HTML AESTRACT * LINKEES

JOURNAL OF APPLIED PHYSIC®7, 10A506 (2005

Ferromagnetic phase boundary in the bond frustrated Heisenberg model
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We determine the ferromagnetic phase boundary for the short rahbentl frustrated Heisenberg
model in three dimensions using a very efficient Monte Carlo algorithm which eliminates the critical
slowing down usually experienced at a second order phase transition. The phase boundary is
identified by measuring the correlation length directly, a method which we show to be superior to
more conventional methods such as the crossing of the Binder cumulant. The critical concentration
of antiferromagnetic bonds beyond which ferromagnetism is logtH€.2082). © 2005 American
Institute of Physic§DOI: 10.1063/1.185191)6

The addition of antiferromagnetic bonds with concentra- S - B,
tion x to an otherwise ferromagnetic matrix introduces ex- S — 25 5 Bi~S:. (2)
. . I I
change frustration which leads to the eventual loss of ferro- N _ _ _ _
magnetic order at a critical concentratign The mean field The efficiency of this algorithm is determined by mea-

phase diagramfor the bond frustrated Heisenberg model is suring the time decay of a suitably normalized autocorrela-
typical of the effect of exchange frustration, as C#Brr;onstrateﬁon function of the magnetizatiol:
by the similarity with experimental phase diagrani3espite _ _
this agreement, little is known regarding the phase diagram Au(® =[MOM(O0)] = MO0} TMOD], ®
of the bond frustrated Heisenberg model in three dimensionsvhere( ) represents a thermal average drdepresents an
Only a few Monte Carlo studies have addressed the existen@verage over disorder. Th&, decays are discrete sums of
of the various phases, and disagreement exists even for tlxponential decaysya, e, and the largestr; is the
ferromagnetic phase boundary. While Thomsoral? found asymptotic correlation timery. The correlation times are
x.=0.25, finite size effects were not taken into account. Matshown for various lattice sizels in Fig. 1. Using conven-
subaraet al* have claimed that the actual value is muchtional Metropolis dynamics a critical slowing down is expe-
smaller (x.=0.21) based upon poor scaling of the magneti-rienced as we approach., with a power law size depen-
zation using Heisenberg exponentsat0.22. However, this  dence of the formr; ~L% Considering the magnetization to
criteria is not the best one can think of considering that corbe either a vector or scalar quantity, Metropolis dynamics at
rections to scaling are probably quite important for the smaltemperatureT yields z=0,2 and 3 forT>T., T~ T, and
lattice sizes studied, especially gsis approached. Here we T< T, respectively. The hybrid algorithm by contrast yields
measure the correlation length directly for varioussing a  z~0 at all but the lowest temperatures and is thus very effi-
hybrid Monte Carlo method, demonstrating that this quantitycient for this particular model. Using this algorithm we have
is very good for locating phase transitions, and we present
the ferromagnetic phase boundary.

The short range Xbond frustrated Heisenberg model is LT etopetts
described by the Hamiltonian . T oolor comr. tme

Scalar corr. time
Metopolis+Overrelaxation
. — - . Scalar corr. time

LR NS

H=‘<Z>Jij5i'5j=—23'3i, (1)
ij i

where the sum(i,j) runs over all nearest neighbor bonds 17—
Jij=+1 on a three-dimensional simple cubic lattice #&ds
an effective local field experienced at siteue to coupling 107 —
with nearest neighbor, three dimensional, unit vector spins
S;. TheJ;; are chosen to be quenched random variables with 100 — 51
probabilities P(Jj;=+1)=1-x and P(J;=-1)=x. We mea- o 1=6

v L=8

LASE
Ve
sure several thermodynamic quantities with a Monte Carlo 10— o L=10 :
algorithm utilizing a mixture of Metropolis and o

over-relaxation techniques, found elsewhere to produce a ot et
very efficient algorithm for frustrated Heisenberg models. 10 10 T/T(0) 10 1o

FOllOWIﬂg every Metrop(_)lls updatéonf-:- hit per lattice Sll}:' FIG. 1. Asymptotic correlation times vs temperature for various small sys-
we U.SQ five over-relaxation steps which evolve the spins aGem sizes using both the Metropolis algorithm and a hybrid algorithm as
cording to discussed in the text for the bond frustrated Heisenberg modet @t15.
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simulated the model for lattice sizés=4, 6, 8, 10, and 12 phase transition occurs due to a lack of a uniquely ordered
for severalx and T using 500 independeit] samples and a ground state(replica symmetry breaking or R3$Bwhich
minimum of 500 independerit) samples(~4x 10" Monte  causesB(T=0) to take nontrivialL dependent values, as
Carlo updates N found in Heisenberg spin glasse¥. The parameteA is in-

We determine several quantities used to study phasg,guced to study the so-called lack of self averaling
tran5|t|on§ in disordered modéisThose discussed here are whose cause, among other reasons, can be the occurrence of
the following: RSB. When self averaging is fourfdis zero in the thermo-

5= }(5 _ 3[<M4>] ) @) dynamic limit. In the absence of self averagiAgs finite in

2 [(M?]?)” the thermodynamic limit an@ may not exhibit a crossing.
G, on the other hand, is sensitive to the pattern of RSB which

Az [(M?)?] - [(M?)]? 5) occurs and may be finite even thoughis zero’ A lack of
M3z self-averaging has been found in mean field models of spin
glasse<, at T¢ in dilute Ising model¥" and has been dis-
(M -[(MA)T? ©) cussed in the case of the present mddel.detailed discus-

sion here is, however, beyond the scope of the present work.
The parameterd\, B, and G are shown in Fig. 2 at a

concentratiorx=0.18. It is clear that although, B, andG

%mw hints of a crossing at finif&., the data is far too noisy

to be conclusive. The large statistical noise in the data is due

X=X(L), () to the fact that(i) B is essentially a four-point correlation

where v is the exponent of the correlation lengghand t function and so is inherently noisyii) A measures small
=(T-To)/Tc is the reduced temperature. Equatioh im-  S@mple to sample fluctuation which may very well be zero in

plies that atT., X=B, A, G, and £/L take universalL in- the thermodynamic limit; anlii) G is the ratio of two small
dependent, values* such that a plot oK(L) vs T exhibits a  quantities, which may be zero in the thermodynamic limit,
crossing afl for differentL. but whose ratio is in all probability finite. Tha, B, andG

B is the commonly studied Binder cumuldhhormal-  can be noisy has been reported in the context of spin
ized for the pure Heisenberg model. In the pure, disordeglasses.
free, model(x=0) the uniqueness of the ground state is A far less noisy quantity is the ratigy/L, which we cal-
enough to ensure th& scales according to Eq7). How-  ¢yjate using the following definitioh:
ever, for disordered modeB may not cross even though a

= My - (MB

as well as the rati@/L, where¢ is the correlation length to
be defined below. The four quantitiés=B, A, G, and ¢/L
are dimensionless and so are expected to scale according
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FIG. 3. The crossing of/L for x=0.15 using very small system sizes. Inset frustrated Heisenberg model. All transitions have been normalized to the
(a) shows the transition temperature determined from the extrema of sever&lansition temperature of the pupe=0) model which we take her@ef. 13
thermodynamic quantities using larger systems, whicfids 0.6013) in asTc(x=0)=1.443)/ k.

agreement with the crossing éfL. Inset(b) shows the scaling collapse of

¢/L using the Heisenberg exponernt0.705. =0), where we have takefic(x=0)=1.443/ks (Ref. 13.
The ¢/L data for even the very small lattice sizes shows an
1 ¥(0) 112 almost perfect crossing at(x=0.15=0.6085)T(x=0),
&= — ( - ) (8)  showing that finite size effects in tigL plot are negligible.
2 sin[K iol/2) \ XK g L p glig

Finally, we construct the ferromagnetic phase boundary
with x(k) the wave vector dependent susceptibility, &nrg, from the transition temperatures found in this study, shown
the minimum wave vector allowed by the choice of boundaryin Fig. 4. If we allow for a continuous decreaseTef(x) for
conditions which in our case is,,=(27/L)(1,0,0. For a  increasingk such as a power law, theq=0.2789), a value

ferromagnety(k) is given by inconsistent with our finding that the curves &fL fail to
3 o cross at any temperature at or beyor.22. Rather, a ver-
x(k) =pL 2 2 s s, (9 tical phase boundary at, is drawn, as found in both the
I r

mean field phase diagréras well as experimenfsEvidence

and 8=1/kgT, with kg=1. For a second order phase transi-for a phase boundary at=0.2082) in this model is found
tion a plot of the ratio&/L will cross atT¢, independent of by constructing plots of/L at constantl for variousx. A
the complexity within the ordered state unlike the quantitiescrossing is found near the samefor three differentT’s
A, B, and G which, as we have seen, depend upon detail®elow Tc(x.) (see Fig. 4, consistent with a vertical phase
such as self averaging and the pattern of RSB. As observdepundary although we are unable to prove it. Assuming a
in Fig. 2, the ratiof/L shows a very clear crossing at a well vertical phase boundary we quotg=0.2082).
defined transition temperatufie(x=0.18=0.4952) in stark This work was supported by grants from the Natural
contrast toA, B, andG. Sciences and Engineering Research Council of Canada, and
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