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The three-dimensional Heisenberg spin glass model with ±J interactions is studied using an
over-relaxed Monte Carlo algorithm. We have measured the correlation length �, and using the
crossing of � /L for different L find a finite temperature spin glass transition, with TSG=0.220�5�. In
addition, we have varied the number of Monte Carlo steps used prior to, and during, thermal
averaging to control the effects of finite time averaging. We find that the over-relaxation algorithm
allows for an accurate measurements using as few as 300 Monte Carlo steps. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2670270�

Spin glasses have attracted a great deal of theoretical
attention over the last 30 years, yet even the most fundamen-
tal issues remain unresolved. For example, the nearest neigh-
bor three-dimensional �3D� Ising spin glass model was only
recently shown to undergo a conventional, finite temperature
second order phase transition.1 The status of the spin glass
transition in nearest neighbor 3D Heisenberg spin glass mod-
els has not been as controversial, as it has long been accepted
that the model only orders at zero temperature.2,3 It has been
suggested that while the spins do not order at finite T, chiral
degrees of freedom do.4 However, recent Monte Carlo cal-
culations of finite lattice correlation lengths showed that both
spin and chiral degrees of freedom order at the same finite
TSG for a Gaussian distribution of bonds.5 One reason given5

for the erroneous conclusion that TSG=0 was that the order-
ing occurs at temperatures too low to be accessible in prior
Monte Carlo simulations. In the case of bimodal interactions
it has also been suggested6,7 that TSG�0, but the correlation
length was not measured.

Evidence for the existence of a finite TSG for Heisenberg
spin glasses with bimodal ±J interactions has so far been
based on rather exotic measurements, at least compared to
the more studied Ising counterparts. These include measure-
ments of the twist free energy6 and an analysis of time cor-
relation functions.7 Both methods rely upon assumptions
which make the conclusions somewhat suspect. Here we
present measurements of the correlation length, �, for the ±J
Heisenberg spin glass model. We demonstrate that a unique
temperature exists where ��L, where L is the linear dimen-
sion of the finite sized lattice. The temperature for which �
�L is identified as TSG. Having identified TSG, we also make
estimates of the critical exponents.

The Hamiltonian for the 3D ±J Heisenberg spin glass is
H=−��ij�JijSi ·S j, where Si are three-dimensional unit vec-
tors and the bonds Jij take values ±1 at random, and with
equal proportions. We study the model on a simple cubic
lattice with periodic boundary conditions and N=L3 spins,

with sizes L=4, 6, 8, 10, and 12 �the same range of sizes
used in Ref. 5�. To simulate the model we use a Metropolis
Monte Carlo algorithm incorporating over-relaxation
updates.8 Following every Metropolis update �one attempted
update/site� we use five over-relaxation updates/site, which
rotate the spins about the local internal field due to the cou-
pling with nearest neighbor spins. Each Monte Carlo sweep
then comprises N Metropolis updates and 5 N over-
relaxation updates. Details of our over-relaxation scheme are
given elsewhere,9 but we remark that for the noncollinear
and frustrated ground state expected for the present model,
the correlation times should be much reduced by the inclu-
sion of an over-relaxation update except at the lowest tem-
peratures. Indeed, as shown in the inset to Fig. 1, increasing
the number of Monte Carlo steps by orders of magnitude has
a little effect on our measurements, indicating that the corre-
lation times have been greatly exceeded, except for the low-
est T and largest L.

For each realization of bonds Jij we simulate two repli-
cas of the system, 1 and 2. The elements of the overlap
tensor are defined as

qkl = N−1�
i

Si,1
k Si,2

l , �1�

where k , l=x ,y ,z are the Cartesian components of Si,1 and
Si,2. The order parameter q for the model is given as a time
average � �, itself averaged over configurations of disorder
� �,

q = �
k,l

���qkl��� . �2�

At TSG finite size scaling theory predicts that q	L−�/�,
where � and � are critical exponents. The spin glass suscep-
tibility isa�Electronic mail: beatha@physics.mcgill.ca
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� = N−1�
k,l


���
i,j

qi
klqj

kl�
� , �3�

which diverges at TSG as �	L�/�, with � related to � and �
via hyperscaling ��=d�−2��, and d being the dimensional-
ity.

The overlap between replicas can be generalized to wave
vector k, allowing for the measurement of the correlation
length. To do so, we define

qkl�k� = N−1�
i

Si,1
k Si,2

l eik·Ri, �4�

where Ri is a vector connecting site i to an arbitrary origin.
The spin glass susceptibility generalized to wave vector k is
then

��k� = N−1�
k,l

�
i,j

���qi
klqj

kleik·rij��� , �5�

where rij =Ri−R j. Using this definition of ��k� the correla-
tion length is calculated1,5 using

� =
1

2 sin��kmin�/2�
 ��0�
��kmin�

− 1�1/2

, �6�

where kmin= �2� /L ,0 ,0� is the minimum wave vector al-
lowed by our choice of boundary conditions. For T�TSG, �
should be independent of size while for low temperatures,
�	�N. At TSG one expects �	L if the transition is second
order. Thus a plot1 of � /L for various L will cross at TSG,
fanning out both above and below TSG. This method was
used to determine TSG in Ising1 and Heisenberg5 spin glasses
with Gaussian bond distributions, and has also been shown
to work well in ±J frustrated Heisenberg ferromagnets9

where a comparison can be made between various indepen-
dent measures of TC.

A difficulty experienced in Monte Carlo simulations of
spin glass models is the slow convergence at low tempera-
tures. To investigate convergence we simulate the model

with increasing numbers of Monte Carlo sweeps, m, used
both prior to and during thermal averaging. For each L and m
we simulate n=100 disorder configurations beginning in the
paramagnetic state and cooling to low temperatures �simu-
lated annealing�. Different disorder configurations are used
for each L and m in order to check that our choice, n=100,
produces consistent results. The number of Monte Carlo
steps range from 300	m	105.

As there are two principal and independent sources of
error, a thermal error and a disorder error, we expect that
with increasing m and n the total error 
 should behave as

= �
m

2 /m+
n
2 /n�1/2. With n fixed, a lack of sufficient ther-

mal averaging should show up as a decrease in the error with
increasing m. On the other hand, if the correlation time has
been greatly exceeded and 
m

2 /m�
n
2 /n, then 
 should be

approximately constant and the data for different m will
agree within the stated error, provided n is large enough.

Our expectations are borne out in Fig. 1 where we show
the simulation data for L=10, the smallest L for which a lack
of convergence could be observed. For T�0.18, the calcu-
lated � are independent of m, as are the errors. The results at
T=0.14 with m=300 and m=1000 are clearly underesti-
mated; the data at T=0.14 remain correlated with the previ-
ous measurement at T=0.18, evidence that the appropriate
correlation time has not been exceeded. At T=0.1, � contin-
ues to increase with increasing m, and for this reason we
cannot make an estimate of � at this temperature. For L
=12 we did not observe a convergence for T=0.1 and T
=0.14, which, based on the behavior at L=10, is entirely
expected. We make final estimates of ��T ,L� using a
weighted average of those results deemed to have converged,
as shown in the inset of Fig. 1 by straight lines spanning
those measurements used in the average.

In Fig. 2 we have plotted � /L vs T. For a conventional,
finite temperature, second order phase transition, the data
should cross at TSG, the temperature for which ��L. A clear
crossing is observed at T=0.22. The data show little to no
shift in the crossing point as L increases. To demonstrate the
clear crossing we show in Fig. 3�a� plot of log��� vs log L at

FIG. 1. Correlation length divided by system size, � /L, vs temperature as
the number of Monte Carlo steps �MCSs� is increased during a simulated
anneal �L=10�. Also shown ��� are our final estimates of � /L. The inset
shows � vs MCS for all temperatures studied. The range of MCSs used in
the average for each T is shown by straight lines. At the lowest temperature,
T=0.1, we do not observe a clear convergence.

FIG. 2. Correlation length divided by system size, � /L, vs T for different L.
A clear crossing is observed at TSG=0.22. The inset shows the scaling of � /L
according to Eq. �7� with �=1.04.
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T=0.22. If � is proportional to L at this temperature, then the
data should fal on a straight line with slope s=1. Fitting for
L�6 gives s=1.012�15�, consistent with s=1. The proximity
of our result to s=1 shows that we are very close to the
critical temperature, and our estimate of the transition tem-
perature is TSG=0.220�5�.

According to standard finite size scaling theory

�/L = F�tL1/�� , �7�

where t= �T−TSG� /TSG is the reduced temperature and � the
exponent of the correlation length. An estimate of 1 /� can be
made from the slope of � /L by noting that, at TSG,
log�d�� /L� /dT�� �1/��log�L�. A fit to this form, for L�6,
yields 1 /�=0.96�6�. In the inset of Fig. 2 we show the col-
lapse according to Eq. �7� using �=1.04, and we point out
that the collapse is excellent over the entire temperature
range studied.

Further support for our assertion that TSG=0.220�5� is
found in the scaling of the order parameter q and the spin
glass susceptibility �. According to standard theory, at TSG

we should have q=aL−�/� and �=bL�/�, while from hyper-
scaling d=2�� /��+� /�. Fits of the data in log-log form pro-
vide the exponent ratios, and using L�6 we get � /�
=0.509�8� and � /�=1.990�33�. The inset to Fig. 3 shows the
fits of log�q� vs log�L� and log�� /N� vs log�L�. The data at
L=4 clearly suffer from finite size effects, and it would be
desirable to have results for larger L to confirm the large L
behavior. In addition, hyperscaling is well satisfied with
2�� /��+� /�=3.01�4�	3.

Our results are in good agreement with those of other
authors who conclude that TSG�0. The twist free energy
calculation6 of Endoh et al. gives TSG=0.19�2�, although it
was necessary to assume a particular scaling form for the
size dependent shift of their observed crossing point. Our
results show no shift in the crossing point, except perhaps at
L=4. Nakamura and Endoh estimated7 TSG=0.22−0.04

+0.01, �
=1.1�2�, �=1.9�4�, and �=0.72�6�. These results compare
reasonably well with ours, TSG=0.220�5�, �=1.04�6�, and
�=2.1�1�, with the exception of our results �=0.53�3�.

In conclusion, we have shown that the nearest neighbor,
±J Heisenberg spin glass undergoes a conventional, second
order phase transition in 3D, with TSG=0.220�5�. Our data
cannot accommodate a zero temperature transition since the
correlation length diverges at T�0. Lastly, we have shown
that the use of over-relaxation updates along with standard
Metropolis updates allows one to study the model at TSG

using as little as 300 Monte Carlo updates.

This work was supported by grants from the Natural
Sciences and Engineering Research Council of Canada, and
Fonds pour la formation de chercheurs et l’aide à la recher-
che, Québec.

1H. G. Ballesteros et al., Phys. Rev. B 62, 14237 �2000�.
2J. A. Olive, A. P. Young, and D. Sherrington, Phys. Rev. B 34, 6341
�1986�.

3K. Hukushima and H. Kawamura, Phys. Rev. E 61, R1008 �2000�.
4H. Kawamura and M. Tanemura, Phys. Rev. B 36, 7177 �1987�.
5L. W. Lee and A. P. Young, Phys. Rev. Lett. 90, 227203 �2003�.
6S. Endoh, F. Matsubara, and T. Shirakura, J. Phys. Soc. Jpn. 70, 1543
�2001�.

7T. Nakamura and S. Endoh, J. Phys. Soc. Jpn. 71, 2113 �2002�.
8M. Creutz, Phys. Rev. D 36, 515 �1987�.
9A. D. Beath and D. H. Ryan, J. Appl. Phys. 97, 10A506 �2005�.

FIG. 3. Double logarithmic plot of � vs L at TSG=0.22. A fit omitting the
L=4 point yields a slope s=1.012�15�. The proximity to s=1 shows that
TSG	0.22 and that finite size corrections are small. The inset shows double
logarithmic plots of q and � /N vs L. The slopes obtained from the two fits,
omitting L=4, yields our estimates � /�=0.509�8� and � /�=1.990�33�.
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