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Abstract. Many atmospheric fields, in particular the temperature, respect statistical symmetries that characterize the macroweather 6 

regime, i.e. time-scales between the ≈10 days lifetime of planetary sized structures and the currently 10 – 20 years scale at which 7 

the anthropogenic forcings begin to dominate the natural variability. The scale-invariance and the low intermittency of the 8 

fluctuations implies the existence a huge memory in the system that can be exploited for macroweather forecasts using well-9 

established (Gaussian) techniques. The Stochastic Seasonal to Interannual Prediction System (StocSIPS) is a stochastic model that 10 

exploits these symmetries to perform long-term forecasts. StocSIPS includes the previous ScaLIng Macroweather Model (SLIMM) 11 

as a core model for the prediction of the natural variability component of the of the temperature field. Here we present the theory 12 

for improving SLIMM using discrete-in-time fractional Gaussian noise processes to obtain an optimal predictor as a linear 13 

combination of past data. We apply StocSIPS to the prediction of globally-averaged temperature and confirm the applicability of 14 

the model with statistical testing of the hypothesis and a good agreement between the hindcast skill scores and the theoretical 15 

predictions. Finally, we compare StocSIPS with the Canadian Seasonal to Interannual Prediction System (CanSIPS). From a 16 

forecast point of view, GCMs can be seen as an initial value problem for generating many “stochastic” realizations of the state of 17 

the atmosphere, while StocSIPS is effectively a past value problem that estimates the most probable future state from long series 18 

of past data. The results obtained validate StocSIPS as a good alternative and a complementary approach to conventional numerical 19 

models. Temperature forecasts using StocSIPS are published on a regular basis in the website: 20 

http://www.physics.mcgill.ca/StocSIPS/. 21 

1 Introduction 22 

When taken beyond their deterministic predictability limits of about ten days, the output of General Circulation Models (GCMs) 23 

can no longer be usefully interpreted in a deterministic sense; they are at least implicitly stochastic and if they use stochastic 24 

parameterizations, they are explicitly so. In this “macroweather” regime, successive fluctuations tend to cancel each other out so 25 

that in control run mode, each GCM converges ultra slowly (Lovejoy et al. 2013) to its own climate. Assuming ergodicity, the 26 

control run climate is deterministic because it is the long-time average climate state, but the fluctuations about this state are 27 

stochastic. 28 

Although each GCM climate may be different – and different from that of the real world – various studies (see e.g. the review 29 

(Lovejoy et al. 2018)) have indicated that the space-time statistics of fluctuations about the climates are statistically realistic – that 30 

they are of roughly the same type as the fluctuations observed in the real climate about the real climate state. For example, over 31 

wide ranges, and with realistic exponents, they exhibit scaling in both space and in time and at least approximately, they obey a 32 

symmetry called “statistical space-time factorization” (Lovejoy and de Lima 2015) that relates space and time. This suggests that 33 

the main defect of GCMs is that their fluctuations are around unrealistic model climates.  34 
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Many different stochastic processes can yield identical statistics. This leads to the possibility – developed in (Lovejoy et al. 2015) 35 

– that a simple model, having the same space-time statistical symmetries as the GCMs and the real world, could be used to directly 36 

model temperature fluctuations. If in such a model, the long term behaviour and the statistics of the fluctuations are forced to match 37 

that of real-world data in the past, the model would thus combine realistic fluctuations with a realistic climate, leading to 38 

significantly improved forecasts. Indeed, using this ScaLIng Macroweather Model (SLIMM), (Lovejoy 2014) gave some evidence 39 

for this by accurately forecasting the slow-down in the warming after 1998.    40 

Starting with (Hasselmann 1976), various stochastic macroweather and climate models have been proposed. Today, these 41 

approaches are generally known under the rubric Linear Inverse Modelling (LIM), e.g.: (Penland and Matrosova 1994; Penland 42 

and Sardeshmukh 1995; Winkler et al. 2001; Newman et al. 2003; Sardeshmukh and Sura 2009).  However, they all are based on 43 

integer order (stochastic) differential equations and these implicitly assume the existence of characteristic time scales associated 44 

with exponential decorrelation times; such models are not compatible with the scaling. To obtain models that respect the scaling 45 

symmetry, we may use fractional differential equations that involve strong, long range memories; it is these long-range memories 46 

that are exploited in SLIMM forecasts.  From a mathematical point of view, the fractional differential operators are of Weyl type 47 

(convolutions from the infinite past) so that they are not initial value problems, but rather past value problems.  48 

In this paper we present the new Stochastic Seasonal to Interannual Prediction System (StocSIPS), that includes SLIMM as the 49 

core model to forecast the natural variability component of the temperature field, but also represents a more general framework for 50 

modelling the seasonality and the anthropogenic trend and the possible inclusion of other atmospheric fields at different temporal 51 

and spatial resolutions. In this sense, StocSIPS is the general system and SLIMM is the main part of it dedicated to the modelling 52 

of the stationary scaling series. The original technique that was used to make the SLIMM forecasts was basically correct, but it 53 

made several approximations (such as that the amount of data available for the forecast was infinite) and it was numerically 54 

cumbersome. Here, for the developing of StocSIPS, we return to it using improved mathematical and numerical techniques and 55 

validate them on ten different global temperature series since 1880 (five globally-averaged temperature series and five land surface 56 

average temperature). We then compare hindcasts with Canada’s operational long-range forecast system, the Canadian Seasonal 57 

to Interannual Prediction System (CanSIPS) and we show that StocSIPS is just as accurate for one-month forecasts, but 58 

significantly more accurate for longer lead times. 59 

2 Theoretical framework 60 

Since the works of (Hasselmann 1976), there have been many stochastic climate theories based on the idea that the high-frequency 61 

weather drives the low-frequency climate as a stochastic forcing (for a review, see (Franzke et al. 2014)). The first and simplest 62 

approaches for solving the stochastic climate differential equations deduced from these theories were made through linear inverse 63 

models (LIM). The theoretical justification of LIM methods is based on extracting the intrinsic linear dynamics that govern the 64 

climatology of a complex system directly from observations of the system (inverse approach). However, they implicitly assume 65 

exponential decorrelations in time, whereas both the underlying Navier-Stokes equations (and hence models, GCMs) and empirical 66 

analyses respect statistical scaling symmetries (see the review in (Lovejoy and Schertzer 2013)). Due to this lack of solid physical 67 

basis, LIM approaches are referred to as “empirical approaches”. Nevertheless, its use is justified as a simpler alternative to the 68 

difficult task of improving numerical model parameterizations by appealing to physical arguments and first-principle reasoning 69 

alone. 70 

Exponential decorrelations assumed by LIM models imply a scale break in time and – ignoring the diurnal and annual cycles – the 71 

only strong scale break is at the weather-macroweather transition scale of 𝜏𝑤 ≈ 5 – 15 days (slightly varying according to location 72 
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(especially latitude and land versus ocean), and also with slight variations from one atmospheric field to another. For the 73 

temperature, there is a transition in the spectrum at 𝜔~𝜔𝑤 ≈ 1 𝜏𝑤⁄ , with two different asymptotic behaviors for very high and very 74 

low frequencies (see Fig. 4 in (Lovejoy and Schertzer 2012)). Empirically we find that 𝐸𝑇(𝜔)~𝜔−𝛽 with,  𝛽ℎ = 1.8 (𝜔 > 𝜔𝑤) and 75 

𝛽𝑙 ≈ 0.2 – 0.8 (𝜔 < 𝜔𝑤) (depending on the location). The integer order differential equation for the LIM model implies that 𝛽ℎ = 76 

2 and 𝛽𝑙 = 0  (exactly, everywhere). Note that 𝛽ℎ  is the value for a turbulent system, it corresponds to a highly intermittent 77 

process, not a process that is close to the integral of white noise (i.e. an Ornstein-Uhlenbeck process).  LIM’s exactly flat spectral 78 

behavior at low frequencies is a consequence of the fact that the highest order differential term is integer ordered, it implies that 79 

the low frequencies are (unpredictable) white noise.  For times much larger than the decorrelation time, temperature forecasts have 80 

no skill. LIM’s short memory behavior can be modeled as a Markov process, equivalently as an autoregressive or moving average 81 

process. 82 

There are many empirical results that show a non-flat scaling behavior in the temperature spectrum (as well as in many other 83 

atmospheric variables) with values for 𝛽𝑙 from 0.2 to 0.8 (see the review in (Lovejoy and Schertzer 2013), also (Lovejoy et al. 84 

2018)). This power-law behavior in the spectrum (and in the autocorrelation function) reflects the long-range memory that must 85 

be modelled.  To appreciate the importance of the value of 𝛽𝑙 for Gaussian processes, when 𝛽𝑙 = 0, there is no predictability, and 86 

when 𝛽𝑙 = 1, there is infinite predictability. The long memory effects mean that the equations become non-Markovian and that 87 

also past states need to be considered in order to predict the behavior of the system. The generalization of LIM’s integer ordered 88 

differential equations to include fractional order derivatives already introduces power-law correlations, the simplest option being 89 

to retain the simplest (Gaussian) assumption about the noise forcing. This is the main idea behind the ScaLIng Macroweather 90 

Model (SLIMM) (Lovejoy et al. 2015). 91 

2.1 SLIMM 92 

In the macroweather regime intermittency is generally low enough that a Gaussian model with long-range statistical dependency 93 

is a workable approximation (except perhaps for the extremes; e.g. the review (Lovejoy et al. 2018)). Some attempts have been 94 

made to use Gaussian models for prediction in the mean square prediction framework of autoregressive fractional integrated 95 

moving average (ARFIMA) processes (Baillie and Chung 2002; Yuan et al. 2015). The theory behind some of these models only 96 

applies to stationary series, while, for example, in the case of globally-averaged temperature time series, there is clearly an 97 

increasing trend due to the anthropogenic warming in recent decades. If the trend is not properly removed, the assumption of 98 

random equally distributed variables no longer applies, and the skill of the predictions is adversely affected. The ScaLIng 99 

Macroweather Model (SLIMM), (Lovejoy et al. 2015) was the first of such models that took all these facts into consideration and 100 

offered a complete evaluation of the prediction skill based on hindcasts after the removal of the anthropogenic warming part. 101 

SLIMM is a model for the prediction of stationary series with Gaussian statistics and scaling symmetry of the fluctuations. It 102 

proposes a predictor as a linear combination of past data (or past innovations). For the case of Gaussian variables, it has been 103 

proven that this kind of linear predictor is optimal in the mean square error sense (see the “Fundamental note” in page 264 of 104 

(Papoulis and Pillai 2002)). That is, if any other functional form (i.e. nonlinear) is used to build a predictor based on past data, the 105 

mean square error of the predictions will be larger than with the linear combination. This is not necessarily true if the distribution 106 

of the variables is not Gaussian, for example, in the case of multifractal processes, where the second moment statistics are not 107 

sufficient to describe the process. 108 

Similarly to the spectrum where 𝐸𝑇(𝜔)~𝜔−𝛽, in the macroweather regime the average of the fluctuations as a function of the time 109 

scale also presents a power-law (scaling) behavior with 〈∆𝑇(∆𝑡)〉~∆𝑡𝐻. Besides the scale-invariance, low intermittency (rough 110 

Gaussianity) in time, is another characteristic of the macroweather regime. For Gaussian processes, the spectrum and the fluctuation 111 
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exponents are related by 𝐻 = (𝛽𝑙 − 1) 2⁄ . In (Lovejoy et al. 2015) SLIMM was introduced, based on fractional Gaussian noise 112 

(fGn), as the simplest stochastic model that includes both characteristics. 113 

For their relevance to the current work, some properties of fGn presented in that paper are summarized here; for an extensive 114 

mathematical treatment see (Biagini et al. 2008). 115 

Over the range −1 < 𝐻 < 0, an fGn process, 𝐺𝐻(𝑡), is the solution of a fractional order stochastic differential equation of order 116 

𝐻 + 1 2⁄ , driven by a unit Gaussian 𝛿-correlated white noise process, 𝛾(𝑡), (with 〈𝛾(𝑡)〉 = 0 and 〈𝛾(𝑡)𝛾(𝑡′)〉 = 𝛿(𝑡 − 𝑡′), where 117 

𝛿(𝑥) is the Dirac function): 118 
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and Γ(𝑥)  is the Euler gamma function. The value for the constant 𝑐𝐻  was chosen to make the expression for the statistics 122 

particularly simple, see below. The fractional differential equation (Eq. (1)) was presented in (Lovejoy et al. 2015) as a 123 

generalization of the LIM integer order equation to account for the power-law behavior observed for the spectrum at frequencies 124 

𝜔 > 𝜔𝑤 ≈ 1 𝜏𝑤⁄ . Physically it could model a scaling heat storage mechanism. 125 

Integrating Eq. (1), we obtain: 126 
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In other words, 𝐺𝐻(𝑡) is the fractional integral of order 𝐻 + 1 2⁄  of a white noise process, which can also be regarded as a 128 

smoothing of a white noise with a power-law filter. The process 𝛾(𝑡) is a particular case of 𝐺𝐻(𝑡) for 𝐻 = − 1 2⁄ .  Just as 𝛾(𝑡) is 129 

a generalized stochastic process (a distribution), the process 𝐺𝐻(𝑡) is also a generalized function without point-wise values. It is 130 

the density of the well-known fractional Brownian motion (fBm) measures, 𝐵𝐻′(𝑡), with 𝐻′ = 𝐻 + 1, i.e. 𝑑𝐵𝐻′(𝑡) = 𝐺𝐻(𝑡)𝑑𝑡 131 

(Wiener Integrals for the case 𝐻′ = 1 2⁄ ). The derivative of a distribution (in this case 𝐵𝐻′(𝑡)) is formally defined from the 132 

following: 133 

 ( ) ( ) ( ) ( ) ( ) ( )H H Ht dB t t G t dt t B t dt   
= = −   , (4) 134 

where 𝜑(𝑡) is any locally integrable function. 135 

From this relation to fBm, the resolution 𝜏 (smallest sampling temporal scale) fGn process, 𝐺𝐻,𝜏(𝑡), can be defined, either as an 136 

average of 𝐺𝐻(𝑡), or from the increments of the fBm process, 𝐵𝐻′(𝑡),  at the same resolution: 137 

 ( ) ( ) ( ) ( ) ( ),

1 1 1
t t

H H H H H

t t

G t G t dt dB t B t B t

 


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  

− −

  = = = − −    . (5) 138 

In (Lovejoy et al. 2015) it was shown that, for resolution 𝜏 > 𝜏𝑤, we can model the globally-averaged macroweather temperature 139 

as: 140 

 ( ) ( ),T HT t G t = , (6) 141 

where −1 < 𝐻 < 0 and 𝜎𝑇  is the temperature variance (for 𝜏 = 1). The parameter 𝐻 , defined in this range, is not the more 142 

commonly used Hurst exponent for fBm processes, 𝐻′, but the fluctuation exponent of the corresponding fractional Gaussian noise 143 

process. Fluctuations exponents are used due to their wider generality; they are well defined even for strongly non-Gaussian 144 

processes. For a discussion see page 643 in (Lovejoy et al. 2015). 145 
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Assuming 𝜏 is the smallest scale in our system with the property 𝜏 > 𝜏𝑤  (e.g. 𝜏 = 1 month for air temperature), the temperature 146 

defined by Eq. (6) has the following properties: 147 

(i) 𝑇𝜏(𝑡) is a Gaussian stationary process with continuous paths; 148 

(ii) 〈𝑇𝜏(𝑡)〉 = 0 and 〈𝑇𝜏(𝑡)2〉 = 𝜎𝑇
2𝜏2𝐻 for all 𝑡, 〈 . 〉 denotes ensemble (infinite realizations) averaging; (7) 149 

(iii) 𝐶𝐻,𝜎𝑇
(∆𝑡) = 〈𝑇𝜏(𝑡)𝑇𝜏(𝑡 + ∆𝑡)〉 = 𝜎𝑇

2 (|∆𝑡 + 𝜏|2𝐻+2 + |∆𝑡 − 𝜏|2𝐻+2 − 2|∆𝑡|2𝐻+2) 2𝜏2⁄ ; for ∆𝑡 ≥ 𝜏.  150 

For more details see (Mandelbrot and Van Ness 1968; Gripenberg and Norros 1996; Biagini et al. 2008). 151 

From Eq. (7.iii), the behavior of the autocovariance function for ∆𝑡 ≫ 𝜏 and −1 < 𝐻 < 0 is: 152 

 ( ) ( )( )2 2

, 1 2 1
T

H

H TC t H H t   + +    (8) 153 

and the corresponding spectrum for low frequencies is: 154 
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TE H H
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where 𝛽𝑙 = 1 + 2𝐻. 156 

Combining Eqs. (3), (5) and (6), we get the following explicit integral expression for the temperature at resolution 𝜏: 157 
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Notice that 𝑇𝜏(𝑡) is obtained from the difference of fractional integrals of order 𝐻 + 3 2⁄  of a white noise process. Our definition 159 

of 𝑐𝐻 in Eq. (2) implies that 〈𝑇𝜏(𝑡)2〉 = 𝜎𝑇
2𝜏2𝐻. As 𝐻 < 0, it follows that, in the small-scale limit (𝜏 → 0), the variance diverges 160 

and 𝐻 is the scaling exponent of the root mean square (RMS) value. This singular small-scale behavior is responsible for the strong 161 

power law resolution effects in fGn. For a detailed discussion on this important resolution effect that leads to a “space-time 162 

reduction factor” and its implications for the accuracy of global surface temperature datasets, see (Lovejoy 2017). 163 

Using the fact that 𝑇𝜏(𝑡)  is a Gaussian stationary process, (Lovejoy et al. 2015) derived a formula for the predictor of the 164 

temperature at some time 𝑡 ≥ 𝜏, given that data are available over the entire past (i.e. from 𝑡 = −∞ to 0). From Eq. (10), the mean 165 

square (MS) estimator for the temperature can be expressed as: 166 
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As a measure of the skill of the model, we can use the mean square skill score (MSSS), defined as: 168 
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 i.e. one minus the normalized mean square error (MSE). Here 𝑇𝜏(𝑡) represents the verification and 𝑇̂𝜏(𝑡) the forecast at time 𝑡 ≥170 

𝜏. The reference forecast would be the average of the series 〈𝑇𝜏(𝑡)〉 = 0, for which the MSE is the variance 〈𝑇𝜏(𝑡)2〉. Using Eqs. 171 

(10) and (11) in (12), an analytical expression for the MSSS can be obtained: 172 
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where 𝑡 ≥ 𝜏 and 174 
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in particular, 176 
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Although Eq. (11) is the formal expression for the predictor of the temperature, from a practical point of view it has two clear 178 

disadvantages: it is expressed as an integral of the unknown past innovations, 𝛾(𝑡), and it assumes the knowledge of these 179 

innovations for an infinite time in the past. It would be more natural to express the predictor as a function of the observed part of 180 

the process. This problem was solved for fBm processes with 1 2⁄ < 𝐻′ < 1 (equivalently − 1 2⁄ < 𝐻 < 0) by (Gripenberg and 181 

Norros 1996). The explicit formula they found for the predictor, 𝐵̂𝐻′,𝑎(𝑡), of the fBm process, 𝐵𝐻′(𝑡), known in the interval 182 

(−𝑎, 0) for 𝑡 > 0 and 𝑎 > 0, is: 183 
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where g𝑎(𝑡, 𝑡′) is an appropriate weight function given by: 185 
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It is important to note that the weight function goes to infinity both at the origin and at −𝑎 (see Fig. 8 in (Norros 1995)). In their 187 

words, this divergence when we approach −𝑎 is because “the closest witnesses to the unobserved past have special weight”. 188 

The results summarized in Eqs. (10 – 17) are theoretically important, but, from the practical point of view of making predictions, 189 

a discrete representation of the process is needed. In the next sections, we present analogous results for the prediction of discrete-190 

in-time, finite past fGn processes and its application to the modelling and prediction of global temperature time series. 191 

2.2 StocSIPS 192 

The theory presented in the previous section and the applicability of SLIMM is restricted to detrended time series with Gaussian 193 

statistics and a scaling behavior of the fluctuations. Real-world datasets, in particular raw temperature series, normally include 194 

periodic signals corresponding to the diurnal and the seasonal cycles. They are also affected by an increasing trend as a response 195 

signal to anthropogenic forcing and usually combine different scaling regimes depending on the temporal resolution used. 196 

StocSIPS is the general system that includes SLIMM as the core model for the long-term prediction of atmospheric fields. In order 197 

to use SLIMM, some of the components of StocSIPS are dedicated to the “cleaning” of the original dataset. In particular, it includes 198 

techniques for removing and projecting the seasonality and the anthropogenic trend. It also degrades the temporal series to a scale 199 

where only one scaling regime with fluctuation exponent −0.5 < 𝐻 < 0 is present. The initial goal is to produce a temporal series 200 

that can be modelled and predicted with the fGn stationary process using the SLIMM theory. Some other aspects of StocSIPS – 201 

not discussed in this paper – include the addition of another space-time symmetry (the statistical space-time factorization (Lovejoy 202 

and de Lima 2015; Lovejoy et al. 2018)) for the regional prediction, and the combination as copredictors of different atmospheric 203 

fields. 204 

One of the objectives of this paper is to show the improvements in the theoretical treatment and in the numerical methods of 205 

SLIMM as an essential part of StocSIPS. These recent developments have helped to produce faster and more accurate predictions 206 

of global temperature. The improvement in SLIMM and some of the preprocessing techniques are illustrated later on in Sect. 3 207 

through an application to the forecast of globally-averaged temperature series. 208 
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2.2.1 Discrete-in-time fGn processes 209 

As we showed in Sect. 2.1, for predicting the stationary component of the temperature with resolution 𝜏 at a future time 𝑡 > 0, the 210 

linear predictor, 𝑇̂𝜏(𝑡) , based on past data ( 𝑇𝜏(𝑠)  for −𝑎 < 𝑠 ≤ 0 ) satisfying the minimum mean square error condition 211 

(orthogonality principle between the error and the data) can be written as: 212 

 ( ) ( ) ( )
0

0

ˆ ,T

a s

T t M t s T s ds 

−  

=  , (18) 213 

or equivalently, based on the past innovations, 𝛾(𝑠): 214 

 ( ) ( ) ( )
0

0

ˆ ,
a s

T t M t s s ds  
−  

=  , (19) 215 

where 𝑀𝑇(𝑡, 𝑠) and 𝑀𝛾(𝑡, 𝑠) are appropriated weight functions. In SLIMM, the predictor given by Eq. (11) is a particular case of 216 

Eq. (19) for 𝑎 = ∞ and 𝑀𝛾(𝑡, 𝑠) = 𝑐𝐻𝜎𝑇[(𝑡 − 𝑠)𝐻+1 2⁄ − (𝑡 − 𝜏 − 𝑠)𝐻+1 2⁄ ] 𝜏Γ(𝐻 + 3 2⁄ )⁄ , while the solution in (Gripenberg and 217 

Norros 1996) (Eq. (16) here) is the case of Eq. (18) for an fBm process with 𝑀𝑇(𝑡, 𝑠) analogous to g𝑎(𝑡, 𝑡′) given by Eq. (17).  218 

The mathematical theory presented in Sect. 2.1 is general for a continuous-in-time fGn. Moreover, the integral representation of 219 

fGn given by Eq. (10), is based on an infinite past of continuous innovations, 𝛾(𝑡). For applications to real-world data, a discrete 220 

version of the problem is needed for the case of fGn with finite data in the past (𝑎 < ∞). In practice, in the case of temperature 221 

(and any other atmospheric field) we only have measurements at discrete times with some resolution over a limited period. For 222 

modeling these fields, we can consider discrete-in-time fGn process as a more suitable model. 223 

Assuming that we have already removed the low-frequency anthropogenic component of the temperature series (see Sect. 3.2), in 224 

the discrete case, we could express the zero mean detrended component by its moving average (MA(∞)) stochastic representation 225 

given by the Wold representation theorem (Wold 1938): 226 

 
t

t t j j

j

T  −

=−

=  , (20) 227 

where {𝜑𝑡} are weight parameters with units of temperature and {𝛾𝑡} is a white noise sequence with 𝛾𝑡~NID(0,1) and 〈𝛾𝑖𝛾𝑗〉 =228 

𝛿𝑖𝑗, where 𝛿𝑖𝑗 is the Kronecker delta and NID(𝜇, 𝜎2) stands for normally and independently distributed with mean 𝜇 and variance 229 

𝜎2 (the sign ~ means equal in distribution). This equation is analogous to Eq. (10) for the continuous case. 230 

By inverting Eq. (20) we can obtain the equivalent autoregressive (AR(∞)) representation (Palma 2007): 231 

 
1

0

t

t t t j j

j

T T  
−

−

=−

= +  , (21) 232 

which is more suitable for predictions, as any value of the series is given as a linear combination of the values in the past. In this 233 

representation the weights {𝜋𝑡} are unitless. 234 

In practice, we only have a finite stretch of data {𝑇−𝑡 , … , 𝑇0}. Under this circumstance, the optimal k-steps Wiener predictor for 𝑇𝑘 235 

(𝑘 > 0), based on the finite past, is given by: 236 

 ( ) ( ) ( ) ( )
0

, , ,0 0
ˆ ...t t j j t t t t

j t

T k k T k T k T  − −

=−

= = + + , (22) 237 

where the new vector of coefficients, 𝛟𝑡(𝑘) = [𝜙𝑡,−𝑡(𝑘), … , 𝜙𝑡,0(𝑘)]
𝑇
 (the superscript 𝑇 denotes transpose operation) satisfies the 238 

Yule-Walker equations (see page 96 in (Hipel and McLeod 1994)): 239 

 ( ) ( ), ,T T

t t

H t Hk k =
 

R C , (23) 240 
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with 𝐂𝐻,𝜎𝑇
𝑡 (𝑘) = [𝐶𝐻,𝜎𝑇

(𝑘 − 𝑖) ]
𝑖=−𝑡,…,0

𝑇
= [𝐶𝐻,𝜎𝑇

(𝑡 + 𝑘), … , 𝐶𝐻,𝜎𝑇
(𝑘) ]

𝑇
 and 𝐑𝐻,𝜎𝑇

𝑡 = [𝐶𝐻,𝜎𝑇
(𝑖 − 𝑗)]

𝑖,𝑗=−𝑡,… ,0
 being the 241 

autocovariance matrix. The elements 𝐶𝐻,𝜎𝑇
(∆𝑡) are obtained from Eq. (7.iii) where we assume 𝜏 = 1 is the smallest scale in our 242 

system with the property 𝜏 ≫ 𝜏𝑤 (e.g. 𝜏 = 1 month). 243 

 Notice that the coefficients {𝜙𝑡,𝑗} will only depend on 𝐻 (𝜎𝑇 cancels in both sides of Eq. (23)) and they are not the same as the 244 

coefficients {𝜋𝑡}, for which the complete knowledge of the infinite past is assumed. The coefficients {𝜋𝑡} decrease monotonically 245 

as we go further in the past, while this is not the case for the coefficients {𝜙𝑡,𝑗}, as we can see in Fig. 1 for the cases where 𝐻 =246 

−0.1, −0.25, −0.4, and we predict 𝑘 = 12 steps in the future by using a series of 𝑡 + 1 = 36 values. Notice how the memory 247 

effect (the weight of the coefficients) increases with the value of 𝐻. This behavior of the coefficients is analogous to the one 248 

mentioned earlier for the function g𝑎(𝑡, 𝑡′) (Eq. (17)). As found in (Gripenberg and Norros 1996) for the continuous-in-time case, 249 

not only there is a strong weighting of the recent data, but the most ancient available data also have singular weights (compare Fig. 250 

1 here with Fig. 3.1 in (Gripenberg and Norros 1996)). 251 

This behavior of the coefficients for fGn is the main difference (and a clear advantage) over other autoregressive models (AR, 252 

ARMA) which do not include fractional integrations accounting for the long-term memory and do not consider the information 253 

from the distant past. An additional limitation of these approaches is that for each ∆𝑡, the values for 𝐶(∆𝑡) = 〈𝑇𝜏(𝑡)𝑇𝜏(𝑡 + ∆𝑡)〉 254 

must be estimated directly from the data.  Each 𝐶(∆𝑡) will have its own error, this effectively introduces a large “noise” in the 255 

predictor estimates.  In addition, it is computationally expensive if a large number of coefficients are needed. In our fGn model the 256 

coefficients have an analytic expression which only depends on the fluctuation exponent, 𝐻, obtained directly from the data 257 

exploiting the scale-invariance symmetry of the fluctuations; our problem is a statistically highly constrained problem of parametric 258 

estimation (𝐻), not an unconstrained one (the entire 𝐶(∆𝑡) function). 259 

In the discrete case, the mean square skill score, defined by Eq. (12), has the following analytical expression: 260 

 ( ) ( ) ( ) ( )
1

MSSS
Tt t t t

H H H Hk k k
−

=C R C , (24) 261 

Fig. 1 Optimal coefficients, 𝜙𝑡,𝑗 , in Eq. (17) with 𝐻 = −0.1, −0.25, −0.4 (top to bottom) for predicting 

𝑘 = 12 steps in the future by using the data for 𝑗 = −35, … ,0 in the past. Notice the strong weighting 

on both the most recent (right) and the most ancient available data (left) and how the memory effect 

decreases with the value of 𝐻. Compare to Fig. 3.1 in (Gripenberg and Norros, 1996). 
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where 𝐂̃𝐻
𝑡 (𝑘) = [𝐶̃𝐻(𝑘 − 𝑖) ]

𝑖=−𝑡,…,0

𝑇
 is a vector formed by the autocorrelation function 𝐶̃𝐻(∆𝑡) = 𝐶𝐻,𝜎𝑇

(∆𝑡) 𝜎𝑇
2⁄  (see Eq. (7.iii)) 262 

and 𝐑̃𝐻
𝑡 = 𝐑𝐻,𝜎𝑇

𝑡 𝜎𝑇
2⁄ = [𝐶̃𝐻(𝑖 − 𝑗)]

𝑖,𝑗=−𝑡,… ,0
 is the autocorrelation matrix. For a given horizon in the future, 𝑘, the MSSS will only 263 

depend on the exponent, 𝐻, and the extension of our series in the past, 𝑡. 264 

In the previous equations, the full length of our known series was 𝑡 + 1, but we don’t necessarily have to use the complete series 265 

to build our predictor. It is enough to use a number 𝑚 + 1 of points in the past (memory) with 𝑚 < 𝑡. The new predictor and skill 266 

score are obtained by just replacing 𝑡 by 𝑚 in Eqs. (22-24). By doing this, we can use the remaining 𝑡 − 𝑚 − 1 points for hindcast 267 

verifications. 268 

For the case where 𝐻 = −0.25 and 𝑘 = 3, Fig. 2 shows how the MSSS approaches the asymptotic value corresponding to an 269 

infinite past as we increase the amount of memory we use. The dashed line represents the MSSS for 𝑚 = 500 and the dotted line 270 

is the value we obtain using Eq. (13) for the continuous-in-time case with the infinite past known. The difference between the two 271 

is not due to the finite memory (𝑚 = 500) we have in the discrete case with respect to the infinite past assumed in Eq. (13), but to 272 

intrinsic differences due to the discretization and more related to the high-frequency information loss because of the smoothing 273 

from a continuous to a discrete process. Note that we do not need to use a large memory to achieve a skill close to the asymptotic 274 

value. In this example where 𝐻 = −0.25,  we only need to use 𝑚 ≥ 22 for 𝑘 = 3 to get more than 95% of the maximum skill. 275 

The amount of memory needed depends on the value of 𝐻, as we can see in Fig. 3, where we plot the minimum memory needed, 276 

𝑚95%, to get more than 95% of the asymptotic value (corresponding to 𝑚 = ∞) as a function of the horizon, 𝑘, for different values 277 

of 𝐻. The line 𝑚 = 15𝑘 was also included for reference. The larger the value of the exponent, 𝐻, (the closer to zero) the less 278 

memory we need to approach the maximum possible skill. This fact seems counterintuitive, but the explanation is simple: for larger 279 

values of 𝐻, the influence of values farther in the past is stronger, but at the same time, more information of those values is included 280 

in the recent past, so less memory is needed for forecasting. Following the rule of thumb found by (Norros 1995) for the continuous 281 

case: “one should predict (…) the next second with the latest second, the next minute with the latest minute, etc.” Actually, from 282 

Fig. 3 we can conclude than, for predicting 𝑘 steps into the future, a memory 𝑚 = 15𝑘 would be a safe minimum value for 283 

achieving almost the maximum possible skill for any value of 𝐻 in the range (−0.5, 0), which is the case for temperature and many 284 

Fig. 2 MSSS𝐻
𝑚(𝑘) as a function of the memory, 𝑚, for the case where 𝐻 = −0.25 and 𝑘 = 3. The 

dashed line represents the MSSS for 𝑚 = 500 and the dotted line is the value obtained with Eq. (12) 

for the continuous-in-time case. For 𝑚 = 22, more than 95% of the asymptotic skill is achieved. 
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other atmospheric fields. Of course, if 𝐻 is close to zero a much smaller value could be taken. The approximate ratio 𝑚95% 𝑘⁄  for 285 

each 𝐻 was included at the top of the respective curve. From the point of view of the availability of data for the predictions, this 286 

result is important. Once the value for 𝐻 is estimated, assuming it remains stable in the future, we only need a few of recent 287 

datapoints to forecast the future temperature. The information of the unknown data from the distant past is automatically considered 288 

by the model. 289 

Previously, we showed that an fGn process is fully characterized by its autocovariance function, which in turn depends only on the 290 

covariance, 𝜎𝑇
2, and the fluctuation exponent 𝐻. To extend our description to more general cases, we could allow our series to 291 

have a non-zero ensemble mean, 𝜇. This family of three parameters defines our fGn process and represents the link between the 292 

mathematical model and real-world historical data. 293 

In Appendix A we discuss how to obtain maximum likelihood estimates (MLE) for these parameters on a given time series. For 294 

the fluctuation exponent, we show other approximate (and less computationally expensive) methods. We can use Eq. (9) to obtain 295 

𝐻̂𝑠 = (𝛽𝑙 − 1)/2 from the spectrum exponent at low frequencies. This method, as well as the Haar wavelet analysis to obtain an 296 

estimate 𝐻̂ℎ from the exponent of the Haar fluctuations, was used in (Lovejoy and Schertzer 2013; Lovejoy et al. 2015) to obtain 297 

estimates of 𝐻 for average global and Northern Hemisphere anomalies. A Quasi Maximum Likelihood Estimate (QMLE) method 298 

is also discussed in Appendix A. The latter is more accurate than the Haar fluctuations and the spectral analysis methods and is 299 

obtained as part of the hindcast verification process. Nevertheless, those two have the advantage of being more general and 300 

applicable to any scaling process (even highly nonGaussian ones). 301 

All these methods were applied to fGn simulations and the parameters estimated were summarized in Table A1. The technical 302 

details for producing exact simulations are also discussed in Appendix A. Finally, we show how to to check the adequacy of the 303 

fitted fGn model to real-world data and we derive some ergodic properties of fGn processes. Specifically, we show that the temporal 304 

average standard deviation squared, 𝑆𝐷𝑇
2 = ∑ (𝑇𝑡 − 𝑇̅𝑁)2𝑁

𝑡=1 𝑁⁄ , is a strongly biased estimate of the variance of the process, 𝜎𝑇
2, 305 

for values of 𝐻 close to zero (the overbar denotes temporal averaging: 𝑇̅𝑁 = ∑ 𝑇𝑡
𝑁
𝑡=1 𝑁⁄ ). The sample and the ensemble estimates 306 

are related by: 307 

Fig. 3 Minimum memory, 𝑚, needed to get more than 95% of the asymptotic value (corresponding to 

𝑚 = ∞) as a function of the horizon, 𝑘, for different values of 𝐻. The larger the value of 𝐻 (the closer 

to zero) the less memory is needed for a given horizon. The approximate ratio 𝑚95% 𝑘⁄  for each 𝐻 was 

included at the top of the respective curve. 
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 ( )2 2 21 H

T TSD N= − . (25) 308 

When 𝐻 = −0.06, 𝑁 = 1656 (values for the monthly series since 1880) there is a huge difference between the sample and the 309 

ensemble estimates (𝑆𝐷𝑇
2 𝜎𝑇

2⁄ = 0.59). Some skill scores (e.g. the MSSS or the normalized mean squared error NMSE) use the 310 

variance for normalization. The implications of the difference in the estimates of the variance on the definition of the MSSS will 311 

be discussed in Sect. 3.4.3. 312 

3 Forecasting global temperature anomalies 313 

The general framework presented here is applicable to forecasting any time series that satisfies, a) the conditions of stationarity, 314 

b) Gaussianity and c) long-range dependence given by power-law behavior of the correlation function with fluctuation exponents 315 

in the range (− 1 2⁄ , 0). These three properties are well satisfied for globally-averaged temperature anomaly time series in the 316 

macroweather regime, from 10 days to some decades (Lovejoy and Schertzer 2013; Lovejoy et al. 2013, 2015). In the last three 317 

decades, there has been a growing literature showing that the temperature (and other atmospheric fields) are scaling in the 318 

macroweather regime (Koscielny-Bunde et al. 1998; Blender et al. 2006; Huybers and Curry 2006; Franzke 2012; Rypdal et al. 319 

2013; Yuan et al. 2015) and see the extensive review in (Lovejoy and Schertzer 2013). Strictly speaking, in the last century, low 320 

frequencies become dominated by anthropogenic effects and after 10 ~ 20 years the scaling regime changes from a negative to a 321 

positive value of 𝐻, as we will show below. As was discussed in detail in (Lovejoy 2014, 2017; Lovejoy et al. 2015), differently 322 

from preindustrial epochs, recent temperature time series can be modeled by a trend stationary process, i.e. a stochastic process 323 

from which an underlying trend (function solely of time) can be removed, leaving a stationary process. In other words, to first 324 

order, variability is unaffected by climate change. The deterministic trend representing the response to external forcings can be 325 

removed by using CO2 radiative forcing as a good linear proxy for all the anthropogenic effects (or equivalent-CO2 (CO2eq) 326 

radiative forcing as the one used for CMIP5 simulation (Meinshausen et al. 2011)). There is a nearly linear relation between the 327 

actual CO2 concentration and the estimated equivalent concentration which includes all anthropogenic forcings, including 328 

greenhouse gases, aerosols, etc.(Meinshausen et al. 2011). 329 

In this paper, we limit our analysis to globally-averaged temperature anomaly time series at monthly resolution. This is a first step 330 

for checking the applicability of the model and at the same time providing an alternative method for obtaining long-term forecasts. 331 

The quality of our method can be assessed based on the skill obtained from hindcasts verification and its agreement with the 332 

theoretical prediction. 333 

3.1 The data 334 

There are five major observation-based global temperature datasets which are in common use. They are (a) the NASA Goddard 335 

Institute for Space Studies Surface Temperature Analysis (GISTEMP) series, abbreviated NASA and NASA-L in the following 336 

for global and land surface averages respectively (Hansen et al. 2010; GISTEMP Team 2018), (b) the NOAA NCEI series GHCN-337 

M version 3.3.0 plus ERSST dataset (Smith et al. 2008; NOAA-NCEI 2018), updated in (Gleason et al. 2015), abbreviated NOAA 338 

and NOAA-L (global and land surface averages, as before), (c) the Combined land and sea surface temperature (SST) anomalies 339 

from CRUTEM4 and HadSST3, Hadley Centre – Climatic Research Unit Version 4, abbreviated HAD4 and HAD4-L (Morice et 340 

al. 2012; Met Office Hadley Centre 2018), (d) the version 2 series of (Cowtan and Way 2014, 2018), abbreviated CowW and 341 

CowW-L, and (e) the Berkeley Earth series (Rohde et al. 2013; Berkeley Earth 2018), abbreviated Berk and Berk-L. The average 342 

of the global and the land surface series were included in the analysis and we use for the abbreviations Mean-G and Mean-L, 343 

respectively. 344 
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All these series are of anomalies, i.e. the difference between temperature at a given time and the average during a baseline period. 345 

They tend not to be on the same baseline; for NASA and Berk the reference period is 1951 to 1980, for HAD4 and CowW it is 346 

1961 to 1990, and for NOAA it is the 20th century (1901 – 2000). To compare them, we need to use the same zero point. In this 347 

case we chose the 20th century average as a common reference period. The average temperature for 1901 – 2000 is nearly the same 348 

as that for 1951 – 1980, while that of more recent times (1961 – 1990) is warmer. 349 

Each series spans a somewhat different period: HAD4, CowW and Berk starts first, beginning in 1850, NASA and NOAA both 350 

start in 1880. When the data were accessed on May 21, 2018, they were all available at monthly resolutions until April 2018. Only 351 

the period January 1880 – December 2017 was analyzed, i.e. 138 years = 1656 months (same length that was used in the simulations 352 

in Appendix A). These series (updated until 2012), together with Twentieth Century reanalysis global average, were used in 353 

(Lovejoy 2017) to assess how accurate are the data as functions of their time scale. As it was pointed out in the latter, each data set 354 

has its strengths and weaknesses and it is precisely their degree of agreement or disagreement what permits to evaluate the intrinsic 355 

absolute uncertainty in the estimates of the global temperature. 356 

In Figure 4 we show the global average temperature (bottom) and the land surface average temperature (top). In red are the means 357 

of the five global datasets for global and for land, respectively, and in blue are a measure of their level of dispersion given by the 358 

standard deviations. The datasets are most dissimilar before 1900, which could be due to the lack of reliable measurements, but 359 

otherwise, the overall level of agreement is very good (about ±0.05 °C and is nearly independent of scale for the global temperature 360 

series (Lovejoy 2017)). Each series shows warming during the last decades, and they all show fluctuations superimposed on the 361 

warming trend. 362 

3.2 Removing the anthropogenic component 363 

In the present case of globally-averaged temperatures, the seasonality in the time series is weak. The deterministic annual cycle 364 

component was removed first from the original series. It was estimated from the average of every month for the full period of 138 365 

years (1880 – 2017). Cross-validation effects are weak for such a long reference period and were not considered. 366 

Fig. 4 Monthly surface temperature anomaly series from 1880 to 2017. In red is the mean of the five 

datasets for global (bottom): NASA, NOAA, HAD4, CowW, and Berk, and for land (top): NASA-L, 

NOAA-L, HAD4-L, CowW-L, and Berk-L. The dispersion among the series given by the standard 

deviations of the five series as a function of time is shown in blue. Each series represents the anomaly 

with respect to the mean of the reference period 1901 – 2000. 
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Because of the anthropogenically induced trends in addition to internal macroweather variability, global temperature time series 367 

have low-frequency forced variability. A simple application of the linearity of the climate response to external forcings yields: 368 

 ( ) ( ) ( )anth natT t T t T t= + , (26) 369 

which considers the temperature as a combination of a purely deterministic response to anthropogenic forcings, 𝑇anth, plus a strict 370 

stationary stochastic component, 𝑇nat, with zero mean. The low frequency component can be obtained as: 371 

 ( ) ( )
2 2 2anth 2 CO eq 2 CO eq CO eq,pre 0logT t t T  

 = +  , (27) 372 

where 𝜌CO2eq is the observed globally-averaged equivalent-CO2 concentration with preindustrial value 𝜌CO2eq,pre = 277 ppm and 373 

𝜆2×CO2eq is the transient climate sensitivity (that excludes delayed responses) related to the doubling of atmospheric equivalent-374 

CO2 concentrations. For 𝜌CO2eq we used the CMIP5 simulation values (Meinshausen et al. 2011). The definition of CO2eq here 375 

includes not only greenhouse gases, but also aerosols, with their corresponding cooling effect. The reference value 𝑇0 is chosen so 376 

that 𝑇̅nat = 0, (the overbar indicates temporal averaging). The parameters 𝜆2×CO2eq and 𝑇0 are estimated from the linear regression 377 

of 𝑇(𝑡) vs. log2[𝜌CO2eq(𝑡) 𝜌CO2eq,pre⁄ ]. The residuals are the stochastic natural variability component, 𝑇nat. 378 

The natural variability includes “internal” variability and the response of the system to natural forcings: solar and volcanic. There 379 

is no gain in trying to model the responses to these two natural forcings independently. They would represent unpredictable signals 380 

while the ensemble of 𝑇nat can be directly modelled using the techniques discussed in Sect. 2 for fGn processes. We made some 381 

experiments trying to predict the internal variability and the solar and the volcanic responses independently, and the combined 382 

error was larger than if we try to forecast the natural variability component as a whole. On the other hand, the relatively smooth 383 

dependence of the anthropogenic component makes it easy to project it a few years into the future with good accuracy.  384 

As an example, the temperature anomalies for the global average dataset (Mean-G) is shown in Fig. 5 (red in the online version) 385 

together with the CO2eq response to anthropogenic forcings (dashed, black) and the residual natural variability component (blue). 386 

To use CO2 instead of CO2eq forcings leads to almost the same residuals due to the nearly linear relation between the two, but it 387 

avoids the uncertainties due to the estimation of the cooling effects of the aerosols as well as other radiative assumptions. The CO2 388 

forcing is taken as a surrogate for all the anthropogenic forcings. The focus of this work is to model and forecast the residuals 389 

(natural variability), and for that purpose, either of the two concentrations would lead to the same residuals (they differ by a factor 390 

Fig. 5 Temperature anomalies for the Mean-G dataset (red in the online version) together with the 

CO2eq trend (dashed, black) and the residual natural variability component (blue). 
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of 1.12 over the last century). From a direct inspection of Fig. 5, it is clear that a CO2eq response does a much better job on 391 

reproducing the actual trend of the temperature series than a simple regression linear in time, which is often used for estimating 392 

the warming trend. 393 

Before making predictions, we need to verify the adequacy of the model and verify the hypothesis that the residual natural 394 

variability component has scaling fluctuations with exponent in the range (– 1 2⁄ , 0). The Haar fluctuation analysis for the Mean-395 

G (bottom) and Mean-L (top) datasets before and after removing the anthropogenic trends are shown in Fig. 6 (red for the raw 396 

dataset fluctuations and blue for the detrended series in the online version). The reference lines with slopes 𝐻ℎ = −0.078 ± 0.023 397 

for the global series and 𝐻ℎ = −0.200 ± 0.021  for the land surface series were obtained from regression of the residuals’ 398 

fluctuations between 2 months and 60 years. The points corresponding to scales of more than 60 years were not considered for 399 

estimating the parameters as there were not many fluctuations to average at those time scales. In addition, some of the low 400 

frequency natural variability was presumably removed with the forced variability. The units for  ∆𝑡 and  ∆𝑇 are months and ºC, 401 

respectively. Notice that the anthropogenic warming breaks the scaling of the fluctuations at a time scale of around 10 years (the 402 

red and blue curves diverge at ~100 months). The residual natural variability, on the other hand, shows reasonably good scaling 403 

for the whole period analyzed (138 years). The same range of scaling with decreasing fluctuations has been obtained in temperature 404 

records from preindustrial multiproxies and GCMs preindustrial control runs (Lovejoy 2014). 405 

The global series are a composition of land surface data and sea surface temperature data. The average temperature over the ocean 406 

shows fluctuations increasing with the time scale (positive 𝐻) up to two years. This corresponds to the ocean weather regime as 407 

discussed in (Lovejoy and Schertzer 2013). The same break in the scaling is found in the global temperature fluctuations, but this 408 

break is subtle, and an overall unique scaling regime can be assumed for the global data. The influence of the ocean on the global 409 

temperature also brings its fluctuation exponent towards higher values (closer to zero) compared to the land surface fluctuations. 410 

That makes the global data more predictable than the land only series. 411 

In the frequency domain, the corresponding spectra for the Mean-G dataset are shown in Fig. 7. The raw spectrum for the natural 412 

variability series is represented in grey. It shows scaling, but with large fluctuations, as expected. To get better estimates of the 413 

exponent we can average the raw spectra using logarithmically spaced bins. These “cleaner” spectra for the series before and after 414 

Fig. 6 Haar fluctuation analysis for the Mean-G (bottom) and Mean-L (top) datasets before (red) and 

after (blue) removing the trends. The reference lines with slopes 𝐻ℎ = −0.064 ± 0.020 for the global 

series and 𝐻ℎ = −0.241 ± 0.017 for the land surface series were obtained from regression of the 

residuals between 2 months and 60 years. The last points were dropped to get better statistics. The units 

for  ∆𝑡 and  ∆𝑇 are months and ºC, respectively. 
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removing the anthropogenic trend are shown in red and blue in the online version, respectively. Notice that they only differ 415 

appreciably for the low-frequency range, corresponding to the removed deterministic trend. The frequency, 𝜔, is given in units of 416 

(138 yrs)−1. The particularly low variabilities at frequencies corresponding to (30 yrs)−1 is an artefact of the 30-years detrending 417 

period used in most of the datasets. The solid black line was obtained from a linear regression on the residues. The exponent 418 

obtained from the absolute value of the slope was 𝛽 = 0.81 ± 0.13. Using the monofractal relation 𝛽 = 1 + 2𝐻, we obtain the 419 

estimate for the fluctuation exponent: 𝐻𝑠 = −0.096 ± 0.063. The dashed reference line with slope corresponding to 𝛽ℎ = 1 +420 

2𝐻ℎ = 0.84 ± 0.05 was included in the figure for comparison. 421 

It is worth mentioning that this very simple approach to removing the warming trend is a special (low memory) case of the much 422 

more general model of linear response theory with a scaling response function proposed by (Hébert et al. 2019). In this work, the 423 

authors directly exploit the stochasticity of the internal variability and the linearity and scaling of the forced response to make 424 

projections based on historical data and a scaling step Climate Response Function that has a long memory. They not only include 425 

anthropogenic effects, but also solar and volcanic forcings. Consequently, the residuals they obtain once these forced components 426 

are removed, do not represent the forced natural variability response, but the internal variability of the system. The authors based 427 

their analysis on the assumption that this internal stochastic component can be approximated by an fGn process. This hypothesis 428 

has been confirmed on GCMs preindustrial control runs outputs where the forcings are not present. 429 

3.3 Fitting fGn to global data 430 

Having obtained the stationary natural variability component, 𝑇nat , for the Mean-G dataset from the residuals of the linear 431 

regression of 𝑇(𝑡) vs. log2[𝜌CO2eq(𝑡) 𝜌CO2eq,pre⁄ ] (Eqs. (26) and (27)), we can now model this series using the theory presented 432 

in Sect. 2 and Appendix A. The first step is to obtain the parameters 𝜇, 𝜎𝑇
2 and 𝐻. We would like to underline that these parameters 433 

describe the – infinite ensemble – fGn stochastic process, but we can only obtain estimates for them based on a single realization 434 

(our globally-averaged temperature time series). In Appendix A we show how to obtain the MLE for 𝜇 and 𝜎𝑇
2. In the case of the 435 

fluctuation exponent, we can repeat the methods presented in Sec. 3.2 and obtain estimates from the slopes in the Haar fluctuations 436 

and the spectrum curves. However, as we mentioned before, it is clear in Figs. 6 and 7 that the error in the estimates is much higher 437 

for these methods than by using MLE or QMLE due to the high variability of the fluctuations. Nevertheless, their advantage over 438 

Fig. 7 Spectra for the Mean-G dataset. In grey is the raw spectrum of the residues. Averages with 

logarithmically spaced bins are shown for the series before (dashed, red) and after (blue) removing the 

trend. The solid black line, with slope −𝛽, was obtained from a linear regression on the residues. The 

reference dashed line with absolute value of the slope 1 + 2𝐻ℎ = 0.84 was included for comparison. 

The frequency, 𝜔, is given in units of (138 yrs)−1. 
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the latter is that they are general and apply not only to Gaussian processes (such as fGn), but also to multifractal or other intermittent 439 

processes with different statistics. The MLE and QMLE methods make the extra assumption of adequacy of the fGn model, which 440 

ultimately must be verified. 441 

To have an idea of how well the stochastic model describes the observational dataset, we created completely synthetic time series 442 

by superimposing fGn simulations on the low-frequency anthropogenic trend. Four randomly chosen simulations are shown in Fig. 443 

8 together with the Mean-G dataset (top). The synthetic series were created using 𝜆2×CO2eq = 2.03 °C and 𝑇0 = −0.379 °C for 444 

the anthropogenic trend, 𝑇anth, and following the procedure described in Appendix A-i. with parameters 𝜇 = 0 °C, 𝜎𝑇 = 0.195 °C 445 

and 𝐻 = −0.060  for simulating 𝑇nat  (see Eqs. (26) and (27)). All these parameters were obtained by fitting the Mean-G 446 

observations in the period 1880 – 2017 (𝑁 = 1656 months). In Appendix B (Table B1), we summarize the parameters obtained 447 

for the ten datasets and the corresponding mean series for global and for land. 448 

Although a visual inspection of Fig. 8 is not a convincing proof of the applicability of the model, it is clear that if we eyeball the 449 

completely synthetic time series with the observational Mean-G dataset, you cannot tell which is which. A simple verification of 450 

the fGn behavior of the detrended data can be done by checking that the biased temporal estimate of the variance, 𝑆𝐷𝑇
2, and the 451 

value obtained using maximum likelihood, 𝜎̂𝑇
2
, satisfy Eq. (25) (derived in Appendix A-iii.).  452 

Following Eq. (25), the temporal estimate of the variance should depend on the number of months, 𝑛, that is used for the estimates: 453 

𝑆𝐷𝑇
2(𝑛) = 𝜎𝑇

2(1 − 𝑛2𝐻). For only one time series, the estimate of 𝑆𝐷𝑇
2(𝑛) is noisy. To reduce the noise, this value can be 454 

estimated using k-segments of the series from 𝑡 = 𝑘 to 𝑡 = 𝑘 + 𝑛 − 1 (each of length 𝑛), and then averaged over the total ensemble 455 

Fig. 8 Four randomly chosen synthetic time series together with the Mean-G dataset (top). The 

simulations were created by superimposing fGn simulations for 𝑇nat  to the low-frequency 

anthropogenic trend, 𝑇anth  (see Appendix A and Eqs. (26) and (27)). The parameters used for the 

simulation (shown in the figure) were obtained by fitting the Mean-G series in the period 1880 – 2017. 
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of segments (in this case 𝑁segments = 𝑁 − 𝑛max, where 𝑁 = 1656 months is the full length of the series and 𝑛max = 120 months 456 

is the maximum length of the segments used): 457 

 ( ) ( ) ( )
max 1

22 2

1max

1 1 1
N n k n

T T t n

k t k

n
SD n SD n T T

n N n n

− + −

= =

−  
= = − −  

  , (28) 458 

where 𝑇̅𝑛 = ∑ 𝑇𝑡
𝑁
𝑡=1 𝑛⁄ , the values 𝑇𝑡 are for the natural variability component of the Mean-G dataset and the factor (𝑛 − 1) 𝑛⁄  459 

accounts for the bias of the length-𝑛 sample estimate, 𝑆𝐷𝑇
2(𝑛), with respect to the length-𝑛 population variance, 〈𝑆𝐷𝑇

2(𝑛)〉. 460 

In Figure 9 we show in red line with circles the empirical values of the standard deviation 〈𝑆𝐷𝑇
2(𝑛)〉1 2⁄  as a function of 𝑛 (obtained 461 

using Eq. (28) for the ensemble of 𝑁 − 𝑛max segments). The function 𝑓𝜎𝑇,𝐻(𝑛) = 𝜎𝑇√(1 − 𝑛2𝐻)(1 − 𝑛−1) (obtained by replacing 462 

the expression for 𝑆𝐷𝑇
2(𝑛) in Eq. (28) and taking the root square) is plotted using 𝜎𝑇 = 𝜎̂𝑇 = 0.195 °C and the following values 463 

of 𝐻: 𝐻𝑓 = −0.069 (solid black line), obtained from the fit of the red curve; 𝐻𝑙 = −0.060 (dashed line), obtained using MLE, and 464 

𝐻𝑞 = −0.080 (dotted line), from the QMLE. The empirical curve for a synthetic realization of Gaussian white noise with standard 465 

deviation 𝜎wn = 0.141 °C was also included for comparison (blue line with squares). 466 

The difference between the red curve for the observational time series and the blue curve for the uncorrelated synthetic series 467 

illustrates the effects of the long-range correlations in the natural variability of the globally-averaged temperature time series. This 468 

strong dependence of the estimates of the variance with the length of the estimation period for values of 𝐻 close to zero could have 469 

an influence in statistical methods that depend on the covariance matrix (e.g. empirical orthogonal function (EOF) and empirical 470 

mode decompositions (EMD)). 471 

The agreement between the 〈𝑆𝐷𝑇
2(𝑛)〉1 2⁄  curve estimated from the data and the function 𝑓𝜎𝑇 ,𝐻(𝑛) – that only depends on the two 472 

parameters 𝜎𝑇 and 𝐻 – is an evidence of the good fit of the fGn stochastic model to the natural variability. At the same time, it 473 

Fig. 9 Empirical values of 〈𝑆𝐷𝑇
2(𝑛)〉1 2⁄  as a function of 𝑛, obtained using Eq. (28) (red line with 

circles). The function 𝑓𝜎𝑇,𝐻(𝑛) = 𝜎𝑇√(1 − 𝑛2𝐻)(1 − 𝑛−1), with 𝜎𝑇 = 𝜎̂𝑇 = 0.195 °C, is plotted for 

three values of 𝐻: 𝐻𝑓 = −0.069 (solid black line), obtained from the fit of the red curve; 𝐻𝑙 = −0.060 

(dashed line), obtained using MLE and 𝐻𝑞 = −0.080 (dotted line), from QMLE. The empirical curve 

for a synthetic realization of Gaussian white noise with variance 𝜎wn
2 = 0.02 °C was also included for 

comparison (blue line with squares). The agreement between the red line with circles and the solid 

black line is an evidence of the fGn behavior of the natural variability. 
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could be used as an alternative method for obtaining the parameters 𝜎𝑇  and 𝐻  by fitting the curve 〈𝑆𝐷𝑇
2(𝑛)〉1 2⁄  based on 474 

observations using the function 𝑓𝜎𝑇 ,𝐻(𝑛). 475 

More detailed statistical tests to check the fit of the model to the data are shown in Appendix B using the theory presented at the 476 

end of Appendix A. The main conclusion is that the global average temperature series can be considered Gaussian as well as their 477 

innovations, while for the case of land average temperature, there are some deviations from Gaussianity. Nevertheless, the residual 478 

autocorrelation functions (RACF) satisfy the normality condition with good enough accuracy for all datasets, corroborating the 479 

whiteness of the innovations and hence that an fGn model can be considered a good approximation in all cases. 480 

3.4 Forecast and validation 481 

3.4.1 The low-frequency anthropogenic component 482 

Ultimately, as a final step to confirm the adequacy of the model to simulating and forecasting global temperature data, we present 483 

the skill obtained from hindcast verifications and compared with the theoretical predictions. First, we should point out that for 484 

predicting the global temperature we need to forecast both the anthropogenic component and the natural variability. Our final 485 

estimator for 𝑘 steps into the future, following Eq. (26), is given by: 486 

 ( ) ( ) ( )anth nat
ˆ ˆ ˆT t k T t k T t k+ = + + + , (29) 487 

where 𝑇̂nat is obtained from Eq. (22) using the theory presented in Sect. 2.2.1. The anthropogenic component, which we model 488 

with a separate low-frequency process must also be forecast. Nevertheless, even if we use persistence of the CO2eq increments, 489 

the error on predicting the low-frequency component is small compared to the error on forecasting the natural variability (for lead 490 

times up to a year or so). For this reason, for obtaining 𝑇̂anth(𝑡 + 𝑘) based on the previous values of the trend, we just assume 491 

persistence of the increments ∆𝑇anth(𝑡, 𝑘) = 𝑇anth(𝑡) − 𝑇anth(𝑡 − 𝑘), that is: 492 

 
( ) ( ) ( )

( ) ( ) ( )

anth anth anth

anth anth anth

ˆ ,

ˆ 2

T t k T k T t k

T t k T t T t k

+ = +

+ = − −
. (30) 493 

For a linear trend, the absolute error 〈|𝑇anth(𝑡 + 𝑘) − 𝑇̂anth(𝑡 + 𝑘)|〉 = 〈|∆𝑇anth(𝑡 + 𝑘, 𝑘) − ∆𝑇anth(𝑡, 𝑘)|〉 = 0. In the case of the 494 

CO2eq trend shown in black in Fig. 5, for small 𝑘, the function is almost linear in a 𝑘-vecinity of any 𝑡. This justifies the rejection 495 

of this error compared to the error on forecasting the natural variability. For reference, the root mean square error (RMSE) using 496 

this method for the anthropogenic component, in the 1044-months hindcast period January 1931 – December 2017, performed 497 

with 𝑘 = 24 months in advance for every month, was of 0.01 °C for all global datasets. 498 

3.4.2 The natural variability component 499 

For the natural variability, the expectation of the RMSE – taking the infinite ensemble average using the theory for fGn – for a 500 

prediction 𝑘 steps into the future is defined by: 501 

 ( ) ( ) ( )
2

theory

nat nat nat
ˆRMSE k T t k T t k = + − +

 
. (31) 502 

According to the definition of MSSS, given by Eq. (12), and the analytical expression, Eq. (24), a theoretical ensemble estimate of 503 

RMSEnat(𝑘), for prediction using a memory of 𝑚 steps, is given by: 504 

 ( ) ( ) ( ) ( ) ( )
1

theory

nat ,RMSE =RMSE 1
T

Tm m m m

H T H H Hk k k k 
−

= −C R C . (32) 505 
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Notice that, unlike the MSSS, this is not only a function of the horizon, 𝑘, the memory, 𝑚, and the exponent, 𝐻, but also of the 506 

specific series we are forecasting due to the presence of the parameter 𝜎𝑇, which must be estimated using Eq. (A5) in Appendix 507 

A. As expected, for given values of 𝑘, 𝑚 and 𝐻, the RMSE is proportional to the amplitude of the series we want to predict. 508 

3.4.3 Validation 509 

To validate our model, we produced series of hindcasts at monthly resolution, each for a different horizon from 1 to 12 months, in 510 

the verification period January 1931 – December 2017. For this hindcast series each subsequent point plotted on the graph was 511 

independently predicted using the information available 𝑘 months before. What changes from month to month is the initialization 512 

date while the lead time (forecast horizon) is kept fixed. Such hindcast series are useful because they show how close the predictions 513 

are to the observations for a given value of 𝑘. The dependence with the horizon of many scores (e.g. the RMSE), are obtained from 514 

the difference between hindcasts series at a fixed 𝑘 and the corresponding series of observations. 515 

StocSIPS uses a fixed annual cycle independent of the low-frequency trend; it . In fact, is this month-to-month correlation what is 516 

exploited as a source of predictability in the stochastic model. Nevertheless, there is always an intrinsic seasonality in the data that 517 

is impossible to completely remove without affecting the scaling behavior of the spectrum. To account for the effects of this 518 

seasonality, we can stratify the observations and the forecasts series to show dependences with the initialization date. 519 

For each horizon, 𝑘, we used a memory 𝑚 = 20𝑘. For example, to predict the average temperature for January 1931 with 𝑘 = 1 520 

month, we used the previous 21 months, including December 1930, and the same was done for each month up to December 2017. 521 

For 𝑘 = 2 months, we used the previous 41 months, including December 1930, to produce the first forecast for February 1931, 522 

and so on. 523 

Examples of the hindcasts series initialized every month, each for a different horizon, are shown in Fig. 10 for the Mean-G natural 524 

variability. In blue, the hindcasts series for 𝑘 = 1, 3 and 6 months (bottom to top). In red we show the verification curve of 525 

observations for the natural variability starting in January 1931. The vertical gridlines correspond to the forecast and verification 526 

for each January; that is, initializing the first day of each January with data up to every December in the bottom panel, up to every 527 

October in the middle panel and up to every July in the top one. This shows how the stratification is done for obtaining dependences 528 

of the skill with the initialization date (shown later). 529 

As can be seen in Fig. 10, there is a reduction of the amplitude and an increasing lag between the observed and forecast time series 530 

as the horizon increases (more noticeable in the top panel). This is due to the model tendency to predict the return rate towards the 531 

mean as a function of 𝐻. Extremes can therefore only be predicted as a consequence of the anthropogenic increase. However, the 532 

general behavior of the temperature is well predicted. 533 

Equation (31) is the definition of the infinite ensemble expectation of the RMSE, for which we get an analytical expression (Eq. 534 

(32)). The all-months verification RMSE can then be computed from the series shown in Fig. 10 as: 535 

 ( ) ( ) ( )( )
1 2

nat nat nat

0

1 ˆRMSE
1

N k

t

k T t k T t k
N k

− +

=

= + − +
− +

   (33) 536 

where 𝑁 = 1044 months (from January 1931 to December 2017) and the number of terms in the sum is reduced in 𝑘 − 1 because 537 

the last verification date (December 2017) is the same for every 𝑘 while the first verification date is 𝑘 months after December 1931 538 

(𝑡 = 0) for each horizon. This equation can be adapted to get the RMSE for each horizon and for each initialization month. 539 
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In Fig. 11a, we show a comparison between the RMSE obtained from the hindcasts of all the months in the verification period 1931 540 

– 2017 using Eq. (33) and the theoretical expected RMSE, which is only a function of 𝜎̂𝑇, 𝐻 and 𝑚 (Eq. (32)). The agreement 541 

between the theory (solid black) and the actual errors (red curve) is another confirmation of the model for the simulation and 542 

prediction of global temperature. In the figure, we also included the values 𝜎̂𝑇 = 0.195 °C and 𝑆𝐷𝑇 = 0.147 °C for the Mean-G 543 

natural variability (dotted and dashed lines respectively). The value of the former is the same as shown in Table B1, while the 544 

value of the latter is slightly different from the value reported there because now it was computed for the verification series in the 545 

period 1931 – 2017 (red curve in Fig. 10). Notice that, for 𝑁 = 1044 months and 𝐻 = −0.060 (see Table B1), 𝑆𝐷𝑇 √1 − 𝑁2𝐻⁄ =546 

0.195 °C, in perfect agreement with the value of 𝜎̂𝑇 for that dataset. 547 

The error for the anthropogenic trend forecast calculated using Eq. (30) is always less than 7% of the RMSEnat shown in Fig. 11a 548 

(see the final paragraph of Sect. 3.4.1). Because of this, its contribution to the overall error, RMSEraw, on forecasting the raw 549 

temperature (natural plus anthropogenic) is lower than 0.4% for all horizons (compare the red-circles and the blue-squares curves 550 

in Fig. 11a). For all practical purposes, RMSEraw ≈ RMSEnat with a high degree of accuracy. 551 

In Fig. 11b, we show a density plot with the RMSE as a function of the forecast horizon and the initialization month. The diagonal 552 

pattern from the top-left corner to the bottom-right is an indication of the intrinsic seasonality in the time-series. This is shown in 553 

detail in the bottom panels figures. 554 

In Fig. 11c, we show graphs of  RMSE vs. initialization month for different forecast horizons (𝑘 = 1, 3, 6 and 12 months). There 555 

is an increase in the RMSE for the forecast of the Boreal winter months associated to the increase in the variability (standard 556 

deviation, 𝑆𝐷𝑇) of the globally-averaged temperature for those months (shown in dashed black line in the bottom panels figures). 557 

In Fig. 11d, we show graphs of RMSE vs. 𝑘 for different initialization months. As expected, there is an increase in the RMSE with 558 

Fig. 10 In blue, series of hindcasts for the Mean-G natural variability initialized every month for 

horizons 𝑘 = 1, 3 and 6 months (bottom to top). In red, the verification curve of observations for the 

natural variability starting in January 1931. The vertical gridlines correspond to the forecast and 

verification for each January; that is, initializing with data up to every December in the bottom panel, 

every October in the middle and every July in the top. 
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𝑘. For large values of 𝑘 the skill of the model is small and the value of the RMSE is close to the standard deviation for that specific 559 

month (dashed black line). The RMSE graph in panel (a) is close to the average of the RMSE graphs in panel (d). It is actually the 560 

all-months MSE the one that is the average of the MSEs for each month (as long as the number of years taking for the average is 561 

the same for every month). 562 

Related to the RMSE score, the mean square skill score (MSSS) is a commonly used metric: 563 

 
ref

MSE
MSSS 1

MSE
= − , (34) 564 

where MSE = RMSE2 is computed using Eq. (33) and MSEref is the mean square error of some reference forecast. 565 

Fig. 11 RMSE of StocSIPS forecasts for the Mean-G dataset. (a) Curves of RMSEnat(𝑘) (red circles) 

and RMSEraw(𝑘)  (blue squares), for the natural variability component and for the raw series, 

respectively. The curves were obtained using Eq. (33) from the hindcasts of the Mean-G dataset 

including all the months in the verification period 1931 – 2017. The difference between the two is 

negligible. The theoretical expected RMSEnat
theory(𝑘) (solid black), given by Eq. (32), is also shown for 

comparison. The values of 𝜎̂𝑇 (Table B1) and 𝑆𝐷𝑇 for the Mean-G natural variability were included for 

reference (dotted and dashed lines, respectively). (b) Density plot with the RMSE as a function of the 

forecast horizon and the initialization month. The diagonal pattern from the top-left corner to the 

bottom-right is an indication of the intrinsic seasonality in the time-series. (c) Graphs of  RMSE vs. 

initialization month for different forecast horizons (𝑘 = 1, 3, 6 and 12 months). There is an increase in 

the RMSE for the forecast of the Boreal winter months associated to the increase in the standard 

deviation, 𝑆𝐷𝑇, of the globally-averaged temperature for those months (shown in dashed black line in 

the bottom panels figures). (d) Graphs of RMSE vs. 𝑘 for different initialization months. For large 

values of 𝑘 the skill of the model is small and the value of the RMSE is close to the standard deviation 

for that specific month (dashed black line). The RMSE graph in panel (a) is close to the average of the 

RMSE graphs in panel (d). 
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The climatology – constant annual cycle taken from the average in a given reference period of at least 30 years – is commonly 566 

used as reference forecast. In this case, MSEref = 𝑆𝐷raw
2, is the variance of the raw series: 567 

 ( )
22 2 2

raw anth nat anth TSD T T T SD= + = +   (35) 568 

(assuming that the natural and anthropogenic variabilities are independent) and we call MSSS = MSSSraw. 569 

If we take as reference the anthropogenic trend forecast, then MSEref = 𝑆𝐷𝑇
2, is the variance of the natural variability component 570 

(detrended series, 𝑇nat) and we name MSSS = MSSSnat. This would be the same as the skill on forecasting the detrended series 571 

taking as reference forecast its mean value. 572 

Using the theoretical expressions for 𝑆𝐷𝑇
2 and for RMSE = RMSEnat

theory(𝑘)  (Eqs. (25) and (32), respectively) we can get an 573 

analytical expression for MSSSnat: 574 
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, (36) 575 

where MSSS𝐻
𝑚(𝑘) was defined for the infinite ensemble average in Eq. (24) (Eq. (13) for the continuous-time case). Notice that 576 

MSSSnat
theory(𝑘) is not only a function of the fluctuation exponent, 𝐻, and the memory used for the forecasts, 𝑚, but also of the 577 

length of the verification period, 𝑁. For an infinite series, the ergodicity of the system is verified; i.e. the temporal average is equal 578 

to the ensemble average: MSSSnat
theory(𝑘) = MSSS𝐻

𝑚(𝑘) (recall 𝐻 < 0). We can check the agreement between the theoretical result 579 

(Eq. (36)) and the MSSSnat obtained from hindcast to verify the validity of the model. 580 

The anomaly correlation coefficient (ACC) is another commonly used verification score. In this case, we can also obtain the ACC 581 

for the raw or for the detrended series: 582 
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( ) ( )
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ˆ
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T t k T t k
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SD T t

+ +
, (37) 583 

where we assume that 𝑇(𝑡) and the predictor 𝑇̂(𝑡) are zero mean anomalies, the overbars indicate temporal average for a constant 584 

forecast horizon, 𝑘, and either all the subscripts are “nat” or all are “raw” depending on if we forecast the detrended or the raw 585 

anomalies, respectively. In the latter case, spurious high values of the ACC (similarly for the MSSS) are found due to the presence 586 

of the deterministic trend. This is a very common flaw found throughout the literature, where this score is routinely reported for 587 

undetrended anomalies. 588 

It is useful to note the relationship between the ACC and MSSS obtained from minimum mean square predictions. It can be easily 589 

seen from the orthogonality principle 〈𝑇̂(𝑇 − 𝑇̂)〉 = 0, that the stochastic predictions satisfy 590 

 ( ) ( )nat natACC = MSSSk k   (38) 591 

for any horizon 𝑘. This relation can also be used to check the agreement between the theoretical predictions of the model and the 592 

actual results obtained from hindcasts verification. 593 

In Fig. 12 we summarize the results for the MSSS (top) and the ACC (bottom). In Fig. 12a, we show curves of MSSS vs. 𝑘 for the 594 

Mean-G dataset considering all months in the verification period 1931 – 2017. In red line with circles, the curve for MSSSnat taking 595 

as reference the anthropogenic trend forecast, for which MSEref = 𝑆𝐷𝑇
2 (𝑆𝐷𝑇 = 0.147 °C). In green line with triangles, the values 596 

for MSSSraw taking as reference the climatology forecast with MSEref = 𝑆𝐷raw
2 (𝑆𝐷raw = 0.293 °C). The theoretical expected 597 

MSSSnat
theory(𝑘) (solid black), given by Eq. (36), is also shown for comparison. There is relatively good agreement between this 598 

theoretical prediction of the model and the MSSS values obtained from the verification. The asymptotic value of MSSSnat
theory(𝑘) 599 

for 𝑁 → ∞ (given by Eq. (24)) is shown in dotted line with squares (dashed line for the continuous-time case, Eq. (13)). The longer 600 
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the verification period the closer will be the MSSS to that asymptotic value. For the discrete theoretical curves (solid black line and 601 

dotted black with squares), we used a memory 𝑚 = 20𝑘. The small difference for 𝑘 = 1 month, between this curve and the one 602 

for the continuous case (solid black) is due to the high-frequency information loss in the discretization process. 603 

In Fig. 12c, we show curves of ACCnat (red circles) and ACCraw (green triangles) obtained from Eq. (37). Here, we can appreciate 604 

the spuriously high correlation values of ACCraw compared to the ACCnat due to the presence of the anthropogenic trend. The 605 

values of √MSSSnat (blue squares) were included to check the consistency of the theoretical relationship given by Eq. (38); we see 606 

that it is relatively well satisfied, confirming the validity of the model. 607 

Fig. 12 𝑀𝑆𝑆𝑆 and 𝐴𝐶𝐶 of StocSIPS forecasts for the Mean-G dataset. (a) Curves of MSSS vs. 𝑘 for the 

Mean-G dataset considering all months in the verification period 1931 – 2017. In red line with circles, 

the curve for MSSSnat taking as reference the anthropogenic trend forecast. In green line with triangles, 

the values for MSSSraw  taking as reference the climatology forecast. The theoretical expected 

MSSSnat
theory(𝑘) (solid black), given by Eq. (36), is also shown for comparison. The asymptotic value 

for 𝑁 → ∞ (given by Eq. (24)) is shown in dotted line with squares (dashed line for the continuous-

time case, Eq. (13)). The longer the verification period the closer will be the MSSS to that asymptotic 

value. (b) Density plot showing the MSSS as a function of the forecast horizon and the initialization 

month. (c) Curves of ACCnat (red circles) and ACCraw (green triangles) as a function of the forecast 

horizon obtained from Eq. (37). The values of √MSSSnat (blue squares) were included to check the 

consistency of the theoretical relationship given by Eq. (38). (d) Density plot of the ACC as a function 

of the forecast horizon and the initialization month. The diagonal patterns from the top-left corner to 

the bottom-right in panels (b) and (d) are consequences of the intrinsic seasonality in the time-series. 
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In the right panels of Fig. 12, we show density plots with the MSSS and the ACC (panels (b) and (d), respectively) as a function of 608 

the forecast horizon and the initialization month. As we already showed for the RMSE, there are diagonal patterns from the top-609 

left corner to the bottom-right as a consequence of the seasonality in the globally-averaged temperature anomalies. Nevertheless, 610 

for the MSSS and the ACC, these patterns are relatively less significative compared to the ones in the RMSE because – roughly 611 

speaking – both scores are functions of the ratio RMSEnat 𝑆𝐷𝑇⁄ , reducing the impact of the variation of the standard deviation of 612 

each individual month (see Fig. 11c). Some results of the hindcast validation are summarized in Table C1 for the twelve datasets, 613 

including the mean series for the global and the land surface. 614 

3.4.4 Parametric probability forecast 615 

Probability forecasts from long-term prediction dynamical models are usually obtained by fitting probability distributions to the 616 

ensemble forecast for each month and deriving probabilities of three climatologically equiprobable categories: below normal, near 617 

normal and above normal conditions. In general, the form of the distribution and the skill of the forecast is affected by the size of 618 

the ensemble. One of the main advantages of StocSIPS over conventional numerical models is that, by its inherent stochastic 619 

nature, the infinite ensemble parametric probability forecast can be obtained analytically without the need of simulating any 620 

individual realization. Following the results presented in Sect. 2, the theoretical probability distribution forecast at horizon 𝑘, taking 621 

data up to time 𝑡, is a Gaussian with mean 𝜇𝑓 = 𝑇̂(𝑡 + 𝑘) given by Eq. (29) and standard deviation 𝜎𝑓(𝑘) = RMSE𝐻,σT
𝑚 (𝑘) given 622 

by Eq. (32) (we neglected the error in the projection of the anthropogenic trend). In this section we only consider results for the 623 

full time series without stratification of the data. The theoretical expression for 𝜎𝑓(𝑘), obtained from the results for an infinite 624 

ensemble, only applies in this case. 625 

The “reliability” is defined as the consistency or repeatability of the probabilistic forecast. In order to evaluate the reliability of the 626 

probabilistic forecast of an ensemble model, the ensemble spread score (ESS) is commonly used as a summarizing metric. The 627 

ensemble spread score (ESS) is defined as the ratio between the temporal mean of the intra-ensemble variance, 𝜎ensemble
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , and the 628 

mean square error between the ensemble mean and the observations (Palmer et al. 2006; Keller and Hense 2011; Pasternack et al. 629 

2018): 630 

 
2

ensembleESS
MSE


= . (39) 631 

In the case of StocSIPS, 𝜎ensemble
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜎𝑓

2 is obtained analytically using Eq. (32) and MSE = RMSE2 is obtained from the hindcasts 632 

using Eq. (33). 633 

Following (Palmer et al. 2006), an ESS of 1 indicates perfect reliability. The forecast is “overconfident” when ESS < 1; i.e. the 634 

ensemble spread underestimates forecast error. If the ensemble spread is greater than the model error (ESS > 1), the forecast is 635 

“overdispersive” and the forecast spread overestimates forecast error. In Fig. 11a, we showed that there is good agreement between 636 

the theoretical estimate RMSE𝐻,σT
𝑚 (𝑘) = 𝜎𝑓(𝑘) and the hindcast error RMSEnat(𝑘) for all horizons 𝑘, or what is the same between 637 

𝜎ensemble
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   and MSE in Eq. (42). This gives a value of ESS ≈ 1, so StocSIPS is a nearly perfectly reliable system without need of 638 

recalibration of the forecast probability distribution. 639 

Examples of probability forecasts for July 1984 for the natural variability component of the Mean-G dataset are shown in Fig. 13 640 

for horizons 𝑘 = 1 and 3 months (left and right panels, respectively). That is, using data up to June 1984 for the 𝑘 = 1 month 641 

forecast and up to April 1984 for 𝑘 = 3  months. The normal probability density function (PDF) in grey represents the 642 

climatological distribution of the monthly temperatures for the detrended anomalies of the Mean-G dataset for the full period 1931 643 

– 2017, for which 𝜎clim = 𝑆𝐷𝑇 = 0.147 °C. The terciles of the climatological distribution are indicated by vertical dashed lines. 644 
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These vertical lines define three equiprobable categories of above normal, near normal, and below normal monthly temperatures 645 

observed in the verification period. The forecast distribution is indicated by the black curve with the forecast mean 𝜇𝑓 =646 

𝑇̂(Jul 1984) = −0.118 °C and standard deviation 𝜎𝑓 = RMSE𝐻,σT
𝑚 (𝑘) = 0.101 °C for 𝑘 = 1 month (left panel) and 𝜇𝑓 = −0.063 647 

°C, 𝜎𝑓 = 0.122 °C for 𝑘 = 3 months (right panel). The areas under the forecast PDF in different colors indicate probabilities of 648 

below normal (blue), near normal (yellow), and above normal (pink) temperatures. These probabilities are summarized in the top-649 

left corner as bar plots. The climatological probability of 33% is indicated by the horizontal dashed line. The observed temperature 650 

for that specific date, 𝑇obs = −0.191 °C, is represented by the vertical green line. The forecast distributions for 𝑘 = 1 month are 651 

sharper than for 𝑘 = 3 months. As expected, the confidence of the probabilistic forecast decreases as the lead time increases and 652 

they become more conservative. 653 

The verification of the probabilistic forecast in categories (above, near and below normal) is done using 3×3 contingency tables 654 

(Stanski et al. 1989). The forecast and observed categories are simply classified in a table of three rows and three columns. There 655 

is a row for each observed category and a column for each forecast category. For each month forecast, one is added to the grid 656 

element of the contingency table according to the intersection of the forecast category and the observed category. In Table 1 we 657 

show the contingency table for the 𝑘 = 1 month forecast of the natural variability anomalies, 𝑇nat, of the Mean-G dataset (red 658 

curves in Fig. 10). The 1044 months period (Jan 1931 – Dec 2017) was used for verification. The climatological distribution was 659 

defined using the mean and standard deviation of the detrended series over that period. 660 

 661 

 662 

Fig. 13 Example of parametric probability forecasts for July 1984 for the natural variability component 

of the Mean-G dataset for horizons 𝑘 = 1 and 3 months (left and right panels, respectively). That is, 

using data up to June 1984 for the 𝑘 = 1 month forecast and up to April 1984 for 𝑘 = 3 months. The 

normal probability density function in grey represents the climatological distribution of the monthly 

temperatures for the detrended anomalies of the Mean-G dataset for the full period 1931 – 2017. The 

terciles of the climatological distribution are indicated by vertical dashed lines. The colored areas under 

the forecast density function are proportional to the forecast probabilities for each category: below 

normal (blue), near normal (yellow) and above normal (pink). These probabilities are summarized in 

the top-left corner as bar plots. The climatological probability of 33% is indicated by the horizontal 

dashed line. The observed temperature for that specific date, 𝑇obs = −0.198 °C, is represented by the 

vertical green line. The parameters for all the distributions are included in the legends. 
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Table 1 Contingency table for the 𝑘 = 1 month forecast of the natural variability anomalies, 𝑇nat, of the Mean-G dataset (red curves in Fig. 10). 663 
The 1044 months period (Jan 1931 – Dec 2017) was used for verification. The climatological distribution was defined using the mean and 664 
standard deviation of the detrended series over that period (𝜎clim = 𝑆𝐷𝑇 = 0.147 °C). 665 

Contingency table for the 

detrended anomalies, 𝑇nat    

Forecasts 
Total 

Below Normal Above 

Observations 

Below 272 77 9 358 

Normal 102 160 90 352 

Above 15 69 250 334 

Total 389 306 349 1044 

 666 

There are many scores that can be obtained from the contingency table (Stanski et al. 1989). In this paper we used the percent 667 

correct (PC) obtained from the elements in the main diagonal (shown in bold in Table 3). This score, often called accuracy, is very 668 

intuitive and it counts, overall, what percentage of the category forecasts were correct. From Table 1, we obtain the values PCnat =669 

100(272 + 160 + 250)/1044 ≈ 65%. We can obtain contingency tables for all 𝑘. The dependence of the PC with 𝑘, is shown 670 

in Fig. 14 for the forecasts of the detrended anomalies, 𝑇nat (blue line with squares in the figure). The dashed line at 33.3% is a 671 

reference showing the skill of the climatological forecast. 672 

The thresholds for the three equiprobable categories, above normal, near normal and below normal, will depend on the base-line 673 

of zero temperature and the standard deviation of the reference climatological distribution used. This will affect the distribution of 674 

events in the contingency table and consequently, the PC score obtained even though the forecast system has not changed. In that 675 

sense, the PC is a relative score. To avoid this dependence we could use absolute scores (independent of the climatology used), 676 

such as the ignorance score or the continuous ranked probability score (CRPS) (Hersbach 2000; Gneiting et al. 2005). The latter is 677 

the one we used in this paper for evaluating the quality of the probability forecasts of StocSIPS. 678 

The CRPS for a forecast initialized at time 𝑡 with horizon 𝑘 is defined as: 679 

 ( ) ( ) ( )
2

crps , ,f ot k P t k x P t k x dx



−

 + = + − +  , (40) 680 

where 𝑃𝑓(𝑡, 𝑥) is the cumulative forecast distribution with mean 𝜇𝑓 = 𝑇̂(𝑡 + 𝑘) given by Eq. (29) and standard deviation 𝜎𝑓(𝑘) =681 

RMSE𝐻,σT
𝑚 (𝑘) and 𝑃𝑜(𝑡 + 𝑘, 𝑥) = 𝐻[𝑥 − 𝑇obs(𝑡 + 𝑘)] is the cumulative observed distribution defined in terms of the Heaviside 682 

Fig. 14 PC as a function of 𝑘 for the forecasts of the detrended anomalies, 𝑇nat (blue line with squares 

in the figure). The dashed line at 33.3% is a reference showing the skill of the climatological forecast. 
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function 𝐻(𝑥). The CRPS can be determined for a single forecast, but a more accurate value is determined from a temporal average 683 

of many forecasts. The time mean CRPS as a function of horizon 𝑘 is: 684 

 ( ) ( )
0

1
CRPS crps

1

N k

t

k t k
N k

−

=

= +
− +

 . (41) 685 

The CRPS is a negatively oriented measure of forecast accuracy, similar to the RMSE for deterministic ensemble mean forecasts; 686 

that is, smaller values indicate better skill. In fact, for deterministic forecasts, where 𝜎𝑓 → 0, the crps in Eq. (40) reduces to the 687 

absolute error: AE = |𝑇obs − 𝑇̂|. If we assume that 𝑃𝑓 is the cumulative distribution function (CDF) of a normal distribution with 688 

mean 𝜇𝑓 and standard deviation 𝜎𝑓, a closed form for crps can be derived by repeatedly integrating by parts in Eq. (40) (Gneiting 689 

et al. 2005): 690 
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, (42) 691 

where 𝜑(∙) and Φ(∙) denote the PDF and the CDF, respectively, of the normal distribution with mean 0 and variance 1 evaluated 692 

at the normalized prediction error, 𝜀𝑛 = (𝑇obs − 𝜇𝑓) 𝜎𝑓⁄ . This expression is very useful for obtaining the CRPS of large or many 693 

verification series and for calibrating ensemble forecasts from its optimization. In this paper, we will use it for deriving a general 694 

result that relates the CRPS with the RMSE of the ensemble mean of Gaussian probability forecasts. 695 

Let us assume that the ensemble-mean forecast error, 𝜀 = 𝑇obs − 𝜇𝑓, follows a Gaussian distribution with zero mean and standard 696 

deviation 𝜎𝜀. Notice that 𝜎𝑓 ≠ 𝜎𝜀; the former is given by the intra-ensemble spread, 𝜎𝑓 = 𝜎ensemble, and the latter can be estimated 697 

from the RMSE between ensemble mean and observation. The CRPS and the RMSE can be related by averaging Eq. (42) for all 698 

possible values of the error, 𝜀: 699 

 ( ) ( )crps crpst k t k d
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where 𝜑(∙) is defined as in Eq. (42). If we now replace Eq. (42) in Eq. (43) and integrate by parts, we obtain: 701 
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. (44) 702 

The average for all possible values of the error, 〈 . 〉𝜀 , can be approximated by the time average, Eq. (41), for long enough 703 

verification periods. Moreover, we can approximate 𝜎𝑓 and 𝜎𝜀 by their corresponding time-average estimates: 𝜎𝑓
2 ≈ 𝜎ensemble

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 704 

𝜎𝜀 = RMSE. Using the definition of ESS = 𝜎ensemble
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ MSE⁄  (Eq. (41)), we can finally rewrite Eq. (44) as: 705 

 ( )
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( )
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CRPS ESS
k

k 


= , (45) 706 

where 𝜆(ESS) = √2(1 + ESS) − √ESS . The function 𝜆(ESS)  takes the minimum value 𝜆min = 1  for a system with perfect 707 

reliability where ESS = 1. For any other value of ESS , CRPS > RMSE √𝜋⁄ . This result shows that, for ensemble prediction 708 

systems, the optimal way of producing parametric probabilistic forecasts, assuming a Gaussian distribution, is by calculating the 709 

standard deviation of the forecast distribution from the hindcast period rather than just from the current forecast ensemble. This 710 

result agrees with previous studies (Kharin and Zwiers 2003; Kharin et al. 2009, 2017), which reach the same conclusion from the 711 

optimization of other standard probabilistic skill measures (e.g., the Brier skill score). 712 

As we mentioned before, StocSIPS is a system with nearly perfect reliability and it assumes, by hypothesis, the Gaussianity of the 713 

errors. In that sense, the analytical expression for RMSE𝐻,σT
𝑚 (𝑘) (Eq. (32)) can be used to obtain a theoretical expression for 714 
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CRPS(𝑘) in Eq. (45). At the same time, the verification of this expression through a comparison between the values of RMSE(𝑘) 715 

and CRPS(𝑘) obtained from hindcasts can be used to check the validity of the model. 716 

In Figure 15 we show the time mean CRPS as a function of 𝑘, calculated in the verification period 1931 – 2017 for the probabilistic 717 

forecast of the monthly temperature anomalies of the Mean-G dataset. In the figure we show the results of the forecast of the raw 718 

anomalies (red circles), for which both the natural variability and the anthropogenic trend have to be forecast. Similarly to the 719 

previous results for the RMSE, the difference with the score of the forecast of the detrended anomalies is negligible (CRPSraw ≈720 

CRPSnat), corresponding to the very small error on the projection of the trend compared to the error on the prediction of the 721 

detrended anomalies. The line in blue with empty squares, almost coincident with the red line, shows the function 722 

RMSEraw(𝑘) √𝜋⁄ , in perfect agreement with the theoretical prediction for the optimal value 𝜆min = 1 in Eq. (45), corresponding 723 

to perfect reliability. In the green triangles we included the CRPS of the reference climatology forecast of the natural variability 724 

component (CRPSnat
clim = 0.083 °C). That is, using the fixed climatological probability distribution (shown in grey in Fig. 13), with 725 

zero mean and standard deviation 𝜎clim = 0.147 °C, to forecast the detrended anomalies. If we use the same climatological 726 

distribution for forecasting the raw anomalies, we obtain the much larger value CRPSraw
clim = 0.181 °C. 727 

3.5 Comparison with GCMs 728 

According to the World Meteorological Organization (WMO) (http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php), there 729 

are currently fifteen major centers providing global seasonal forecasts. Thirteen of them have been officially designated by the 730 

WMO as Global Producing Centres for Long-Range Forecasts (GPCLRFs). The Meteorological Service of Canada (MSC) 731 

contributes with the Canadian Seasonal to Interannual Prediction System (CanSIPS) (Merryfield et al. 2011, 2013). 732 

CanSIPS is a multi-model ensemble (MME) system using 10 members from each of two climate models (CanCM3 and CanCM4) 733 

developed by the Canadian Centre for Climate Modelling and Analysis (CCCma) for a total ensemble size of 20 realizations. It is 734 

a fully coupled atmosphere-ocean-ice-land prediction system relying on operational data assimilation for the initial state of the 735 

atmosphere, sea surface temperature and sea ice. 736 

Fig. 15 CRPS as a function of the forecast horizon, 𝑘, calculated in the verification period 1931 – 2017 

for the probabilistic forecast of the monthly temperature anomalies of the Mean-G dataset.  In empty 

blue squares we show the CRPS for the forecast of the raw anomalies, for which both the natural 

variability and the anthropogenic trend have to be forecast. The line in blue with squares, almost 

coincident with the red line, shows the function RMSEraw(𝑘) √𝜋⁄ , in perfect agreement with the 

theoretical prediction for the optimal value 𝜆min = 1 in Eq. (45). In green triangles we included the 

CRPS of the reference climatology forecast of the detrended anomalies, CRPSnat
clim = 0.083 °C. 
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To evaluate forecasts and compare StocSIPS with CanSIPS, we accessed the publicly available series of hindcasts of CanSIPS 737 

covering the period 1981 – 2010 (CanSIPS 2016). The fields, available on 145 × 73 latitude-longitude grids at resolutions of 2.5° 738 

× 2.5° for each of the 20 ensemble members, were area-weight averaged to obtain global mean series of hindcasts at monthly 739 

resolution. CanSIPS produces forecast at the beginning of every month for the average value of that month and the next eleven 740 

months; i.e. for lead times from 0 to 11 months for each initialization date. In our case, that would correspond to forecast horizons 741 

(number of periods ahead that are forecasted) from 1 to 12 months. In the verification for 𝑘 = 1 month (lead zero), the hindcast 742 

period is January 1981 – December 2010; for 𝑘 = 2 months (lead one), the hindcast period is February 1981 – January 2011, and 743 

so on. This way, all the 12 series of hindcasts (one for each horizon) have a length of 360 months. 744 

An optimal use of the dynamical model can be obtained after advanced postprocessing and calibration to reduce the bias of the 745 

model (Crochemore et al. 2016; Kharin et al. 2017; Van Schaeybroeck and Vannitsem 2018; Pasternack et al. 2018). We do not 746 

pretend here to make an exhaustive use of these calibration techniques. To keep the comparison simple, we followed the 747 

postprocessing for CanSIPS described in sections 3.a and 3.b of (Kharin et al. 2017) for deterministic and parametric probability 748 

forecasts, respectively. The statistical adjustment used by the authors is based on a linear rescaling of the ensemble mean and 749 

standard deviation of the anomaly forecast. The regression coefficients are obtained by minimizing the MSE and CRPS of the 750 

ensemble forecast in some verification period. 751 

It can be easily shown that, after the recalibration, their method will lead to the optimal expression for CRPS given by Eq. (45) 752 

when ESS = 1: CRPS = RMSE √𝜋⁄ . The recalibration method can be reduced to using – as optimal deterministic predictor – the 753 

projection of the ensemble mean that minimizes the MSE in some verification period. Then, for the probability distribution forecast, 754 

the standard deviation is made equal to the RMSE of the adjusted deterministic forecast instead of calculating it from the intra-755 

Fig. 16 One example of forecast for the 12 months following April 1982 for both StocSIPS and 

CanSIPS. In red we show the verification curve of observations for the Mean-G dataset. In blue, the 

median hindcasts for StocSIPS, with the corresponding 95% confidence interval based on the RMSE 

for the verification period. The ensemble mean for CanSIPS is shown in black, with each of the 20 

members shown in dashed light colors and the 95% confidence interval based on the RMSE of the 

hindcasts represented in grey. The CO2eq trend for the Mean-G dataset (green line) was added as a 

reference of the long-term equilibrium of the temperature fluctuations. 
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ensemble spread. In that sense, the ensemble members are only useful for obtaining the ensemble mean. They do not contribute 756 

further to the forecast as the optimal probabilistic scores are obtained from the condition ESS = 1. 757 

In their paper, (Kharin et al. 2017) also show that the optimal average skill scores are obtained when time-invariant (independent 758 

of the season) coefficients are used. We will use this result here and, instead of using only 30 years for estimating individual 759 

coefficients for each month, we use the monthly series to estimate constant coefficients based on 360 months that only depend on 760 

the lead time. These coefficients are more stable and do not significantly degrade the accuracy of the forecast due to sampling 761 

errors as would season-dependent coefficients. 762 

In Fig. 16, we show one example of forecast for the 12 months following April 1982 for both StocSIPS and CanSIPS. In red we 763 

show the verification curve of observations for the Mean-G dataset. In blue, the median hindcasts for StocSIPS, with the 764 

corresponding 95% confidence interval based on the RMSE for the verification period. The ensemble mean for CanSIPS is shown 765 

in black, with each of the 20 members shown in dashed light colors and the 95% confidence interval based on the RMSE of the 766 

hindcasts represented in grey. The CO2eq trend for the Mean-G dataset (green line) was added as a reference of the long-term 767 

equilibrium of the temperature fluctuations. 768 

As expected, the dispersion of the different ensemble members for the dynamical model increases as the horizon increases, which 769 

shows the stochastic-like character of GCMs for long-term predictions with the consequent loss in skill. Despite this increase in 770 

the spread of the ensemble, the dynamical model is underdispersive for all horizons. The ESS (see Eq. (39) in Sect. 3.4.4.) is in the 771 

range 0.57 – 0.74 for all lead times, except for zero months lead time where ESS = 0.40. (Kharin et al. 2017) show that inflating 772 

the ensemble spread to satisfy the condition ESS = 1, results in more conservative estimates for the forecast probabilities of the 773 

three categories and improved reliability of the probability forecast and overall probabilistic skill scores. 774 

3.5.1 Deterministic forecast comparison and seasonality 775 

In this section we present scores for the deterministic forecast (ensemble mean forecast) for both models using for verification the 776 

Mean-G dataset in the period 1981 – 2010. In all cases we used the calibrated ensemble mean for CanSIPS, unless stated otherwise. 777 

In Fig. 17, we show density plots of the RMSE as a function of the forecast horizon and the initialization month for StocSIPS and 778 

CanSIPS (panels (a) and (b), respectively). For both models, there is a seasonality pattern with large errors during the Boreal winter 779 

months. In the case of StocSIPS, the largest values of the RMSE are found for February, January and March, in that order, while 780 

CanSIPS has the largest errors for the forecasts of November and February. In Fig. 17c, we show the difference between CanSIPS 781 

RMSE and StocSIPS RMSE; positive values indicate that StocSIPS has better skill. StocSIPS outperforms CanSIPS for most of the 782 

horizons and initialization months, except for the forecasts of January and February and some other initialization dates for 𝑘 = 1 783 

month. The overall values of RMSE vs. 𝑘 – averaging for all the months in the verification period independently of the initialization 784 

date – are shown in Fig. 17d. The curve for StocSIPS is represented in red line with solid squares. For CanSIPS, we show in solid 785 

blue line with empty squares the RMSE for the calibrated ensemble mean and in dashed blue line with solid circles the values for 786 

the unadjusted model. We can see that the improvement in the RMSE due to the recalibration is very small. We included, for 787 

comparison, the curves obtained from hindcasts using persistence (black-triangles). That is, for horizon 𝑘, assuming that the 788 

temperature 𝑘 months into the future is predicted by the present value. The standard deviations for the detrended and for the raw 789 

series in the verification period were also included for reference (𝑆𝐷𝑇  and 𝑆𝐷raw, respectively). 790 
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Similar results are reported in Fig. 18 for the MSSS and for the ACC. From the density plots (panels (a) and (c)) we can reach the 791 

same conclusion based on these scores: StocSIPS is better than CanSIPS for most of the horizons and initialization months, except 792 

for the forecasts of January and February. In panels (b) and (d), we show the all-months average scores without considering the 793 

initialization dates. The results for StocSIPS are shown in red line with solid squares and for CanSIPS in blue line with circles. In 794 

the MSSS graphs, we only show the results for the calibrated model. For the ACC, as the calibration for CanSIPS is just a rescaling 795 

of the ensemble mean, the correlations with or without the calibration are the same. The curves obtained from hindcasts using 796 

persistence were also included for comparison (black-triangles). 797 

For the MSSS, we choose the climatology as reference forecast with MSEref = 𝑆𝐷raw
2 being the variance of the raw series. We 798 

use accordingly the notation MSSS = MSSSraw. The horizontal line (green empty squares) included in the graph represents the 799 

value of skill obtained by projecting the CO2eq trend with respect to the climatological forecast. The MSSS can be easily computed 800 

Fig. 17 Density plots of the RMSE as a function of the forecast horizon, 𝑘, and the initialization month 

for StocSIPS and CanSIPS (panels (a) and (b), respectively). For both models, there is a seasonality 

pattern with large errors during the Boreal winter months. In panel (c), we show the difference between 

CanSIPS and StocSIPS RMSE ; positive values indicate that StocSIPS has better skill. StocSIPS 

outperforms CanSIPS for most of the horizons and initialization months, except for the forecasts of 

January and February and some other initialization dates for 𝑘 = 1 month. The overall values of RMSE 

vs. 𝑘 – averaging for all the months in the verification period independently of the initialization date – 

are shown panel (d). The curve for StocSIPS is represented in red squares. For CanSIPS, we show in 

solid blue line with empty squares the scores for the calibrated ensemble mean and in dashed blue line 

with solid circles the RMSE for the unadjusted model. We can see that the improvement in the RMSE 

due to the recalibration is very small. We included, for comparison, the curve obtained from hindcasts 

using persistence (black-triangles). The standard deviations for the detrended and for the raw series in 

the verification period were also included for reference (𝑆𝐷𝑇 and 𝑆𝐷raw, respectively). 
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as MSSSraw
CO2eq trend

= 1 − 𝑆𝐷𝑇
2 𝑆𝐷raw

2⁄  (≈ 0.59 for the Mean-G dataset) because the errors of the forecast would be the amplitude 801 

of the detrended anomalies. The values obtained using this equation do not vary significantly for different horizons in the period 802 

analyzed. The extra contribution in the skill for StocSIPS comes from the forecast of the natural variability component. 803 

The ACC, in the case of persistence, is the same as the autocorrelation function with lag 𝑘 of the reference series. As mentioned 804 

before, the values obtained for the ACC (even for the poor persistence forecasts), are spuriously high due to the anthropogenic 805 

trends superimposed on the series. Many authors report similarly high values without taking this fact into consideration. More 806 

realistic values would be obtained for the forecast of the detrended series, but there is no impartial way of removing the 807 

anthropogenic component for CanSIPS. The anthropogenic forcing is an intrinsic part of the GCM and to have a prediction of the 808 

natural variability only, we would have to remove its contribution before running the dynamical model. The autocorrelation 809 

Fig. 18 Density plots for the MSSS and for the ACC (panels (a) and (c), respectively) as a function of 

the forecast horizon and the initialization date. The positive values indicate that StocSIPS is better than 

CanSIPS for most of the horizons and initialization months, except for the forecasts of January and 

February. In panels (b) and (d), we show the all-months average scores without considering the 

initialization dates. The results for StocSIPS are shown in red line with solid squares and for CanSIPS 

in blue line with circles. In the MSSS graphs, we only show the results for the calibrated model. The 

horizontal line (green line with empty squares) included in the graph represents the value of skill 

obtained by projecting the CO2eq trend with respect to the climatological forecast. For the ACC, as the 

calibration for CanSIPS is just a rescaling of the ensemble mean, the correlations with or without the 

calibration are the same. The curves obtained from hindcasts using persistence were also included for 

comparison (black-triangles). The autocorrelation function for the detrended series (natural variability 

component), which is the same as the ACC for the forecast of that series using persistence, was included 

for comparison as a dashed black curve (ACCpersistence
nat  in the figure). 
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function for the detrended series (natural variability component), which is the same as the ACC for the forecast of that series using 810 

persistence, was included for comparison as a dashed black curve (ACCpersistence
nat  in the figure). 811 

With respect to the comparison of the two models for the deterministic forecast, the conclusion is clear: StocSIPS presents better 812 

skill than CanSIPS in average for all the measures used and for all horizons except for 𝑘 = 1 month, where CanSIPS is slightly 813 

better. This was expected as, for the case of GCMs, one month is still close to the deterministic predictability limit imposed by the 814 

chaotic behavior of the system (~10 days for the atmosphere and 1 – 2 years for the ocean). After one month, the relative advantage 815 

of StocSIPS increases as the horizon increases. The reduced skill of StocSIPS for January and February are related to the intrinsic 816 

seasonality of the globally-averaged temperature. In future work, this seasonality in the variability could be removed by pre-817 

processing, presumably resulting in further error reduction. 818 

3.5.2 Probabilistic forecast comparison 819 

In the previous section we showed how the two systems (CanSIPS and StocSIPS) compare for deterministic forecasts where the 820 

scores only depend on the ensemble mean. In Fig. 17d, we showed that the reduction in the RMSE of CanSIPS due to the 821 

recalibration is very small. In this section we show how this improvement is more noticeable if probabilistic scoring rules are used, 822 

as they are influenced not only by the ensemble mean, but also by the ensemble spread which is readjusted to maximize the CRPS 823 

using the condition ESS = 1 mentioned before. 824 

Examples of probabilistic forecasts for July 1994 are shown in Fig. 19 for StocSIPS (left) and for CanSIPS (right) for horizon 𝑘 =825 

2 months (one month lead time; i.e. using data up to May 1994). The normal PDF in grey represents the climatological distribution 826 

of the monthly temperatures for the Mean-G dataset for the verification period 1981 – 2010. The terciles of the climatological 827 

Fig. 19 Examples of probabilistic forecasts for July 1994 are shown if Fig. 18 for StocSIPS (left) and 

for CanSIPS (right) for horizon 𝑘 = 2 months (one month lead time; i.e. using data up to May 1994). 

The normal probability density function in grey represents the climatological distribution of the 

monthly temperatures for the Mean-G dataset for the verification period 1981 – 2010. The terciles of 

the climatological distribution are indicated by vertical dashed lines. The colored areas under the 

forecast density function are proportional to the forecast probabilities for each category: below normal 

(blue), near normal (yellow) and above normal (pink). These probabilities are summarized in the top-

left corner as bar plots. The climatological probability of 33% is indicated by the horizontal dashed 

line. The observed temperature for that specific date, 𝑇obs = −0.198 °C, is represented by the vertical 

green line. In the right, the distribution in dashed black line represent the unadjusted forecast of 

CanSIPS for 𝑘 = 2 months and the calibrated forecast PDF is shown in solid black. The parameters for 

all the distributions are included in the legends. 
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distribution are indicated by vertical dashed lines. These vertical lines define three equiprobable categories of above normal, near 828 

normal, and below normal monthly temperatures observed in the verification period. In the left, the forecast distribution for 829 

StocSIPS is indicated by the black curve with the forecast mean 𝜇𝑓 = 𝑇̂(July 1994) = −0.105 °C and standard deviation 𝜎𝑓 =830 

RMSEStocSIPS = 0.109 °C for 𝑘 = 2 months. In the right, the distribution in dashed black line represents the unadjusted forecast 831 

of CanSIPS for 𝑘 = 2  months with parameters 𝜇𝑓 = −0.051  °C (ensemble mean) and 𝜎𝑓 = 𝜎ensemble = 0.084  °C (intra-832 

ensemble standard deviation). The calibrated forecast PDF for CanSIPS is shown in solid black in the right panel. The adjusted 833 

mean for this distribution for is 𝜇𝑓 = −0.062 °C and the inflated standard deviation 𝜎𝑓 = RMSECanSIPS
Calibrated = 0.112 °C. The areas 834 

under the forecast PDF’s in different colors indicate probabilities of below normal (blue), near normal (yellow), and above normal 835 

(pink) temperatures. These probabilities are summarized in the top-left corner as bar plots. The climatological probability of 33% 836 

is indicated by the horizontal dashed line. The observed temperature for that specific date, 𝑇obs = −0.127 °C, is represented by 837 

the vertical green line. For the unadjusted distribution of CanSIPS, the standard deviation for each specific month and lead time is 838 

estimated from the intra-ensemble spread and, as the model is underdispersive, it is generally lower than the standard deviation of 839 

the calibrated forecast distribution, which is estimated from the whole verification period and is constant for all months for a 840 

particular lead time. 841 

The combined contingency table for the forecasts of StocSIPS (grey rows) and CanSIPS (white rows with the values of the 842 

unadjusted forecast in parenthesis) for 𝑘 = 1 month is shown in Table 2. For observational reference we used the Mean-G dataset 843 

for verification in the period January 1981 – December 2010 (360 months). The number of hits and total number of events are 844 

shown in bold in the main diagonal. 845 

Table 2 Contingency table for 3 categories probabilistic forecast (below normal, near normal and above normal) for the raw (undetrended) Mean-846 
G dataset with zero months lead time (𝑘 = 1 month). The verification period is January 1981 – December 2010 (360 months). The number of 847 
hits and total number of events are shown in bold in the main diagonal. Here we compacted in one table the results for the forecasts of StocSIPS 848 
(grey rows) and CanSIPS (white rows with the values of the unadjusted forecast in parenthesis). 849 

Combined contingency table for the forecasts of StocSIPS 

(grey rows) and CanSIPS (white rows) for 𝑘 = 1 month. 

Forecast 
Total 

Below Normal Above 

Observations 

Below 
StocSIPS 102 25 1 

128 
CanSIPS (Unadjusted) 99 (95) 28 (33) 1 (0) 

Normal 
StocSIPS 23 61 18 

102 
CanSIPS (Unadjusted) 20 (15) 69 (74) 13 (13) 

Above 
StocSIPS 2 11 117 

130 
CanSIPS (Unadjusted) 0 (0) 24 (31) 106 (99) 

Total 
StocSIPS 127 97 136 

360 
CanSIPS (Unadjusted) 119 (110) 121 (138) 120 (112) 

 850 

The reduced number of observation events in the near-normal category is a consequence of the deviation from Gaussianity of the 851 

undetrended anomalies in the verification period 1981 – 2010. Specifically, there is a reduced kurtosis caused by the presence of 852 

the anthropogenic trend, as can be clearly seen in Fig. 5. The distribution of the detrended anomalies, 𝑇nat, is much close to a 853 

Gaussian (see Appendix B). In Table 3, we show the contingency table for the forecast of this series using StocSIPS. Now the total 854 

number of observations are almost equally distributed among the three categories obtained using the climatological distribution 855 

based on the detrended series. 856 

 857 
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Table 3 Contingency table for 3 categories probabilistic forecast (below normal, near normal and above normal) for the detrended series (𝑇nat, 858 
red curves in Fig. 10) of the Mean-G dataset with zero months lead time (𝑘 = 1 month). The verification period is January 1981 – December 859 
2010 (360 months). The number of hits and total number of events are shown in bold in the main diagonal. Here we use the climatology obtained 860 
from the detrended anomalies with 𝜎clim = 𝑆𝐷𝑇 = 0.130 °C. 861 

Contingency table for the 

detrended anomalies, 𝑇nat    

Forecasts 
Total 

Below Normal Above 

Observations 

Below 83 25 12 120 

Normal 39 39 40 118 

Above 12 27 83 122 

Total 134 91 135 360 

 862 

From the diagonal elements in Table 2 we get the following PC scores for 𝑘 = 1 month: for StocSIPS, PCStocSIPS ≈ 78% and for 863 

CanSIPS we get PCCanSIPS
Calibrated ≈ 76% and PCCanSIPS

Unadjusted
≈ 74% for the calibrated and the unadjusted forecasts, respectively. These 864 

values are spuriously high due to the presence of the trend in the raw series. Just from direct inspection of the reference series (red 865 

curve in Fig. 5), by projecting the trend we could predict that most of the temperature values in the decade 2001 – 2010 would fall 866 

in the above normal category, while most of the events in the decade 1981 – 2000 would fall in the below normal category. The 867 

PC score obtained from Table 3 for the forecast of the natural variability component with 𝑘 = 1 month using StocSIPS is more 868 

realistic: PCStocSIPS
Nat ≈ 57%. As we mentioned before, we cannot perform a similar forecast using CanSIPS. The anthropogenic 869 

forcing is an intrinsic part of the GCM and to have a prediction of the natural variability only, we would have to remove its 870 

contribution before running the dynamical model. 871 

The PC scores for all horizons from 𝑘 = 1 to 12 months are shown in Fig. 20. In blue squares we show the PC scores for StocSIPS 872 

and in red circles and green triangles for CanSIPS, calibrated and unadjusted forecasts, respectively. The solid black line shows 873 

the skill of StocSIPS for the forecast of the detrended series. The values obtained in this case are lower than those obtained for the 874 

raw anomalies. Those values are a better measure of the actual quality of the forecasting system since the spurious effects of the 875 

trend are removed. The dashed line at 33.3% is a reference showing the skill of the climatological forecast. 876 

Fig. 20 PC as a function of 𝑘 for StocSIPS (blue squares) and for CanSIPS, calibrated and unadjusted 

forecasts in red circles and green triangles, respectively. The solid black line shows the skill of StocSIPS 

for the forecast of the detrended series. The dashed line at 33.3% is a reference showing the skill of the 

climatological forecast. 
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Three main conclusions can be obtained from the analysis of Fig. 20. First, there is an improvement on the probabilistic forecast 877 

skill of CanSIPS thanks to the recalibration. This improvement is small but is more noticeable than the one obtained for the 878 

deterministic scores (e.g. RMSE, MSSS). Second, StocSIPS performs better than CanSIPS for all lead times and the relative 879 

advantage increases with the forecast horizon up to 𝑘 = 7 months. Finally, from the comparison of the blue and the solid black 880 

curves for the StocSIPS forecasts of the raw and the detrended series, respectively, we can notice that most of the skill comes from 881 

the projection of the trend and for 𝑘 > 8 months this is the only source of skill. 882 

Although the PC score for StocSIPS is larger for all horizons, it is difficult to evaluate the relative advantage over the probabilistic 883 

CanSIPS forecasts based on that score alone. The PC  is influenced by the climatological distribution used for defining the 884 

categories and mainly by the presence of the trend. A more realistic comparison should be based in absolute scores that only depend 885 

on the forecast system and are independent of the base-line or the climatology chosen. The dependence of the CRPS with the 886 

forecast horizon is shown in Fig. 21 for both models in the verification period 1981 – 2010 for the Mean-G dataset. In red, we 887 

show the CRPS for StocSIPS and in blue for CanSIPS with dotted line and solid circles for the unadjusted forecast and solid line 888 

with open squares for the calibrated forecast. The function RMSEStocSIPS(𝑘) √𝜋⁄  is shown in dashed black line with triangles. 889 

There is perfect agreement between these optimal values and the CRPS of CanSIPS after the calibration, in correspondence with 890 

Eq. (45). The score for the climatological forecast was included in the legend for reference (CRPSClimate = 0.117 °C). 891 

If we compare Fig. 21 with Fig. 17d, we can see that the effect of the calibration of the CanSIPS output is more noticeable for the 892 

CRPS than for the RMSE. The probabilistic forecast gains from both the inflation of the standard deviation and the scaling of the 893 

ensemble mean, while only the latter influences the deterministic forecast. After the adjustment, CanSIPS forecast is better for zero 894 

months lead time, but for the rest of the forecast horizons StocSIPS shows more skill. The relative advantage of the stochastic 895 

model over the GCM increases the further we forecast into the future. For the first month, the numerical model forecast still falls 896 

in the deterministic predictability limit. 897 

Fig. 21 CRPS vs. 𝑘 for both models in the verification period 1981 – 2010 for the Mean-G dataset. In 

red, we show the CRPS for StocSIPS and in blue for CanSIPS with dotted line and solid circles for the 

unadjusted forecast and solid line with open squares for the calibrated forecast. The function 

RMSEStocSIPS(𝑘) √𝜋⁄  is shown in dashed black line with triangles. There is perfect agreement between 

these optimal values and the CRPS of StocSIPS after the calibration, in correspondence with Eq. (48). 

The score for the climatological forecast was included in the legend (CRPSClimate = 0.117 °C). 
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4 Discussion 898 

Over the last decades, conventional numerical approaches have developed to the point where they are now skillful at lead times 899 

that approach their theoretical (deterministic) predictability limits – itself close to the lifetimes of planetary structures (about 10 900 

days). This threshold is due to the nonlinearity and complexity of the equations of atmospheric dynamics and their sensitive 901 

dependence on initial conditions (butterfly effect) (Lorenz 1963, 1972), and it cannot be overcome using purely deterministic 902 

models, not even by using combinations of deterministic-stochastic approaches such as recent stochastic parameterization models 903 

(Berner et al. 2017). In the macroweather regime (from 10 days to decades), GCMs become stochastic: the model integrations are 904 

extended far beyond their predictability limits producing “random” outputs that are finally averaged to obtain the forecast as the 905 

model ensemble mean. 906 

The convergence of the dynamical models to their own climate follows from the macroweather property of internal fluctuations to 907 

decrease with time scale (see Fig. 6 for the case of natural variability – including volcanic and solar forcings). This scaling behavior 908 

with negative fluctuation exponent is present in real data and in GCM control runs, so the statistics of conventional numerical 909 

models’ variability is of similar type to that found in the real-world temperature series. The main problem is that each GCM 910 

converges to its own model climate, which is different from the actual climate. Also, the models cannot fully reproduce the actual 911 

high frequency weather noise even if the statistics of the noise they generate is similar to the real-world one. 912 

In that sense, the SLIMM model, developed in (Lovejoy et al. 2015), uses real data to generate the high-frequency noise with the 913 

correct statistical symmetries for the fluctuations and with a realistic climate. The main characteristics of SLIMM were summarized 914 

in Sect. 2.1. In this paper we presented the Stochastic Seasonal to Interannual Prediction System (StocSIPS), which includes 915 

SLIMM as the core model to forecast the natural variability component of the temperature field. StocSIPS also represents a more 916 

general framework for modelling the seasonality and the anthropogenic trend and the possible inclusion of other atmospheric fields 917 

at different temporal and spatial resolutions. In this sense, StocSIPS is the general system and SLIMM is the main part of it 918 

dedicated to the modelling of the stationary scaling series. 919 

StocSIPS is based on some statistical properties of the macroweather regime such as: the Gaussianity of temperature fluctuations 920 

(as justified in Appendix B) and the temporal scaling symmetry of the natural variability with negative fluctuation exponents, as 921 

shown in Sect. 3.2. It also assumes the independence between the high frequency natural variability of the temperature field and 922 

the low frequency component dominated by anthropogenic effects. The anthropogenic component is represented as a short memory 923 

linear response to equivalent CO2 forcing. The natural variability component is modeled and predicted using the stochastic 924 

approach originally proposed in SLIMM.  925 

The scaling of the fluctuations implies that there are power-law decorrelations in the system and hence a large memory effect that 926 

can be exploited. The simplest stochastic model that includes both the Gaussianity and the scaling of the fluctuations is the fGn 927 

process. The Gaussian statistics of the temperature natural variability fluctuations allowed us to use the mean square prediction 928 

framework to build an optimal conditional expectation predictor based on a linear combination of past data. 929 

In Sections 2 and 2.1 we discuss how fGn can be obtained in SLIMM as the solution of a fractional order differential equation, 930 

which in turn is a generalization of the integer order stochastic differential equation in LIM models. The fractional derivative is 931 

introduced to account for the large memory effect given by the power law behavior of the correlation function, in contrast, integer 932 

order derivatives imply short memory autoregressive moving average processes with asymptotic exponential decorrelations. The 933 

fractional differential equation can be obtained as the high frequency limit of a fractional energy balance equation in which the 934 

usual (exponential) temperature relaxation to equilibrium is replaced by power-law relaxation (work in progress). The main 935 

characteristics of SLIMM are summarized in Sect 2.1, including the formal expression for the predictor as an integral of innovations 936 
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going an infinite time into the past. Physically, the source of the long-range memory is energy stored in ocean gyres, eddies, at 937 

depth, or over land, in ice, soil moisture, etc. 938 

The original technique that was used to make the SLIMM forecasts was basically correct, but it made several approximations (such 939 

as that the amount of data available for the forecast was infinite) and it was numerically cumbersome. Most of this work was 940 

dedicated to improving the mathematical treatment and the numerical techniques of SLIMM and validate them on ten different 941 

global temperature series since 1880 (five globally averaged and five over land). 942 

The main improvement included in StocSIPS for the prediction of temperature series is the application of discrete-in-time fGn to 943 

obtain an optimal predictor based on a finite amount of past data. In Section 2.2.1 we give the theoretical expressions for the 944 

predictor coefficients and the skill as functions of the fluctuation exponent alone. This represents an advantage over other 945 

autoregressive models (AR, ARMA) which do not include fractional integrations that account for the long-term memory and hence 946 

do not consider the information from the distant past. An additional limitation of these approaches is that, in order to predict, the 947 

autocorrelation function for each time lag, 𝐶(∆𝑡), must be estimated directly from the data.  Each 𝐶(∆𝑡) will have its own sampling 948 

error, this effectively introduces a large “noise” in the predictor estimates and a large computational cost if many coefficients are 949 

needed. In our fGn model the coefficients have an analytic expression which only depends on the fluctuation exponent, 𝐻, obtained 950 

directly from the data exploiting the scale-invariance symmetry of the fluctuations; our problem is a statistically highly constrained 951 

problem of parametric estimation (𝐻), not an unconstrained one (the entire 𝐶(∆𝑡) function). 952 

Other technical details of discrete-in-time fGn models are given in Appendix A. We discuss how to produce exact realizations of 953 

fGn processes with a given length, 𝑁 and family of parameters 𝜎, 𝜇 and 𝐻. The inverse process of obtaining those parameters for 954 

a given time series is also discussed. Other important results shown in Appendix A are an algorithm called quasi maximum 955 

likelihood estimation (QMLE) for obtaining the parameter 𝐻, and the derivation of some ergodic properties of fGn processes. The 956 

QMLE method is slightly less accurate – but much more efficient computationally – than the usual maximum likelihood method. 957 

It has the advantage of being part of the verification process as it minimizes the mean square error of the hindcasts. The ergodicity 958 

of the variance of the process, expressed in Eq. (A17), besides proving the convergence of the temporal average estimate of the 959 

variance to the ensemble variance, also shows that this convergence is ultra slow for values of 𝐻 close to zero. This fact implies a 960 

strong dependence of the value of the resulting skill score with the length of the hindcast series used for verification. It could 961 

potentially impact statistical methods that depend on the covariance matrix, e.g. empirical orthogonal functions (EOF) and 962 

empirical mode decomposition (EMD). 963 

The main result of this work is the application of StocSIPS to the modeling and forecasting of global temperature series. With that 964 

purpose, we selected the five major observation-based global temperature data series which are in common use (see Sect. 3.1).  965 

Over the last century, low frequencies are dominated by anthropogenic effects and after 10 ~ 20 years the scaling regime changes 966 

from a negative to a positive value of 𝐻 (see Fig. 6). The anthropogenic component was modelled as a linear response to equivalent 967 

CO2 forcing and removed. The residual natural variability component was then modeled and predicted using the theory presented 968 

in Sect. 2 and Appendix A. The quality of the fit of the fGn model to the real data was evaluated in detail in Appendix B. 969 

To validate our model, we produced a series of hindcasts for the period 1931 – 2017 with forecast horizons from 1 to 12 months. 970 

These series were stratified to obtain the dependence of the forecast skill on the forecast horizon and the initialization time. The 971 

RMSE of the hindcasts was lower than the standard deviation of the verification series for all horizons, showing positive skill. The 972 

values obtained for the all-month average results were in good agreement with the theoretical predictions. Other skill scores, such 973 

as the MSSS and the ACC were obtained. 974 

StocSIPS source of predictability is based on the strong long range correlations present in the temperature time series. In that sense, 975 

there is no source of skill coming from interannual variations since the model assume that the seasonality, as well as the low 976 
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frequency trend in the raw data, are deterministic. Theoretically, we should not expect a dependence of the skill on the initialization 977 

time. However, the stratification of the data shows that there is a multiplicative seasonality effect that makes the variability different 978 

for each individual month (see Fig. 11). The standard deviation of the temperature for the Boreal winter months is considerably 979 

larger than for the rest. This affects the skill of StocSIPS for those months and is a discrepancy with respect to the stationarity 980 

hypothesis. In future work, we could compensate for this effect through preprocessing of the time series and study the implications 981 

in StocSIPS forecast skill. 982 

In Sect. 3.4.4 we showed how to make parametric probability forecasts using StocSIPS. For a prediction system with Gaussian 983 

errors, we derived a theoretical relation between the deterministic score RMSE and the probabilistic CRPS. We also showed that 984 

StocSIPS is, by definition, a nearly perfectly reliable system and that this theoretical relation is satisfied by the verification results. 985 

Finally, in Sect. 3.5 we compared StocSIPS with the Canadian Seasonal to Interannual Prediction System (CanSIPS), which is one 986 

of the GCMs contributing to the Long-Range Forecast project of the World Meteorological Organization. Deterministic and 987 

probabilistic forecast skill scores for StocSIPS and for the CanSIPS were compared for the verification period 1981 – 2010. 988 

The main conclusion is that, for the overall forecast including all the months in the verification period and without considering 989 

different initialization times, StocSIPS has higher skill than CanSIPS for all the metrics used and for all horizons except for 𝑘 = 1 990 

month, where CanSIPS is slightly better. This was not surprising since for GCMs, one month is still close to the deterministic 991 

predictability threshold imposed by the chaotic behavior of the system (~10 days for the atmosphere and 1 – 2 years for the ocean). 992 

Beyond one month, the relative advantage of StocSIPS increases as the horizon increases. The seasonal stratification of the 993 

verification shows that, due to the interannual variability, CanSIPS performs better than StocSIPS for the forecasts of January and 994 

February. For other months (beyond zero months lead times) StocSIPS has better skill. 995 

5 Conclusions 996 

In this paper we presented the Stochastic Seasonal to Interannual Prediction System (StocSIPS), which is based based on some 997 

statistical properties of the macroweather regime such as: the Gaussianity of temperature fluctuations and the temporal scaling 998 

symmetry of the natural variability. StocSIPS includes SLIMM as the core model to forecast the natural variability component of 999 

the temperature field. Here we improved the theory and numerical methods of SLIMM for its direct application to macroweather 1000 

forecast.  1001 

In summary, StocSIPS models the temperature series as a superposition of a periodic signal corresponding to the annual cycle, a 1002 

low frequency deterministic trend from anthropogenic forcings and a high frequency stochastic natural variability component. The 1003 

annual cycle can be estimated directly from the data and is assumed constant in the future, at least for horizons of a few years. The 1004 

anthropogenic component is represented as a linear response to equivalent CO2 forcing and can be projected very accurately one 1005 

year into the future by using two parameters, the climate sensitivity and an offset, which can be obtained from linear regression 1006 

given historical emissions. Finally, the natural variability is modeled as a discrete-in-time fGn process which is completely 1007 

determined by the variance and the fluctuation exponent. That gives a total of only four parameters for modeling and predicting 1008 

the temperature series. Those parameters are quite stable and can be estimated with good accuracy from past data. 1009 

The comparison with CanSIPS validates StocSIPS as a good alternative and a complementary approach to conventional numerical 1010 

models. The reason is that whereas CanSIPS and StocSIPS have the same type of statistical variability around the climate state, 1011 

the CanSIPS model climate is different from the real-world climate. In comparison, StocSIPS uses historical data to force the 1012 

forecast to the real-world climate. From a forecast point of view, in general, GCMs can be seen as an initial value problem for 1013 
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generating many “stochastic” realizations of the state of the atmosphere, while StocSIPS is effectively a past value problem that 1014 

directly estimates the most probable future state. 1015 

The prediction of global average temperature series presented in this paper is based on some symmetries of the macroweather 1016 

regime: scale-invariance and low intermittency (rough Gaussianity).  In a future paper (currently in preparation), we show how 1017 

another macroweather symmetry, the statistical space time factorization (Lovejoy and de Lima 2015), can be included to extend 1018 

the application of StocSIPS to temperature forecasts at a regional level with any arbitrary spatial resolution without need for 1019 

downscaling. Another future application of StocSIPS that can be derived from this work is that, due to its qualitatively different 1020 

approach with respect to traditional GCMs, it is possible to combine CanSIPS and StocSIPS into a single hybrid forecasting system 1021 

that improves on both, especially at zero lead times. We have already obtained some predictions with the combined model, 1022 

“CanStoc”, and we are currently working on a future publication on these results. We are also working on the application of 1023 

StocSIPS to the forecast of GCMs preindustrial control runs to show that they satisfy the same macroweather symmetries as real-1024 

world data and hence, together with their deterministic predictability limits, there are also stochastic predictability limits applicable 1025 

to GCMs. These limits correspond to the maximum possible skill that can be achieved by a stochastic Gaussian scaling system 1026 

with a given scaling exponent (measure of the memory and the predictability in the data). 1027 

In May 2016, we created the website: http://www.physics.mcgill.ca/StocSIPS/, where global average and regional temperature 1028 

forecasts at monthly, seasonal and annual resolutions using StocSIPS are published on a regular basis.  1029 

Appendix A: Simulation, parameters estimation, ergodicity and model adequacy 1030 

i. Simulation 1031 

When modeling real time series and testing numerical algorithms, it is often useful to obtain synthetic realizations of fGn processes. 1032 

There are many methods for simulating approximate samples of fGn, e.g.: (1) type 1 (Mandelbrot and Wallis 1969), (2) type 2 1033 

(Mandelbrot and Wallis 1969), (3) fast fGn (Mandelbrot 1971), (4) filtered fGn (Matalas and Wallis 1971), (5) ARMA(1,1) 1034 

(O’Connell 1974), (6) broken line (Garcia et al. 1972; Mejia et al. 1972; Rodriguez-Iturbe et al. 1972; Mandelbrot 1972), (7) 1035 

ARMA-Markov models (Lettenmaier and Burges 1977) and some approximate, more efficient, recent methods (Paxson 1997; 1036 

Jeong et al. 2003). We can choose among these methods based on their strengths and weaknesses, depending on the specific 1037 

application we need.  1038 

Nevertheless, instead of using short memory approximations for simulating fGn, it is possible to generate exact realizations by 1039 

applying the following procedure (Hipel and McLeod 1994; Palma 2007). In Eq. (20) we gave the MA representation of our series 1040 

for any time, 𝑡, based on the knowledge of an infinite past of innovations, {𝛾𝑡−𝑗}
𝑗=1,…,∞

 with 𝛾𝑡~NID(0,1) and 〈𝛾𝑖𝛾𝑗〉 = 𝛿𝑖𝑗. If we 1041 

want a series with specific length, 𝑁, mean 𝜇, variance 𝜎𝑇
2 and fluctuation exponent 𝐻, we can work in a similar way as we did 1042 

with the AR representation for obtaining the predictor. By replacing the coefficients, 𝜑𝑗, we could write instead the finite sum: 1043 
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for 𝑡 = 1, … , 𝑁, where the optimal coefficients 𝑚𝑖𝑗 are the elements of the lower triangular matrix 𝐌𝐻,𝜎𝑇
𝑁  given by the Cholesky 1045 

decomposition of the autocovariance matrix, 𝐑𝐻,𝜎𝑇
𝑁 = [𝐶𝐻,𝜎𝑇

(𝑖 − 𝑗)]
𝑖,𝑗=1,…,𝑁

; that is: 1046 

 ( ), , ,T T T

T
N N N

H H H  =R M M , (A2) 1047 

with 𝑚𝑖𝑗 = 0 for 𝑗 > 𝑖. In summary, for obtaining an fGn realization of length 𝑁, we need to generate a white-noise process 1048 

{𝛾𝑡}𝑡=1,…,𝑁 with an appropriate method, obtain the autocovariance matrix 𝐑𝐻,𝜎𝑇
𝑁  using Eq. (7.iii), then get 𝐌𝐻,𝜎𝑇

𝑁  from the Cholesky 1049 
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decomposition of 𝐑𝐻,𝜎𝑇
𝑁 , and finally apply Eq. (A1) for every 𝑡 to obtain our {𝑇𝑡} series. The variables 𝑇𝑡 will be NID(𝜇, 𝜎𝑇

2) and 1050 

the process will have fluctuation exponent 𝐻 in the interval (−1, 0). 1051 

ii. Maximum likelihood estimation 1052 

If instead of simulating an fGn process, we are interested in the opposite operation of finding the parameters that best fit a given 1053 

time series, the most accurate method to use is based on maximizing the log-likelihood function (Hipel and McLeod 1994). Suppose 1054 

that we have our vector 𝐓𝑁 = [𝑇1, … , 𝑇𝑁]𝑇 that represents a stationary Gaussian process. Then the log-likelihood function of this 1055 

process is given by: 1056 
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where 𝐓̃𝑁,𝜇 = [𝑇1 − 𝜇, … , 𝑇𝑁 − 𝜇]𝑇 is a vector formed by our original series after removing the mean. 1058 

For fixed 𝐻, the maximum likelihood estimators (MLE) of 𝜇 and 𝜎𝑇 are: 1059 
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and 1061 
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where 𝟏𝑁 = [1,1, … ,1]𝑇 is an 𝑁 × 1 vector with all the elements equal to 1 and 𝐑̃𝐻
𝑁 = 𝐑𝐻,𝜎𝑇

𝑁 𝜎𝑇
2⁄  is the autocorrelation matrix, 1063 

which only depends on 𝐻. 1064 

Substituting these values into Eq. (A3), we obtain the maximized log-likelihood function of 𝐻: 1065 
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The estimate for the fluctuation exponent, 𝐻̂𝑙, is obtained by maximizing ℒmax(𝐻) and can be used then to obtain 𝜇̂ and 𝜎̂𝑇
2 using 1067 

Eqs. (A4) and (A5). 1068 

iii. Ergodicity 1069 

It is worth noticing here that 𝜇̂ and 𝜎̂𝑇
2 are estimates of the ensemble mean 𝜇 = 〈𝑇𝑡〉 and variance 𝜎𝑇

2 = 〈(𝑇𝑡 − 𝜇)2〉 of the fGn 1070 

process, respectively (see Sect. 2.1). If we try to estimate these parameters based on temporal averages of a single realization, some 1071 

differences may arise with the values obtained using Eqs. (A4) and (A5). To explain these differences, we briefly discuss some 1072 

ergodic properties of fGn processes. 1073 

Let 1074 
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and 1076 
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  (A8) 1077 

be the temporal average estimates of the mean and the variance of our process, respectively (the overbar indicates temporal 1078 

averaging, 𝑁 is considered large here), SD indicates “standard deviation”. 1079 

Using the relationship between fBm and fGn (Eq. (5)), we can write the temperature as: 1080 



42 

 

 ( ) ( )1t T H HT B t B t  = − −   . (A9) 1081 

The fBm process has the following properties: 1082 

(i) 𝐵𝐻′(𝑡) is a Gaussian process with stationary increments; 1083 

(ii) 〈𝐵𝐻′(𝑡)〉 = 𝜇𝑡 𝜎𝑇⁄  for all 𝑡; (the notation 〈 . 〉 denotes ensemble averaging)  (A10) 1084 

(iii) 𝐶𝐵
𝐻′

(𝑡, 𝑠) = 〈[𝐵𝐻′(𝑡) − 𝜇𝑡 𝜎𝑇⁄ ][𝐵𝐻′(𝑠) − 𝜇𝑠 𝜎𝑇⁄ ]〉 = (|𝑡|2𝐻′
+ |𝑠|2𝐻′

− |𝑡 − 𝑠|2𝐻′
) 2⁄   1085 

Usually, the condition 𝐵𝐻′(0) = 0 is added to this definition. Using this and Eq. (A9), by telescopic sum all addends cancel except 1086 

for the last one and we obtain: 1087 
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Taking ensemble averages and using Eqs. (A10) (ii) and (iii) we get: 1089 

 NT =   (A12) 1090 

and 1091 
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where we replaced 𝐻′ = 𝐻 + 1. 1093 

Consequently, since the process 𝐵𝐻′(𝑡) is Gaussian, we conclude that, the temporal average estimate of the mean satisfies: 1094 

 ( )2 2, H
N TT N N . (A14) 1095 

Now, taking ensemble average on Eq. (A8), we get: 1096 

 ( ) ( )
222

NT NSD T T = − − − , (A15) 1097 

where the factor (𝑁 − 1) 𝑁⁄  account for the bias of the sample estimate for estimating the population variance.  1098 

The ensemble and the time averaging operations commute in the first term of the right-hand side of Eq. (A15): 1099 

 ( ) ( )
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N N TT T  − = − = . (A16) 1100 

Using this and Eq. (A13) for the last term in Eq. (A15), we finally get: 1101 

 ( )2 2 21 H

T TSD N= − , (A17) 1102 

meaning that the temporal average 𝑆𝐷𝑇  is a biased estimate of the variance of the process, 𝜎𝑇
2. An unbiased estimate would then 1103 

be 𝑆𝐷𝑇
2 (1 − 𝑁2𝐻)⁄ . The variance of this estimator is more difficult to obtain. Its derivation, together with potential applications 1104 

for treating climate series, will be presented in a future paper (currently in preparation). 1105 

In the limit 𝑁 → ∞, as −1 < 𝐻 < 0, we have 𝑆𝐷𝑇
2 → 𝜎𝑇

2, meaning that the process is ergodic (the temporal average and the 1106 

ensemble average coincide for infinitely long series). Nevertheless, for 𝐻 → 0 this convergence is very slow, and a very long series 1107 

would be needed in order to estimate the variance of the process from the sample variance without any correction. For example, 1108 

for 𝐻 = −0.1 and 𝑁 = 1656 months = 138 years (realistic values for globally-averaged temperatures, see Sect. 3), we have 1109 

𝑆𝐷𝑇
2 𝜎𝑇

2⁄ = (1 − 𝑁2𝐻) = 0.772, i.e. a 23% difference between both estimates. In the same sense, if we want to estimate 𝜎𝑇
2 1110 

from the sample variance with 95% accuracy, we would need a series with 𝑁 = 3.2 ∙ 106 (if 𝑁 is in months that would be 𝑁 = 1111 

266 667 years!). The last three columns of Table A1 show the average estimates 𝜎̂𝑇 = √𝜎̂𝑇
2 (Eq. (A5)), 𝑆𝐷𝑇  (Eq. (A8)) and the 1112 

confirmation of their relationship (Eq. (A17)), for simulations of fGn with length 𝑁 = 1656 and parameters 𝜇 = 0, 𝜎𝑇 = 1 and 1113 

values of 𝐻 in the range (−0.5, 0). In each case, 200 realizations were analyzed, but only the average values of the estimates are 1114 
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shown. The standard deviations are always 2 – 7% of the respective mean values and were not reported. Notice that the difference 1115 

between 𝜎̂𝑇 and 𝑆𝐷𝑇  increases as 𝐻 goes close to zero and the memory effects become more important. 1116 

Let us return now to the estimates 𝜇̂ and 𝜎̂𝑇
2 given by Eqs. (A4) and (A5), respectively. These ensemble estimates are still obtained 1117 

from the information of only one finite series, 𝐓𝑁 = [𝑇1, … , 𝑇𝑁]𝑇, but the presence of the correlation matrix, 𝐑̃𝐻
𝑁 , automatically 1118 

includes all the information from the infinite unknown past. If we make 𝐑̃𝐻
𝑁 = 𝐈𝑵 (𝐈𝑁 is the 𝑁 × 𝑁 identity matrix) in Eqs. (A4) 1119 

and (A5) (or equivalently 𝐻 = −0.5), we obtain: 1120 
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This means that the temporal average estimates based on one realization of the process are only valid for uncorrelated process, for 1124 

which the ensemble and the sample averages are equal. When correlations and memory effects are present, this information must 1125 

be considered. In the case of fGn processes, the memory effects are introduced by including the correlation matrix which only 1126 

depends on the fluctuation exponent 𝐻. The value of this parameter for the process can also be obtained from only one realization 1127 

of the same as shown below. 1128 

iv. Quasi-maximum-likelihood estimation for 𝑯  1129 

As we mentioned before, the MLE for the fluctuation exponent, 𝐻̂𝑙, is obtained by maximizing ℒmax(𝐻) (Eq. (A6)). The process 1130 

of optimization of ℒmax(𝐻) could easily be computationally expensive for large values of 𝑁. To avoid this, many approximate 1131 

methods have been developed. We can use Eq. (9) to obtain 𝐻̂𝑠 = (𝛽𝑙 − 1)/2 from the spectrum exponent at low frequencies. This 1132 

method, as well as the Haar wavelet analysis to obtain an estimate 𝐻̂ℎ from the exponent of the Haar fluctuations, was used in 1133 

(Lovejoy and Schertzer 2013; Lovejoy et al. 2015) to obtain estimates of 𝐻 for average global and Northern Hemisphere anomalies. 1134 

These two methods depend on the range selected for the linear regression and, when the graphs are noisy, it could result in poor 1135 

estimates of the exponents.  They, nevertheless, have the advantage of being more general; they yield 𝐻 estimates even for highly 1136 

nonGaussian processes. In the present case, a more accurate approximation is based on quasi-maximum-likelihood estimates 1137 

(QMLE) from autoregressive approximations (Palma 2007). 1138 

Suppose we have a series of 𝑁 observations, {𝑇𝑡}𝑡=1,…,𝑁, we can build the one-step predictor for 𝑇𝑡, 𝑇̂𝑡
𝑝(1) from Eq. (22) using a 1139 

memory of 𝑝 steps in the past with 𝑝 + 1 < 𝑡 ≤ 𝑁: 1140 
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Then, the approximate QMLE, 𝐻̂𝑞, is obtained by minimizing the function 1142 
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Remember that the coefficients 𝜙𝑝,𝑗 only depend on 𝐻. An added advantage of this method is that, by construction, it is done as 1144 

part of the verification process based on hindcasts. The actual mean square error (MSE) of our one-step predictor with memory 𝑝 1145 

is ℒ1(𝐻)/(𝑁 − 𝑝 − 1), so in practice, we perform the one-step hindcasts for different values of 𝐻 in the specified range and select 1146 
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the value that gives the minimum MSE. The computation of the coefficients 𝜙𝑝𝑗 is fast, since we do not need to take very large 1147 

values of 𝑝 to achieve nearly the asymptotic skill, as we showed in Sect. 2.2.1. 1148 

In order to compare these different estimation methods, we performed some numerical experiments. By using Eq. (A1) for the 1149 

exact method with parameters 𝜇 = 0 and 𝜎𝑇 = 1, we generated fGn ensembles of one hundred members of length 𝑁 = 1656 (see 1150 

Sect. 3) for each value of 𝐻 ∈ {−0.45, −0.40, −0.35, −0.30, −0.25, −0.20, −0.15, −0.10, −0.05}. Then, we estimated 𝐻 from 1151 

the four previously mentioned methods for each realization. The results are summarized in Table A1. The values in parentheses 1152 

represent the standard deviation for each ensemble. The maximum likelihood, the Haar fluctuation and the spectral methods allow 1153 

for direct estimations of the ensemble values (shown with the subscript “ens” in Table A1) by considering the maximum likelihood 1154 

of the vector process, the ensemble of all the fluctuations or the average of all the spectra, respectively from all the paths instead 1155 

of from each of the series independently. We could say, for example that 〈𝐻̂𝑠〉 is the mean of all the 𝐻̂𝑠’s obtained from each 1156 

realization spectrum, while 𝐻̂𝑠,ens is the value obtained from the mean of all the spectra. This ensemble estimations reduce the 1157 

error due to dispersion of each of the ensemble members. For the QMLE, a memory 𝑝 = 20 was used. 1158 

Table A1 Average estimates of 𝐻  for 200 realizations of simulated fGn with length 𝑁 = 1656  and parameters 𝜇 = 0 , 𝜎𝑇 = 1  and 𝐻 1159 
corresponding to the values in the first column. The values in parentheses represent the standard deviation for each ensemble. The following 1160 
methods were used: QMLE (𝐻̂𝑞), MLE (𝐻̂𝑙), Haar fluctuations (𝐻̂ℎ) and spectral analysis (𝐻̂𝑠). For these last three methods, direct ensemble 1161 

estimates were also obtained (𝐻̂_,ens); 〈𝐻̂_〉 could be seen as the mean of all the 𝐻̂_’s while 𝐻̂_,ens is the 𝐻̂_ of the mean. The last three columns 1162 
show the average estimates 𝜎̂𝑇, 𝑆𝐷𝑇 and the confirmation of their relationship given by Eq. (A17). 1163 

𝐻 〈𝐻̂𝑞〉 〈𝐻̂𝑙〉 𝐻̂𝑙,ens 〈𝐻̂ℎ〉 𝐻̂ℎ,ens 〈𝐻̂𝑠〉 𝐻̂𝑠,𝑒𝑛𝑠 〈𝜎̂𝑇〉 〈𝑆𝐷𝑇〉 
〈𝑆𝐷𝑇〉

√1−𝑁2𝐻
  

-0.45 -0.45 (0.02) -0.45 (0.02) -0.45 -0.48 (0.07) -0.45 -0.51 (0.06) -0.44 1.00 1.00 1.00 

-0.40 -0.40 (0.01) -0.40 (0.01) -0.40 -0.42 (0.07) -0.40 -0.45 (0.05) -0.39 1.00 1.00 1.00 

-0.35 -0.35 (0.02) -0.35 (0.02) -0.35 -0.37 (0.07) -0.35 -0.40 (0.06) -0.33 1.00 1.00 1.00 

-0.30 -0.30 (0.02) -0.30 (0.02) -0.30 -0.34 (0.08) -0.30 -0.35 (0.06) -0.28 1.00 0.99 1.00 

-0.25 -0.26 (0.02) -0.25 (0.02) -0.25 -0.28 (0.08) -0.25 -0.29 (0.05) -0.24 1.00 0.99 1.00 

-0.20 -0.21 (0.02) -0.20 (0.02) -0.20 -0.24 (0.08) -0.20 -0.24 (0.06) -0.18 1.00 0.97 1.00 

-0.15 -0.17 (0.02) -0.15 (0.02) -0.15 -0.18 (0.09) -0.15 -0.19 (0.06) -0.12 0.99 0.94 1.00 

-0.10 -0.12 (0.02) -0.10 (0.02) -0.10 -0.12 (0.07) -0.10 -0.13 (0.05) -0.07 1.00 0.88 1.00 

-0.05 -0.08 (0.01) -0.06 (0.02) -0.05 -0.08 (0.08) -0.05 -0.09 (0.06) -0.02 0.98 0.71 0.99 

As we can see from Table A1, for the MLE method, there is good agreement between the average of the estimates for each 1164 

realization and the direct ensemble estimation. This is not the case for the less accurate methods of Haar fluctuation and spectral 1165 

analysis in the member-by-member cases. Comparatively, the standard deviation of these two methods (without considering the 1166 

estimation error for each specific realization) is much larger than for the MLE. Nevertheless, the ensemble estimates for the Haar 1167 

are very accurate because the dispersion for the ensemble is much lower than for each individual graph. In practice, it is almost 1168 

always the case that we only have a given time series to analyze instead of multiple realizations of an ensemble. In that sense, 1169 

unless we have more theoretical or empirical justifications for the scaling, estimations based on these graphical methods should be 1170 

considered cautiously. 1171 

A direct comparison of the second and third columns in Table A1 shows the accuracy of the QMLE method if we take MLE as 1172 

reference. The average values and the standard deviations for the two methods are very close for small values of 𝐻, but as we move 1173 

to values close to zero there is a systematic bias in the QMLE method towards slightly smaller values than those obtained with 1174 

MLE. Nevertheless, the presence of this bias is of little influence from the point of view of forecast and can be reduced by increasing 1175 

the memory used. As we mentioned before, the QMLE method is based on minimizing the MSE, or what is the same, maximizing 1176 

the MSSS obtained from hindcasts. Near the extreme, a small variation of the value of 𝐻 used to perform the forecast will produce 1177 

almost no change on the MSSS obtained. 1178 
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v. Model adequacy 1179 

The final step after finding the parameters 𝜇, 𝜎𝑇
2 and 𝐻, is to check the adequacy of the fitted model to the data. Imagine we have 1180 

a time series {𝑇𝑡}𝑡=1,…,𝑁. The residuals of our fGn model are obtained from inverting Eq. (A1) and calculating the vector 1181 
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If the model provides a good description of the data, the elements of the residual vector 𝐞𝑁 = [𝑒1, … , 𝑒𝑁]𝑇 should be white noise, 1183 

i.e. they should be NID(0,1)  with autocorrelation function 〈𝑒𝑖𝑒𝑗〉 = 𝛿𝑖𝑗 . Many statistical tests for whiteness of {𝑒𝑖} could be 1184 

performed, the more descriptive one being based on the examination of the graph of the residual autocorrelation function (RACF). 1185 

The RACF at lag 𝑙 is calculated as: 1186 
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Asymptotically, 𝑟𝑙(𝐞𝑁)~NID(0, 1 𝑁⁄ ) for any lag 𝑙 ≥ 1 and 𝑟0(𝐞𝑁) = 1. In the graph of 𝑟𝑙(𝐞𝑁) vs. 𝑙, there should not be any point 1188 

significantly far outside the 95% confidence interval given by the horizontal lines ± 1.96 √𝑁⁄ , and the number of points outside 1189 

this range, should be of the order of 5% the total number of points. As additional tests, we could verify that the estimates of the 1190 

fluctuation exponent of {𝑒𝑖}, using the previous graphical methods, are 𝐻̂𝑠 ≈ 𝐻̂ℎ ≈ −0.5, which is the value for white noise as a 1191 

particular case of fGn. The less important Gaussianity assumption could also be verified by visualizing the empirical probability 1192 

distribution against a normal distribution and checking for the presence of extremes. 1193 

Appendix B: Checking fGn model fit to global temperature data 1194 

In Table B1 we show the values of the parameters obtained for the ten datasets and the corresponding mean series for global and 1195 

for land:  1196 

Table B1 Values of the parameters obtained for the ten datasets and the corresponding mean series for global and for land. From left to right we 1197 
have estimates of 𝐻 using the following methods: MLE (𝐻̂𝑙), QMLE (𝐻̂𝑞), Haar fluctuations (𝐻̂ℎ) and spectral analysis (𝐻̂𝑠); estimate of the 1198 

standard deviation of the ensemble using MLE (𝜎̂𝑇); amplitude of each series ignoring the correlations (𝑆𝐷𝑇); confirmation of the relationship 1199 
between 𝜎̂𝑇 and 𝑆𝐷𝑇 given by Eq. (25); the climate sensitivity and offset used to remove the anthropogenic trend, 𝜆2×CO2eq and 𝑇0, respectively 1200 

(Eq. (27)). Uncertainty estimates are given in parentheses. 1201 

Dataset 𝐻̂𝑙 𝐻̂𝑞 𝐻̂ℎ 𝐻̂𝑠 𝜎̂𝑇 𝑆𝐷𝑇  
𝑆𝐷𝑇

√1−𝑁2𝐻
  𝜆2×CO2eq 𝑇0 

NASA -0.08 -0.10 -0.11 (0.02) -0.08 (0.04) 0.183 0.155 0.184 2.10 (0.03) -0.391 (0.006) 

NOAA -0.06 -0.09 -0.06 (0.02) -0.03 (0.04) 0.183 0.144 0.187 2.00 (0.02) -0.372 (0.006) 

HAD4 -0.07 -0.08 -0.06 (0.02) -0.10 (0.06) 0.194 0.159 0.201 1.89 (0.03) -0.353 (0.006) 

CowW -0.09 -0.10 -0.09 (0.03) -0.10 (0.05) 0.183 0.163 0.193 1.98 (0.03) -0.369 (0.006) 

Berk -0.08 -0.09 -0.07 (0.02) -0.12 (0.07) 0.197 0.174 0.209 2.20 (0.03) -0.410 (0.007) 

Mean-G -0.06 -0.08 -0.08 (0.02) -0.10 (0.06) 0.195 0.153 0.199 2.03 (0.03) -0.379 (0.006) 

NASA-L -0.25 -0.24 -0.21 (0.02) -0.29 (0.04) 0.373 0.371 0.376 2.96 (0.06) -0.551 (0.015) 

NOAA-L -0.25 -0.25 -0.24 (0.02) -0.27 (0.03) 0.331 0.325 0.329 2.95 (0.05) -0.550 (0.013) 

HAD4-L -0.18 -0.19 -0.19 (0.02) -0.24 (0.04) 0.297 0.285 0.295 2.70 (0.05) -0.503 (0.011) 

CowW-L -0.22 -0.22 -0.18 (0.03) -0.27 (0.04) 0.337 0.333 0.339 2.84 (0.06) -0.529 (0.013) 

Berk-L -0.23 -0.23 -0.21 (0.02) -0.25 (0.03) 0.348 0.342 0.349 2.81 (0.06) -0.523 (0.014) 

Mean-L -0.22 -0.22 -0.20 (0.02) -0.26 (0.04) 0.327 0.321 0.327 2.85 (0.05) -0.531 (0.013) 

 1202 
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As we can see in Table B1, there is relatively good agreement between the more robust estimates of the fluctuation exponent, 𝐻̂𝑙 1203 

and 𝐻̂𝑞 (see Appendix A for the notation), with the small bias of 𝐻̂𝑞 towards smaller values (we used a memory 𝑝 = 20 months 1204 

for estimating 𝐻̂𝑞). The estimates 𝐻̂ℎ and 𝐻̂𝑠, obtained using the general methods, also roughly agree with the MLE and QMLE 1205 

considering their relatively wide one-standard deviation confidence interval (given in parentheses in Table B1). Notice the 1206 

difference between the parameter 𝜎̂𝑇 and the amplitude of each series, 𝑆𝐷𝑇 . The former is an unbiased estimate of the standard 1207 

deviation for the ensemble process using maximum likelihood, while the latter is a biased estimate, where the bias is because of 1208 

the limited time series and autocorrelated samples (see Ergodicity in Appendix Aiii.). We also include the values of 1209 

𝑆𝐷𝑇 √1 − 𝑁2𝐻⁄  for confirmation of Eq. (25) (𝑁 = 1656 months). The last two columns show the climate sensitivity, 𝜆2×CO2eq, 1210 

and the parameter 𝑇0 (Eq. (27)) used to remove the anthropogenic trend in each global series. The value 𝑇0 was chosen to obtain 1211 

𝑇̅nat = 0 for each dataset, but this condition does not imply that 𝜇̂ = 0 in Eq. (A4), as this last one is an estimate for the ensemble 1212 

mean. Nevertheless, the values obtained for 𝜇̂ were too small compared to 𝜎̂𝑇 and they were not included in Table B1. 1213 

With the parameters shown in Table B1 for global temperature series, we can check the fit of the model to the data as described at 1214 

the end of Appendix A. As an example, in Fig. B1 we show the natural variability component for the Mean-G dataset, together 1215 

with its corresponding series of residual innovations, {𝑒𝑖}, obtained using Eq. (A22). The first series should be Gaussian with 1216 

standard deviations 𝑆𝐷𝑇  while the residuals should be white noise, i.e. they should be NID(0,1) with autocorrelation function 1217 

〈𝑒𝑖𝑒𝑗〉 = 𝛿𝑖𝑗. To verify the whiteness of the innovations, we should check that the residual autocorrelation function (RACF, (Eq. 1218 

(A23)) satisfies 𝑟𝑙(𝐞𝑁)~NID(0, 1 𝑁⁄ ) for any lag 𝑙 ≥ 1 (for 𝑙 = 0, 𝑟0(𝐞𝑁) = 1). 1219 

The graph of the RACF for the innovations of the Mean-G dataset is shown in Fig. B2 for 0 ≤ 𝑙 ≤ 𝑁 4⁄ , where 𝑁 = 1656 is the 1220 

total number of points. The inset was obtained by dropping the point for zero lag and zooming in the y-axis. The theoretical 95% 1221 

Fig. B1 Natural variability component for the Mean-G dataset, together with its corresponding series 

of residual innovations, {𝒆𝒊}, obtained using Eq. (A22). The units for the 𝑻𝒏𝒂𝒕 series are °C, while the 

innovations are unitless. 

Fig. B2 RACF for the innovations of the Mean-G dataset. The theoretical 95% confidence interval, 

given by the values ± 1.96 √𝑁⁄ , is shown in dashed lines (𝑁 = 1656 is the total number of points). 
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confidence interval, given by the values ± 1.96 √𝑁⁄ , is shown in dashed lines. From a direct inspection, we can see that there are 1222 

not too many points that fall outside the band considered and the extreme values are not too far from these thresholds. 1223 

With the purpose of checking the Gaussianity hypothesis of the series represented in Figs. B1 and B2, a detailed statistical analysis 1224 

was performed. Extremes in temperature natural variability are an important issue for the prediction of catastrophic events. Its 1225 

presence would show as large tails in the distributions of temperature anomalies and their corresponding innovations. If this were 1226 

the case, the model could be fixed by assuming white noise with a different distribution for the innovations (i.e. Levy noise). On 1227 

the other hand, deviations from Gaussianity in the RACF distributions would imply a different correlation structure and would 1228 

automatically invalidate the applicability of the fGn model. 1229 

Fig. B3 From top to bottom, graphs for the natural variability component of Mean-G dataset, for the 

series of residual innovations and for the RACF. In the left, a comparison of the empirical CDF’s (blue 

line with circles) to that of the respective fitted Gaussian distributions (red) and in the right the more 

detailed probability graphs where the empirical probabilities obtained from the graphs in the left are 

plotted against the theoretical probabilities (blue line with circles). The reference line shown in red 

corresponds to a perfect fit. 



48 

 

As an example, in Fig. B3, we show, from top to bottom, the results of this analysis for the natural variability component of the 1230 

Mean-G dataset, for its corresponding series of residual innovations and for the RACF. In the left, there is a visual comparison of 1231 

the empirical cumulative distribution functions, CDF, (blue) to that of the respective fitted Gaussian distributions (red) and in the 1232 

right the more enlightening probability graphs where the empirical probabilities obtained from the graphs in the left are plotted 1233 

against the theoretical probabilities (blue curve). The reference line shown in red corresponds to a perfect fit. The Kolmogorov-1234 

Smirnov (K-S) test can be used to create a measure that quantifies the behavior in probability graphs. The K-S test statistic is 1235 

equivalent to the maximum vertical distance between a point in the plot and the reference line. The closer the points are to the 1236 

reference line, the more probable is the data satisfies the fitted theoretical distribution. 1237 

In Table B2 we summarize the standard deviations of the normal distributions obtained for the series of anomalies (𝑆𝐷𝑇), the series 1238 

of residual innovations (𝑆𝐷innov) and the RACF (𝑆𝐷RACF) for each dataset. The mean values of the distributions were very small 1239 

compared to the respective standard deviations and they were omitted. The K-S test statistics with the corresponding p-values are 1240 

also shown. More powerful statistical tests for normality could be performed, like the Shapiro–Wilk or the Anderson–Darling tests. 1241 

However, these other tests have their own disadvantages, and, for the purpose of this work, the conclusions obtained from the K-1242 

S test to check the Gaussianity hypothesis of the original anomalies and the adequacy of the fGn process fit, are good enough. 1243 

The values of 𝑆𝐷𝑇  are the same shown previously in Table 1. As expected from the theory, 𝑆𝐷innov = 1 for all dataset and the 1244 

values obtained for 𝑆𝐷RACF are close to the theoretical value 1 √𝑁 = 0.025⁄  (𝑁 = 1656). With the exceptions of the residual 1245 

innovations of NOAA and HAD4 for the global datasets, the p-values are above 0.05, so there is not enough evidence to reject 1246 

normality at that level. Moreover, the p-values obtained are, in general, larger than those obtained for series of the same length 1247 

based on pseudorandom number generators (for a numerical experiment using 10000 samples, the p-values were uniformly 1248 

distributed in the range (0-1)). For the land surface datasets, the p-values for the temperature anomalies and the innovations are 1249 

low and a different distribution for the white noise innovations could be proposed. 1250 

As we mentioned before, the normality of the innovations is less important to confirm the adequacy of the model than its whiteness, 1251 

which is confirmed from the Gaussianity of the RACF in all cases (see the large p-values in the las column). It is precisely the 1252 

existence of extremes in the original data the main deviation their present from the normal behavior. This “fat-tail” property of the 1253 

probability distributions was evidenced in (Lovejoy 2014) in a paper of statistical hypothesis testing of anthropogenic warming. In 1254 

the present work, it does not result on having major importance to compromise the applicability of the model to the global data. 1255 

Table B2 Standard deviations of the normal distributions obtained for the series of anomalies (𝑆𝐷𝑇), the series of residual innovations (𝑆𝐷innov) 1256 
and the RACF (𝑆𝐷RACF) for each global dataset. The mean values for each distribution were very small compared to the standard deviations and 1257 
they were omitted. The K-S test statistics with the corresponding p-values are also shown. 1258 

Dataset Temperature anomalies Residual Innovations RACF 

𝑆𝐷𝑇  K-S p-value 𝑆𝐷innov K-S p-value 𝑆𝐷RACF K-S p-value 

NASA 0.155 0.020 0.497 1.001 0.024 0.277 0.026 0.026 0.939 

NOAA 0.144 0.029 0.114 1.000 0.044 0.003 0.025 0.033 0.747 

HAD4 0.159 0.016 0.775 1.000 0.041 0.006 0.025 0.021 0.992 

CowW 0.163 0.013 0.951 1.000 0.016 0.752 0.025 0.022 0.982 

Berk 0.174 0.013 0.922 1.000 0.02 0.485 0.026 0.022 0.986 

Mean-G 0.153 0.016 0.755 1.001 0.026 0.193 0.026 0.023 0.979 

NASA-L 0.371 0.041 0.008 0.999 0.039 0.011 0.029 0.04 0.511 

NOAA-L 0.325 0.040 0.009 1.000 0.051 0.000 0.029 0.063 0.072 

HAD4-L 0.285 0.036 0.028 1.000 0.047 0.001 0.028 0.032 0.774 

CowW-L 0.333 0.032 0.065 1.000 0.036 0.027 0.03 0.047 0.317 

Berk-L 0.342 0.034 0.043 1.000 0.033 0.056 0.032 0.041 0.486 

Mean-L 0.321 0.035 0.038 1.000 0.039 0.013 0.03 0.032 0.767 
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Appendix C: Forecast and validation for all datasets 1259 

Some results of the hindcast validation are summarized in Table C1 for the twelve datasets, including the mean series for the global 1260 

and the land surface. Only the error, RMSEnat, and the ACCnat, for the natural variability component were presented for horizons 1261 

𝑘 = 1, 3, 6 and 12 months. The values MSSSnat   and MSSSraw  can be obtained from Eq. (34) taking MSE = RMSE2  and the 1262 

respective MSEref = 𝑆𝐷𝑇
2 or MSEref = 𝑆𝐷raw

2. Also, we can use the values of ACCnat to obtain very good approximations of 1263 

MSSSnat for these horizons thanks to the relationship MSSSnat ≈ ACCnat
2 (Eq. (38)). Only the spurious values of ACCraw cannot 1264 

be obtained from this table, but it is worth mentioning that, even for 𝑘 = 12 months, they are higher than 0.75 for all datasets. 1265 

Notice the large difference between the values of 𝑆𝐷𝑇  and 𝑆𝐷raw, for the detrended and the raw anomalies respectively, due to the 1266 

presence of the anthropogenic trend. The values of 𝜎̂𝑇, were included for reference. 1267 

Table C1 Skill scores RMSEraw and ACCnat for forecast horizons 𝑘 = 1, 3, 6 and 12 months for the twelve datasets, including the mean series 1268 
for the global and the land surface. The values MSSSnat  and MSSSraw can be obtained from Eqs. (34) taking MSE = RMSE2 and the respective 1269 

MSEref = 𝑆𝐷𝑇
2 or MSEref = 𝑆𝐷raw

2. The values of 𝜎̂𝑇, were included for reference. 1270 

Dataset 
Normalization factor (°C) RMSEraw (°C) ACCnat 

𝜎̂𝑇  𝑆𝐷𝑇  𝑆𝐷raw 𝑘 = 1 𝑘 = 3 𝑘 = 6 𝑘 = 12 𝑘 = 1 𝑘 = 3 𝑘 = 6 𝑘 = 12 

NASA 0.183 0.149 0.315 0.108 0.128 0.139 0.148 0.688 0.515 0.373 0.218 

NOAA 0.183 0.140 0.301 0.093 0.113 0.127 0.137 0.744 0.587 0.434 0.264 

HAD4 0.194 0.152 0.276 0.100 0.120 0.133 0.145 0.752 0.612 0.487 0.340 

CowW 0.183 0.158 0.285 0.107 0.126 0.137 0.147 0.738 0.601 0.497 0.377 

Berk 0.197 0.163 0.301 0.109 0.131 0.142 0.151 0.741 0.597 0.497 0.391 

Mean-G 0.195 0.147 0.293 0.098 0.119 0.131 0.142 0.743 0.588 0.459 0.314 

NASA-L 0.373 0.338 0.509 0.305 0.327 0.332 0.333 0.435 0.257 0.204 0.174 

NOAA-L 0.331 0.327 0.521 0.296 0.318 0.324 0.325 0.429 0.238 0.167 0.140 

HAD4-L 0.297 0.268 0.449 0.223 0.248 0.256 0.261 0.554 0.375 0.296 0.239 

CowW-L 0.337 0.327 0.503 0.286 0.311 0.317 0.320 0.482 0.313 0.249 0.205 

Berk-L 0.348 0.331 0.506 0.293 0.318 0.325 0.326 0.462 0.277 0.206 0.168 

Mean-L 0.327 0.312 0.492 0.274 0.299 0.305 0.307 0.476 0.293 0.224 0.184 
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