for the grid point (-72.5, 47.5), Montreal



Fluctuation Analysis

Global (36x72 
pixels ensemble)

Global spectra pre and after processing

annual peak

Global (36x72 
pixels ensemble)

Spectrum and Fluctuation Analysis

𝛽 = 1 + 2H

𝑆 1 ∆ 𝑡 = ∆ T (∆t ) ∝ ∆ 𝑡 𝐻

𝐸 𝜔 ∝ 𝜔 −𝛽

𝐻 = 0.27 ± 0.01

𝛽 = 0.46 ± 0.02

Spectra pre and after processing

annual peak

Montreal



Scaling LInear Macroweather model (SLIMM)
Prediction of fGn

Gaussian noise

   
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 
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Kernel for H = -0,1.

Weight of the 
distant past

Weight
of present

•Power law correlation. Vast memory that can be exploited.

•Predictor for -0.5 < H < 0 based on past data. 

predictor data

kernel
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“The ‘closest witnesses’ to the 
unobserved past have special weight”



Predicting global series



Predicting global series

Stochastic Seasonal and Interannual Prediction 
System (StocSIPS)
Monthly horizon global hindcasts compared to data (since 2006) 
and a forecast for March 2016.
Reference: NASA, GISS, http://data.giss.nasa.gov/gistemp/



Predicting global series

Stochastic Seasonal and Interannual Prediction 
System (StocSIPS)
Monthly horizon global hindcasts compared to data (since 2006) 
and a forecast for March 2016.
Reference: NASA, GISS, http://data.giss.nasa.gov/gistemp/

Median hindcast one month 
horizon

Upper 97.5% confidence 
interval limit of hindcasts

Record month of February data

Median Forecast for March (50%)

Lower 2.5% confidence 
interval limit of hindcasts

Upper 97.5% confidence interval 
limit of March forecast

Lower 2.5% confidence interval 
limit of March forecast
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Predicting global series



Predicting global series



Skill of StocSIPS for global temperature

Mean Square Skill Score (MSSS)

𝑀𝑆𝑆𝑆 = 1 −
𝑀𝑆𝐸

𝑉𝑎𝑟𝑎𝑛𝑜𝑚

𝑟 =
𝑀𝑆𝑆𝑆ℎ𝑖𝑛𝑑
𝑀𝑆𝑆𝑆𝑡ℎ𝑒𝑜𝑟

= 95%, 97%, 93%

For lead times = 1, 2, 3 months

𝑀𝑆𝐸 - Mean Square Errors

𝑉𝑎𝑟𝑎𝑛𝑜𝑚- Variance of anomalies



𝜎𝑟 = 0.13

𝑟 = 0.92

𝜎𝑟 = 0.15

𝑟 = 0.95

Theoretical and numerical Skills. Monthly resolution. 

𝑟 =
𝑀𝑆𝑆𝑆ℎ𝑖𝑛𝑑𝑐𝑎𝑠𝑡𝑠
𝑀𝑆𝑆𝑆𝑡ℎ𝑒𝑜𝑟𝑦

Theory MSSS, lead time = 1 month

Period Sep, 1980 - Dec, 2015. Reference: ERA-Interim Reanalysis

Numerical MSSS, lead time = 1 month

1
−
𝑟,

 
𝑟
=
0
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Global average Skill

Mean Square Skill Score (MSSS)

𝑟 =
𝑀𝑆𝑆𝑆ℎ𝑖𝑛𝑑
𝑀𝑆𝑆𝑆𝑡ℎ𝑒𝑜𝑟

≈ 95%

For lead time = 1 unit

Mean Square
Errors

𝑀𝑆𝐸-

𝑉𝑎𝑟𝑎𝑛𝑜𝑚- Variance of 
anomalies

𝑀𝑆𝑆𝑆 𝑔𝑙𝑜𝑏𝑎𝑙 = 1 −
𝑀𝑆𝐸

𝑉𝑎𝑟𝑎𝑛𝑜𝑚



StocSIPS compared with GCM’s

WMO has officially designated 12 GPCLRFs:

•Beijing: China Meteorological Administration (CMA) / Bejing
Climate Center (BCC)

•Center for Weather Forecasts and Climate Studies (CPTEC) / 
National Institute for Space Research (INPE), Brazil

•European Centre for Medium-Range Weather Forecasts
(ERA-I)

•Exeter: Met Office, United Kingdom

•Melbourne: Bureau of Meteorology (BOM), Australia

•Montreal: Meteorological Service of Canada (MSC)

•Moscow: Hydrometeorological Centre of Russia

•Pretoria: South African Weather Services (SAWS)

•Seoul: Korea Meteorological Administration (KMA)

•Tokyo: Japan Meteorological Agency (JMA) / Tokyo Climate
Centre (TCC)

•Toulouse: Météo-France

•Washington: Climate Prediction Center (CPC) / National
Oceanic and Atmospheric Administration (NOAA), United
States of America

http://bcc.cma.gov.cn/channel.php?channelId=22
http://clima1.cptec.inpe.br/gpc/
http://www.ecmwf.int/
http://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks
http://www.bom.gov.au/climate/ahead/
http://weather.gc.ca/saisons/index_e.html
http://neacc.meteoinfo.ru/
http://www.weathersa.co.za/component/content/article/2-uncategorised/179-long-range-forecast?Itemid=168
http://www.wmolc.org/~GPC_Seoul/
http://ds.data.jma.go.jp/tcc/tcc/products/model/index.html
http://www.meteo.fr/
http://www.cpc.ncep.noaa.gov/?cpc=


Skills StocSIPS and CanSIPS: Comparison

𝐷𝑖𝑓𝑓 = 𝑀𝑆𝑆𝑆𝑆𝑡𝑜𝑐𝑆𝐼𝑃𝑆 −𝑀𝑆𝑆𝑆𝐶𝑎𝑛𝑆𝐼𝑃𝑆

𝜎𝑟 = 0.20
𝑟 = −0.05

𝜎𝑟 = 0.20
𝐷𝑖𝑓𝑓 = −0.08

Monthly resolution, lead time = 1 month

MSSS StocSIPS, lead time = 1 month

MSSS CanSIPS, lead time = 1 month

𝑨 = 𝟐𝟔% - Percentage of the globe 
where 𝑀𝑆𝑆𝑆𝑆𝑡𝑜𝑐𝑆𝐼𝑃𝑆 > 𝑀𝑆𝑆𝑆𝐶𝑎𝑛𝑆𝐼𝑃𝑆



StocSIPS relative advantage increases with lead time

lead time = 1 month, A=26%

lead time = 6 months, A=65% 

lead time = 2 months, A=55%

lead time = 9 months, A=69% 

𝐷𝑖𝑓𝑓 = 𝑀𝑆𝑆𝑆𝑆𝑡𝑜𝑐𝑆𝐼𝑃𝑆 −𝑀𝑆𝑆𝑆𝐶𝑎𝑛𝑆𝐼𝑃𝑆
𝑨- Percentage of the globe where 
𝑀𝑆𝑆𝑆𝑆𝑡𝑜𝑐𝑆𝐼𝑃𝑆 > 𝑀𝑆𝑆𝑆𝐶𝑎𝑛𝑆𝐼𝑃𝑆



𝜎𝑟 = 0.21
𝑟 = 0.10

𝜎𝑟 = 0.22
𝐷𝑖𝑓𝑓 = 0.13

Annual resolution, lead time = 2 years for StocSIPS. Monthly resolution, lead time = 6 months for CanSIPS

MSSS CanSIPS, monthly, lead time = 6 months

MSSS StocSIPS, annual, lead time = 2 years

Skills StocSIPS and CanSIPS: Comparison

𝑀𝑆𝑆𝑆𝑆𝑡𝑜𝑐𝑆𝐼𝑃𝑆(2𝑦𝑟𝑠)−𝑀𝑆𝑆𝑆𝐶𝑎𝑛𝑆𝐼𝑃𝑆(6𝑚𝑜𝑛𝑡ℎ𝑠)

𝐴
=
6
9
%



Relative Skill of StocSIPS increases with lead time

Mean Square
Error 

𝑀𝑆𝐸 -

𝑉𝑎𝑟𝑎𝑛𝑜𝑚 - Variance of 
anomalies

𝑀𝑆𝑆𝑆 𝑔𝑙𝑜𝑏𝑎𝑙 = 1 −
𝑀𝑆𝐸

𝑉𝑎𝑟𝑎𝑛𝑜𝑚

𝑀𝑆𝑆𝑆𝑆𝑡𝑜𝑐𝑆𝐼𝑃𝑆 > 𝑀𝑆𝑆𝑆𝐶𝑎𝑛𝑆𝐼𝑃𝑆 for more than one month



GPC- Beijing, JFM

Global Producing Centers: Actuals 

GPC-Exeter

GPC-Melbourne GPC-Toulouse

GPC-WashingtonGPC-Montreal

𝑇 = 𝑇𝑎𝑐𝑡𝑢𝑎𝑙𝑠 = 𝑇𝑡𝑟𝑒𝑛𝑑 + 𝑇𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑦𝑐𝑙𝑒 + 𝑇𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠

Anthropogenic Natural variabilityActuals

For actuals (negative skill)𝑀𝑆𝐸 > 𝑉𝑎𝑟𝑎𝑛𝑜𝑚

𝑴𝑺𝑬 = 𝟓𝟎𝟎 % 𝐨𝐟 𝑽𝒂𝒓𝒂𝒏𝒐𝒎



Skills StocSIPS and CanSIPS: Actuals

MSSS CanSIPS, monthly, lead time = 1 month

MSSS StocSIPS, monthly, lead time = 1 month

MSSS StocSIPS, seasonal, lead time = 1 season

MSSS StocSIPS, annual, lead time = 1 year



Hindcasts Skill: Actuals

𝜎𝑟 = 4,3
𝐷𝑖𝑓𝑓 = 3,7

𝑇 = 𝑇𝑎𝑐𝑡𝑢𝑎𝑙𝑠 = 𝑇𝑡𝑟𝑒𝑛𝑑 + 𝑇𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑦𝑐𝑙𝑒 + 𝑇𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠

Anthropogenic Natural variabilityActuals

𝑀𝑆𝐸 > 𝑉𝑎𝑟𝑎𝑛𝑜𝑚For actuals

(negative skill)

𝐷𝑖𝑓𝑓 = 𝑀𝑆𝑆𝑆𝑆𝑡𝑜𝑐𝑆𝐼𝑃𝑆 −𝑀𝑆𝑆𝑆𝐶𝑎𝑛𝑆𝐼𝑃𝑆

𝐴
=
9
3
%

𝑀𝑆𝑆𝑆 𝑔𝑙𝑜𝑏𝑎𝑙 = 1 −
𝑀𝑆𝐸

𝑉𝑎𝑟𝑎𝑛𝑜𝑚



Probabilistic Forecast
Forecast 
probability

Climatological 
probability

If all probabilities < 40% 
then grey



Probabilistic Forecast: verification and validation

Global average PC = 48,5% (Same as CanSIPS for Canada)

A = 95% of the globe with PC > 33%



Visit our site!!!

http://www.physics.mcgill.ca/StocSIPS



-Anomalies: StocSIPS has higher skill than CanSIPS for two months and longer.
-Actuals:  Higher skill at all lead times due to direct forecasting of climatology.  
-StocSIPS relative advantage: increases  with lead time and is higher over land than oceans. 

-Long term memory (scaling, one parameter, H)
-Space-time factorization (space-time prediction decoupling)
-Stochastic predictability limits

Theoretical basis of StocSIPS

Conclusions

-No data assimilation
-No ad hoc post processing
-No need for downscaling
-Speed: (factor 105- 106)

Future developments

-Prediction of other fields (precipitation, wind, solar insolation, degree-days, forest fire 
indices, drought indices).
-Find co-predictors such as El Niño indices.
-Prediction of Extremes

StocSIPS’ advantages include

StocSIPS performance

http://www.physics.mcgill.ca/StocSIPS


