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Forecasts from months to decades:
The unsuspected Elephantine (“long range”)

memory

StocSIPS* with SLIMM**

10% of the information needed for global seasonal temperature
forecasts comes from fluctuations more than 300 years old...

But we can (almost) do it!

*StocSIPS= Stochastic Seasonal and Interannual Prediction System
**SLIMM= ScaLlng Macroweather Model



Statistical Mechanics | stochastic

Low level (fundamental)

Vortices in strongly turbulent fluid

(M. Wiczek, numerical simulation, 2010)

* Continuum limit

Continuum mechanics
Thermodynamics

Higher level

High Reynolds
number limit

deterministic l

Laws of turbulence
Higher level

Richardson, Kolmogorov, Corrsin, Obukhov, Bolgiano

Fluctuations = (turbulent flux) x (scale)"

Long time limit
days

stochastic *

. ) .>10
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Macroweather laws




Atmospheric dynamics:
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Trichotomy:
Weather — macroweather - climate
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Montreal

Power laws
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Beyond their deterministic limit:

GCMS s stochastic

“Brute force”

Weather systems (<10 days) generated by ,’
= random weather noise (statistics)... y
but not fully realistic

Averages: slow convergence to

Model :
) Scaling laws generate
climate N realistic (empirically
based) statistics (noise)

Potential advantages of direct stochastic macroweather (>1 month) forecasting:

a) More realistic weather “noise” (statistics: based on empirical data, not
constrained by model).

b) Ability to use empirical data to force convergence to the real climate.




Statistical characteristics of
Macroweather

Temporal domain

- Low intermittency Gaussian theory (except for extremes).

- Scale symmetry = 1 month- >100 years (anthropocene ->30 years)
Fluctuations tend to cancel: H<O.

- Theoretical stochastic limits to forecast skill: theoretical “benchmark”
- Scale symmetry: huge memory

Spatial domain

- Scale symmetry up to = 4000 km.
- Strong (multifractal) intermittency: climatic zones

Space-time

- Statistical space-time Factorization.
Strong spatial correlations do not give useful information for forecasting:
single grid or single station forecasts close to the theoretical maximum.




Statistical space-time Factorization

(Ex: factorization of second order statistics)

Spectral densities: P, (k, ) oc <‘T (k, o)

2>
Macroweather: factorization

Pe (K, 0) =R (@) B, (k)

X

Structure Functions: S, (AX,At)= <AT (AX, At)2>

Macroweather: factorization

S, (AX,At) =S, (At)S, (Ax)

No relation between size and lifetime

Weather, no factorization

S

th(k,co)z K,

K,o =~ (0)2 + kz)l/2

Implies size — lifetime relation

Weather, no factorization

S, (Ax,At)~ Ax,At 47

Space-time Scale function

1/2

Typical form AX, At = (AX2 + Atz)




Log oS Factorization of temperature anomaly

fluctuations (EW)
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Factorization of precipitation anomaly fluctuations

Zonal analysis
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Factorization: GCM'’s
GISS E2R temperatures (historical run since 1850)

Log,,S(AO)

Factorization implies parallel, identical curves
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Deterministic predictability limits for
Weather forecasts

Sensitive dependence on initial conditions leads to limits (“butterfly effect”).

Fundamental limit = error doubling time.
The doubling time increases with the lifetime (hence size).
For planetary structures = 10 days.

Weather forecast skill can be judged by how close the doubling time is to the 10
day limit.

This is the basic benchmark for deterministic weather forecasts




Stochastic predictability limits for
Macroweather forecasts

Temporal scaling and statistical space-time factorization imply
stochastic predictability limits.

Skill = 1 - (forecast error variance)/(temperature variance)

Theoretical skill = F (lead time, H(x)) < the exponent H(x) and hence skill
varies with position x.

This is the basic benchmark for macroweather forecasts

Comments:
-The skill has only a weak dependence on spatial resolution... hence we can avoid downscaling.

-For 5°x5° resolution monthly and seasonal StocSIPS forecast skill =25%, 18%: theoretical
limits = 29%, 21%, respectively.
-StocSIPS forecasts are on average 86% of the theoretical limit.

Can GCM’s improve on the theoretical stochastic limits?

Not obvious since the GCM’s appear to satisfy space-time factorization and temporal scaling
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The ScalLlng Macroweather Model (SLIMM): using scaling
to forecast global-scale macroweather from months to
decades
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Abstract. On scales of = 10 days (the lifetime of planetary-scale stciures), there is a drastic mansition from
high-frequency weather o low-frequency macroweather. This scale is close to the predictability limits of deter-

ministic atnosphetic models, thus, in GCM (gem
a high-frequency noize. However, neither the GCI
show how simple stochastic models can be devel
o be realistic so that even a two-parameter mode
forecasts.
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Key Points:

- The climate system has a huge
memory that can be exploited by
scaling models

« Fractional Gaussian noise is
adequate model for macroweather
(10 days-30 years)

+ Twentieth century hindcasts
(including pause) are accurate with
two parameters

Correspondence to:
S. Lovejoy,
lovejoy@physics.mcgill.ca

Using scaling for macroweather forecasting August 2015
including the pause
S. Lovejoy’

Physics Department, McGill University, Montreal, Quebec, Canada

Abstract The Scallng Macroweather model (SLIMM) is a new class of stochastic atmospheric model. It
exploits the large system memory to overcome the biases of conventional numerical climate models, it
makes hindcasts and forecasts over macroweather forecast horizons (~10 days to decades). Using the
simplest (scalar), SLIMM model with only two parameters, we present various twentieth century hindcasts
including several of the slowdown (“pause”) in the warming since 1998. The 1999-2013 hindcast is accurate
to within £0.11 K, with all the 2002-2013 anomalies hindcast to within £0.02 K. In comparison, the Climate
Model Intercomparison Project Phase 3 hindcasts were on average about 0.2 K too warm.




Hasselman (1976) type stochastic
Macroweather processes

macroweather I weather
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Scaling stochastic Macroweather
processes

macroweather weather
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Skill
Skill as a function of forecast lead time 1.0

Skill = 1- (Error variance)/(temperature variance) | Sk
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The unsuspected Elephantine Log A
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Temperature T2m(K)
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Preprocessing of the data:

Ref: (NCEP/NCAR) Example for the grid point (-72.5, 47.5), Montreal
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Preprocessing of the data:
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Ref: (NCEP/NCAR) Example for the grid point (-72.5, 47.5), Montreal

Raw Data and Annual Cycle
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Temperature T2m(K)

Temperature T2m(K)

Preprocessing of the data:

Ref: (NCEP/NCAR) Example for the grid point (-72.5, 47.5), Montreal

Raw Data and Annual Cycle Trend
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Spectrum and Fluctuation Analysis

Spectra pre and after processing
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Scaling LInear Macroweather model (SLIMM)
Prediction of fGn

Gaussian noise

*Power law correlation. Vast memory that can be exploited.

*Predictor for -0.5 < H < 0 based on past data.

kernel
|
T(n+k[n)=>G, (j)T(n-]j)
j=0 /
predi|ctor data

Weight of the
distant past —

“The ‘closest witnesses’ to the
unobserved past have special weight”

Kernel for H = -0, 1.

— H= 01k500

Weight
of present |

_

10408 —06 04 —02 0.0

i/k




Temperature Anomaly (°C)

Predicting global series

— Raw Data: GHCN-v3 1880-02/2016 + S3T: ERSST v4 1880-02/2016
— Detrended Anomalies (fGn)

— 30 years running mean
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Tcmpcramrc Anamaly (°C)

Temperature Anomaly (°C)

Predicting global series
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System (StocSIPS)

Monthly horizon global hindcasts compared to data (since 2006)
and a forecast for March 2016.
Reference: NASA, GISS, http://data.giss.nasa.gov/gistemp/
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Temperatire Anomaly (°C)
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Predicting global series
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Stochastic Seasonal and Interannual Prediction

System (StocSIPS)

Monthly horizon global hindcasts compared to data (since 2006)
and a forecast for March 2016.
Reference: NASA, GISS, http://data.giss.nasa.gov/gistemp/
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Predicting global series

Annual mean anomaly (°C)
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Predicting global series

Annual mean anomaly (°C)
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Skill of StocSIPS for global temperature

.......... N — Mean Square Skill Score (MSSS)

0.8; = MSSS theory . MSSS = 1 MSE
= MSSS hindcasts T Vargmem

0.6 MSE - Mean Square Errors
Z
= 0.4 I Varg,em- Variance of anomalies

0.2

0.0 ' ' ' ' ' '

0 2 4 6 8 10 12 Forlead times = 1, 2, 3 months

horizon (months) MSSShing
r =
MSSStheor

= 95%,97%,93%



Theoretical and numerical Skills. Monthly resolution.

Period Sep, 1980 - Dec, 2015. Reference: ERA-Interim Reanalysis

Theory MSSS, lead time = 1 month
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Global average SKill

Mean Square Skill Score (MSSS)

(MSE)
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StocSIPS compared with GCM’s

¥ http: / /public.wmo.int

P2 Y : s PLEASE VISIT OUR NEW WEBSITE:
§ World Meteorological Organization =

Weather « Clhimate « Water

Hofe

Programmes > World Climate Programme > Climate applications and services > Global Producing Centres of Long-Range Forecasts

WMO has officially designated 12 GPCLRFs:

Global Producing Centres of Long-Range Forecasts

In 2006, the World Meteorological Organization (WMO) began a process to designate centres making global seasonal forecasts as WMO Global Producing .Bel Ing: Ch Ina Meteo rOIOg Ical Ad min |Strat|0n (CMA) / Be.] | ng
Centres of Long-Range Forecasts (GPCLRFs). This forms an integral part of the WMO Global Data-Processing and Forecasting System (GDPFS). C||mate Ce nter (BCC)

Through this designation process, GPCLRFs adhere to certain well-defined standards, aiding the consistency and usability of:
« fixed forecast production cycles Center for Weather Forecasts and Cllmate Studies (CPTEC) /
» standard sets of forecast products National Institute for Space Research (INPE), Brazil

= WMO-defined verification standards (for retrospective forecasts).
A comprehensive set of standard verification measures has also been defined, and is known as the WMO Standard Verification System for Long-Range Fu ropean Centre for M ed ium-Ra nge Weather Forecasts
Forecasts (SVSLRF).
At minimum, the following are required from GPCLRFs: ERA-I
e S AT T Sy s etz e Exeter: Met Office, United Kingdom
* Lead time: between 0 and 4 months .
« Issue frequency: monthly or at least quarterly *Melbourne: Bureau of Meteorology (BOM), Australia
= Delivery: graphical images on GPCLRF website and/or digital data for download - -
= Variables: 2m temperature, precipitation, Sea Surface Temperature (S5T), Mean Sea-Level Pressure (MSLP), S00hPa height, 850hPa temperaturs OM: Meteor°|oglca| Ser‘"ce Of Canada (MSC)
= Long-term forecast skill assessments, using measures defined by the SVSLRF. i i
WMO Global Producing Centres of Long-Range Forecasts *Moscow: Hyd romEteor()lOglcal Centre of Russia
*Pretoria: South African Weather Services (SAWS)
g
*Seoul: Korea Meteorological Administration (KMA)
*Tokyo: Japan Meteorological Agency (JMA) / Tokyo Climate
. Centre (TCC)
e, 7 Bl B e oF nussa
| L] e ~ *Toulouse: Météo-France
Met Othce e
. 3 HAnke e W, Washington: Climate Prediction Center (CPC) / National
Y u Oceanic and Atmospheric Administration (NOAA), United
States of America
CAEC



http://bcc.cma.gov.cn/channel.php?channelId=22
http://clima1.cptec.inpe.br/gpc/
http://www.ecmwf.int/
http://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks
http://www.bom.gov.au/climate/ahead/
http://weather.gc.ca/saisons/index_e.html
http://neacc.meteoinfo.ru/
http://www.weathersa.co.za/component/content/article/2-uncategorised/179-long-range-forecast?Itemid=168
http://www.wmolc.org/~GPC_Seoul/
http://ds.data.jma.go.jp/tcc/tcc/products/model/index.html
http://www.meteo.fr/
http://www.cpc.ncep.noaa.gov/?cpc=
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Skills StocSIPS and CanSIPS: Comparison

Monthly resolution, lead time = 1 month

month
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StocSIPS relative advantage increases with lead time

: A- Percentage of the globe where
Dl’ff = MSSSStOCSIPS - MSSSCClnSIPS MSSSSI,‘OCSIPS > MSSSCCLTLSIPS
lead time = 1 month, A=26% lead time = 2 months, A=55%
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Skills StocSIPS and CanSIPS: Comparison

Annual resolution, lead time = 2 years for StocSIPS. Monthly resolution, lead time = 6 months for CanSIPS

MSSS StocSIPS, annual, lead time = 2 years
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Relative Skill of StocSIPS increases with lead time

MSSSsiocsips => MSSScansips for more than one month
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Global Producing Centers: Actuals

GPC- Beijing, JFM GPC-Exeter

Nodol:5OC-COV, Paremeter17m, Disgpestic:mass, Seasonim, Lead:1, Peciod: 19852001, Dete:RA4D

T = Tactuals = Ttrend + Tannual cycle + Tanomalies

b N 1

Actuals Anthropogenic Natural variability
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Skills StocSIPS and CanSIPS: Actuals

MSSS StocSIPS, monthly, lead time = 1 month
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MSSS StocSIPS, seasonal, lead time = 1 season
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MSSS StocSIPS, annual, lead time = 1 year
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MSSS CanSIPS, monthly, lead time = 1 month
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Hindcasts Skill: Actuals
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Probabilistic Forecast
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Probabilistic Forecast: verification and validation
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Probability forecast of Temperature (all-in-one) for FEB 2016
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\ Global average PC = 48,5% (Same as CanSIPS for Canada)
A = 95% of the globe with PC > 33%

Terciles forecast verification for FEB 2016 Monthly Percent Correct for hor=1, Mean PC=48.5%, A=95%
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Visit our sit
StocSIPS

Stochastic Seasonal to Inter-annual Prediction System

Forecasis Hindcasts Verification About StocSIPS ContactUs

Temperature (°C) 2m above surface for 2018

AR "‘f:f-?‘ BTk The Stochastic Seasonal and Interannual

Ey Prediction System (StocSIPS) is a revolutionary
new technique for forecasting the state of the
atmosphere from several weeks to decades.
The core StocSIPS technology is the ScaLINg
Macroweather Model (SLIMM) forecast module.
The science behind StocSIPS is the discovery
that the atmosphere has a truly elephantine
memory. This memory is exploited by SLIMM
that extracts information from many years of
past data.

Temperature forecasts at different horizons

Two different references.

Next Month Next Season  Current Year

www.physics.mcgill.ca/StocSIPS




Conclusions

Theoretical basis of StocSIPS

-Long term memory (scaling, one parameter, H)
-Space-time factorization (space-time prediction decoupling)
-Stochastic predictability limits

StocSIPS performance

-Anomalies: StocSIPS has higher skill than CanSIPS for two months and longer.
-Actuals: Higher skill at all lead times due to direct forecasting of climatology.
-StocSIPS relative advantage: increases with lead time and is higher over land than oceans.

StocSIPS’ advantages include

-No data assimilation

-No ad hoc post processing
-No need for downscaling
-Speed: (factor 10>- 10°)

Future developments

-Prediction of other fields (precipitation, wind, solar insolation, degree-days, forest fire
indices, drought indices).

-Find co-predictors such as El Nifio indices.

-Prediction of Extremes

http://www.physics.mcgill.ca/StocSIPS



