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Order Parameter Profiles in a Twisted Heisenberg Model
A. D. Beath and D. H. Ryan
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We present the results of Monte Carlo simulations of the 3-D Heisenberg model with twisted boundary conditions. The boundaries are
chosen to have a saturated magnetization in equal and opposite directions which imposes a twist on the order parameter profile centered
at the midpoint of the sample. The magnetization profiles are distinct from mean field theory. We present a detailed examination of the
magnetization profile and suggest experiments which can verify the finite size scaling forms we observe.

Index Terms—Critical phenomenon, domain walls, ferromagnetism, Monte Carlo.

HE DOMAIN walls which typically occur in a ferromag-
Tnetic material are the result of dipolar fields, which pro-
duce the demagnetization field. However, artificial domain walls
can also be created by tailoring the structure of a material in
such a way that the magnetization profile contains a twist. One
successful method involves rotating a crystal about an applied
magnetic field during growth [1], producing an artificial mag-
netic spiral [1]-[3]. While the stability of the spin spiral de-
pends on the details of the anisotropy field, the theoretical study
of magnetic twists is usually undertaken by imposing opposing
surface fields at the boundaries of a model, such as an Ising [4]
or Heisenberg [5]-[7] ferromagnetic model. A major prediction
[6] of mean field theory is that at Tc the order parameter pro-
file for a model with continuous Heisenberg spins is identical
to that of a model with discrete Ising spins, implying that the
anisotropy is irrelevant at T¢.

This result is surprising since, intuitively, one might expect
that a Heisenberg model with opposing boundary conditions
will produce a Bloch like domain wall, where the magnetization
rotates uniformly between the “up” and “down” surface fields
[5]. However, mean field theory predicts that, at criticality, a
sharp twist of the magnetization occurs, confined to the mid-
point of the sample [6]. The predictions of mean field theory
are, however, not valid in three dimensions, and so one could
expect important differences when fluctuations become impor-
tant. Indeed, one reason to study the model is that the critical
fluctuations at T¢ in a binary alloy with opposing surface fields
(modeled as a twisted Ising ferromagnet) produce long-range
forces analogous to the electromagnetic Casamir force [6].

In order to gain a better understanding of the magnetization
profiles in twisted Heisenberg models, we have simulated the
model using a Monte Carlo algorithm. The Hamiltonian for the
classical Heisenberg model is H = — > (i.) S; - S;, where the
sum runs over nearest neighbor, unit vector, Heisenberg spins
on a simple cubic lattice. We use periodic boundary conditions
in the z and ¢ directions, and to simulate the twist we impose
surface fields which interact with the fluctuating spins at z = 1
and z = L, where L is the linear dimension of the sample.
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There are several types of surface fields used in the study of
twisted Heisenberg models. One type [6] is to impose infinite
and opposite surface fields on the two boundaries in the Z di-
rection. We simulate this by considering finite crystals of size
L x L x L, with the plane of free and fluctuating spins at z = 1
and z = L coupled to a rigid and unfluctuating plane of spins
with S(z = 0) = +2 and S(z = L 4+ 1) = —Z respectively.

To measure the twist imposed on the magnetization we have
simulated the model using a conventional Metropolis Monte
Carlo update method along with overrelaxation updates [8]. The
details of our implementation of the method can be found else-
where [9], where it was demonstrated that the overrelaxation up-
date eliminated the critical slowing down in a frustrated Heisen-
berg model. We have varied the number of Monte Carlo updates
from 5000 to 25 000 per site and have not detected any signif-
icant differences between important measures, indicating that
the sample independence time has been greatly exceeded. We
have been able to simulate large lattices with 4 < L < 64
both with and without the twist. As an indication of the accu-
racy we achieve, in the case of the untwisted model, we have
calculated the critical exponent ratios S/v = 0.519(8) and
v/v = 1.965(26), in good agreement with the accepted values
[10] 8/v = 0.514(5) and /v = 1.975(4).

The most important quantities of interest are the magnetiza-
tions profiles, m(z). The instantaneous value of the magnetiza-
tion components in the kK = Z, ¢, and 2 directions are

mi(z) = Z Six(2) (1)

where the sum is restricted to the n = L? spins in the plane at
z. The instantaneous value of the total magnetization for each
plane is thus

m(z) = [mi(z)Q + mg(z)Q + m2(2)2]1/2_ @)

The instantaneous angle made by the magnetization and the z
direction is

0(2) = cos™[mz(2)/m(z)]. 3)
The three magnetization components, the total mag-
netization, and the angle between the magnetization
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Fig. 1. Magnetization profiles for the twisted Heisenberg model (m(0) = +1
and m(L 4+ 1) = —1). Clockwise from top left, magnetization/site m(z), 2
axis projection of the magnetization/site m: (), Z axis projection of the mag-
netization/site 1.z (z), and the angle between the magnetization and the £ axis
(). The arrow (top right) is a guide to the eye, pointing through (m:(z = 1)).

and the 2z axis are all averaged over time, yielding
(ma(2)), (my(2)), (ms(2)), (m(=)), and (8(2)).

It is important to note that the time average of the = and y
projections of the magnetization, (m;(z)) and (m;(z)) must
be zero due to ergodicity. Physically, this results from the fact
that left- and right-handed twists of the magnetization occur
with equal probability, and as such the magnetizations in the
transverse directions tend to cancel. For example, a particular
state could be a spin structure with S(z) = (sinf,0,cos#) or
S(z) = (—sinf,0,cos60) with § = wz/L' and 0 < z < L.
Since the two twists have the same energy but mirror symmetry,
the z axis projection of the magnetization cancels.

In Fig. 1 we show the calculated magnetization profiles for a
selection of lattice sizes at the inverse critical temperature [10]
Bc = 1/Tc = 0.6930. The data are presented as functions of
z = z/L/, with I’ = L + 1, so that the boundaries appear
at Z = 0 and Z = 1 respectively. We do not show (m;(z))
since, owing to time reversal symmetry, it must be zero, like
(mz(Z)) as shown in Fig. 1. It is clear that the magnetization (for
finite samples) rotates smoothly about the Z axis, with (#(z =
1/2)) = m/2. Furthermore, the magnetization is decreasing to
zero in the bulk, as should be expected for a finite system at
criticality.

Mean field theory predicts that the magnetization is restricted
to the z direction at 1, and

(mz(2) >= L7"hy (%) “4)

where 3 and v are the usual scaling exponents, and hy _(Z) is
a scaling function [6]. Of course, since we work in three dimen-
sions we must use the exponents = 0.362 and v = 0.704
appropriate for the 3-D Heisenberg universality class [10]. In
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Fig. 2. Scaling plot of the 2 component of the magnetization with 3/v =
0.514 appropriate for the 3-D Heisenberg model. Solid line is the scaling func-
tion h _ from mean field theory. Inset shows the behavior near the midpoint
of the sample, demonstrating that mean field theory fails everywhere.

Fig. 2 we show a plot of (m: (%)) L°/* versus z and compare this
with the predicted h4 _(Z) from mean field theory.! The fact
that the scaling function does not perfectly capture the actual
physics in three dimensions is unsurprising. The scaling func-
tion is, however, quite adequate for 1/4 < Z < 3/4, although
on close inspection it is clear that the slope is wrong, as shown
in the inset to Fig. 2.

In the limit Z — 0 with L large, mean field theory predicts
that [6], [7] b4, —(Z) ~ z 1. Itis clear from Fig. 1 that (m:(z))
approaches a finite value in the limit of large L (which we can
resolve for the first six planes or so). This polarization of the
magnetization near the boundaries implies a very specific form
for the actual scaling function hy _(Z) near z = 0. Setting
(mz(2)) equal to a constant for in (4) shows that, in the limit
z/L — 0, hy _ ~ (2/L)~"/". Mean field theory predicts the
same form, except the exponents take mean field values 3 =
v=1/2

Mean field theory does not, however, predict the correct order
parameter profile, even qualitatively. The main prediction is
that, at T, we should have (m(z)) = |(m:(z))|.- We do not find
this to be the case. Instead, (m(z)) > |(m:(z))], as can be seen
by comparing Figs. 2 and 3. In the regime 0 < z < 0.1 (and by
symmetry 0.9 < Z < 1) (m(z, L = 00)) = [{mz(z, L = 00))|,
which we show in the inset to Fig. 3 for the largest (L = 64)
sample, and where the finite size differences between (m(z))
and (mz(z)) are almost negligible. It is important to note though
that (6(z)), is not related to the ratio (mz(z))/(m(z)), and so
while m(z) = m:(z) for 0 < Z < 0.1 and L large, 6(z) # 0
for the finite samples.

IFor the comparison, we use the mean field scaling function from [7] rather
than that of [6] as it fits our data better. However, both mean field calculations
predict the same limiting behavior of the magnetization near the boundaries, and
are in this sense equivallent.



2904

o L=16
A L=24
v L=32
¢ L=48
O L=64
I I
0.0 0.2 0.4 0.6 0.8 1.0
z/L

Fig. 3. Scaling plot of the total magnetization with 3/ = 0.514 appro-
priate for the 3-D Heisenberg universality class. The inset shows both m(z)
and |m: (z)| for L = 64 which are unequal near the midpoint of the sample.

Within the confines of mean field theory, (f(z)) is a step func-
tion [6] with (§(z)) =0forz < 1/2and0(z) = wforz > 1/2.
In a finite sample this step is rounded, and one might expect
that at the midpoint of the sample d(f(z))/dz should diverge
with increasing L. We find that d{6(z))/dZ|;—, /5 ~ L*/* with
k ~ 10. This is shown in Fig. 4 where we have plotted (0(Z))
versus (Z — 1/2)L'*, with 1/ = 0.1.

The large value of « indicates that the increase of slope with
increasing L is slow, as shown in the inset to Fig. 4 where we
have plotted (#(Z)) more clearly than in Fig. 1, by omitting the
labelling. Furthermore, since 1/x < 1, the experimentally rele-
vant quantity d{f(z))/dz ~ L%, and so the sharp twist pre-
dicted here will not explicitly occur; it can only be observed
in the reduced units of z/L’. However, the fact that the slope
of (6(z)) diverges at the midpoint of the sample confirms the
qualitative picture given in mean field theory where an abrupt
domain wall is created at criticality. Experimentally, polarized
neutron reflectometry can measure the magnetization profiles
modeled here [2], [3], and it would be interesting to compare
the real profiles occurring in artificial magnetic structures [1] of
varying sizes at T¢ with the theoretical predictions.

REFERENCES

[1] W. Lohstroh, M. Miinzenberg, W. Felsch, H. Fritzsche, H. Maletta, R.
Goyette, and G. P. Felcher, “Imprinting artificial magnetic structures,”
J. Appl. Phys., vol. 85, pp. 5873-5876, Apr. 1999.

IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 6, JUNE 2007

TR

<0(z)>

-0.6

-0.2
(z/L-1/2)L1/*

0.2 0.6

Fig. 4. Scaling plot of 6(z) with £ ~ 10. The large value of  indicated that
the sharpening of the domain wall with increasing L is slow, as shown in the
inset where we plot (#(2)} for L = 8,16, 32 and 64.

[2] S. Mangin, C. Bellouard, and H. Fritzsche, “Observation of a well
characterized 180° domain wall by polarized neutron reflectometry,”
Physica B, vol. 276-278, pp. 558-559, Mar. 2000.

[3] S. Mangin, F. Montaigne, C. Bellouard, and H. Fritzsche, “Study of
magnetic configurations in exchange-coupled bilayers by polarized
neutron reflectometry,” Appl. Phys. A, vol. 74, pp. S631-S633, Dec.
2002.

[4] E. Brézin and S. S. Feng, “Amplitude of the surface tension near the
critical point,” Phys. Rev. B, vol. 29, pp. 472475, Jan. 1984.

[5] E. Brézin and C. De Dominicis, “Twist free energy,” Eur. Phys. J. B,
vol. 24, pp. 353-358, Dec. 2001.

[6] M. Krech, “Casimir forces in binary liquid mixtures,” Phys. Rev. E, vol.
56, pp. 1642-1659, Aug. 1997.

[7] J. O.Indekeu, M. P. Nightingale, and W. V. Wang, “Finite-size interac-
tion amplitudes and their universality: Exact, mean-field, and renormal-
ization-group results,” Phys. Rev. B, vol. 34, pp. 330-342, Jul. 1986.

[8] M. Creutz, “Overrelaxation and Monte Carlo simulation,” Phys. Rev D,
vol. 36, pp. 515-519, Jul. 1987.

[9]1 A. D. Beath and D. H. Ryan, “Ferromagnetic phase boundary in
the bond frustrated Heisenberg model,” J. Appl. Phys., vol. 97, pp.
10A506-10A509, May 2005.

[10] K. Chen, A. M. Ferrenberg, and D. P. Landau, “Static critical behavior
of three-dimensional classical Heisenberg models: A high-resolution
Monte Carlo study,” Phys. Rev. B, vol. 48, pp. 3249-3256, Aug. 1993.

Manuscript received October 30, 2006; revised February 20, 2007 (e-mail:
beatha@physics.mcgill.ca).



