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Latent heat of the fcc Ising antiferromagnet
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To obtain critical parameters of the fcc Ising antiferromagnet from Monte Carlo data, a numerical
estimate of the latent heat A is required. The precision of current estimates is about 3%, and
ultimately limits the precision achieved for the disordered state at the Néel temperature 7. Here we
make several different estimates of the latent heat, using finite size scaling of Monte Carlo data, and
show that a superior method yields a 25-fold improvement [A=0.4559(6)] in comparison with our
older result [A=0.455(15)]. © 2007 American Institute of Physics. [DOI: 10.1063/1.2693929]

The nearest neighbor fcc Ising antiferromagnet under-
goes a first order phase transition'™ at the Néel temperature,
Tx. The model is usually invoked to explain the phase dia-
grams of binary alloys such as CuAu and FePt. A variety of
techniques has been employed to study the model, including
mean field theory,1 series expansions,2 and Monte Carlo
simulation.> Monte Carlo simulations have provided the
most precise estimates for the critical parameters,5 and these
results are in fair to good agreement with those obtained
from series expansions.2’5 In particular, at Ty, the internal
energy and entropy of the ordered state—which coexists with
a disordered state—are known with a precision comparable
to those of the fcc Ising ferromagnetic model’ (about a part
in 10 000). Estimates of the critical parameters for the disor-
dered state, however, are not nearly as precise, a problem
entirely attributable to the difficulty of obtaining the latent
heat of the infinite crystal from Monte Carlo simulations on
finite systems. Here we present a much improved finite size
scaling analysis of our Monte Carlo data which provides a
more precise estimate of the latent heat.

The fcc Ising antiferromagnet describes a simple binary
alloy which at low temperatures forms a superlattice. The
Hamiltonian is H=-JZ; »S,S; where the sum is over all pairs
of nearest neighbor Ising spins (S;=+1). The spins reside on
the vertices of a three dimensional fcc lattice with periodic
boundary conditions containing N=4L> spins, where L is the
linear dimension of the fcc lattice. The ground state of the
antiferromagnetic model (with J=-1) is infinitely degenerate
due to spin frustration and consists of an uncorrelated stack
of antiferromagnetic (AF) ordered planes.6 At finite tempera-
ture the degeneracy is lifted by thermal fluctuations, known
as the order-by-disorder effect, which select those ground
states which possess alternating ferromagnetic (FM) ordered
planes,7 perpendicular to the AF order.

Since the phase transition at 7 is first order, hysteresis
is often experienced during Monte Carlo simulations®* mak-
ing it difficult to obtain a precise estimate of the transition
temperature and critical parameters. In recent years, the
emergence of flat histogram Monte Carlo techniques8 has
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provided an ideal method by which to study first order tran-
sitions since hysteresis is completely removed. The tech-
nique, described elsewhere,s’8 yields the density of states,
g(E/J), from which thermodynamic functions can readily be
calculated at all temperatures for both the FM and AF mod-
els simultaneously. The analysis presented here is a reanaly-
sis of the data used in our Ref. 5, and where mathematical
definitions and simulation details can be found.

The key numerical results from our recent study5 are
listed in Table I for the free energy/site (f), internal energy/
site (u,), and the entropy/site (s,) at Ty, where “+” and “—"
refer to the disordered (high 7) and ordered (low 7) states,
respectively. It is clear that the results for the disordered state
are not nearly so precise as those for the ordered state. The
reason for the difference is simple: For the model studied,
Ty(L)>Ty() and so our estimates of the internal energy
and entropy at Ty(%) are those of the ordered state, u_ and
s_, respectively. To obtain u#, and s, we require an estimate
of the latent heat A, since A=u,—u_ while the entropy is
obtained via f=u,—Ts,.

The delta function peak in the heat capacity/site (c) at Ty
for the infinite crystal is both rounded and shifted for the
finite crystal, and to an excellent approximation the peak is
Gaussian. Our original estimate of the latent heat,” A
=0.455(15), was obtained from the scaling of the peak height
and inverse half width of c. A temperature dependent back-
ground also contributes to ¢, but this contribution is of the
order unity while the peak height diverges as LY, where d is
the dimension of the lattice. Fits of ¢ to a Gaussian (see Ref.
5 for details) are shown in Fig. 1 for L=12, 16, 20, and 24.

TABLE I. A comparison of our old and revised estimates of the critical
parameters at T=1.7217.

Old estimates Revised estimates

f ~2.028 09(4) ~2.028 09(4)
U, ~1.354(15) ~1.35335(62)
" ~1.809 25(15) ~1.809 25(15)
5, 0.391(6) 0.391 85(39)
5. 0.127 11(11) 0.127 11(11)
Ty 1721 7(8) 1.721 7(8)
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FIG. 1. Heat capacity/site divided by N for L=12,16,20, and 24 (solid line).
Gaussian fits (dashed lines). Inset (a) show the peak height, c|,., diverging
as L3. The dashed line is a fit to Eq. (1) while the solid line is a fit to Eq. (7).
Inset (b) shows the value of A obtained from fits to Eq. (7), where L, is the
smallest system size used, which becomes constant for L>6.

The agreement with the Gaussian form becomes better as L
increases, the difference being of the order of the back-
ground.

For a first order transition,” the peak height, ¢|pax
should diverge with increasing L as L¢. To take into account
the background, we fit the peak height ¢|,,.x(L) to the form

C|max(L) =Cp+ C3L3 (1)
and similarly, the inverse half width, I'(L),
I(L)=Ty+T;L°%, (2)

so that in the limit of large L, A=\2mc;/T'5. The fit to Eq.
(1) is shown in Fig. 1(a) and ¢,=3(6) is of the expected
order. An obvious failure of this method is that the L and T
dependences of the background have been ignored, and the
latent heat determined by this method may be biased by
these omissions. However, as we shall show, the term ¢, has
a mathematical origin and must be present even if the back-
ground could be subtracted from the data perfectly.

For a first order transition with L large, the probability
distribution of states with energy/site €, P(e), is simply the
sum of two Gaussians'” centered about the mean energy/site
of the disordered and ordered states, u,. In Fig. 2 we show
the characteristic P(e€) for L=16 at T\(L=16)=1.7447. The
form of P(€) suggests a better method for extracting A.

First we write the probability as

: Wy e—1/2((5— 14_'_)/0_,_)2 + w- e—1/2((5— u_)/a_)z’

\

P(e) =

27T \'2770%

3)

where w, are, for finite systems, smooth functions of tem-
perature weighting the contribution from the disordered and
ordered states. Clearly, w,+w_=1, and w,=0. For the infi-
nite crystal w, is the Heaviside function, w(T)=0(T-Ty),
since the transition is sharp. The heat capacity/site of the
ordered and disordered states is simply c,=N Bzoi, while the
total heat capacity is
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FIG. 2. Probability distribution of states with energy E/N, P(E/N), for L
=16 at Ty(L=16)=1.7447, the temperature for which ¢ is maximal (solid
line). The solid line is simply P(E)=g(E)e . Double Gaussian fit also
shown (dashed line).

c=w,c,+w_c_+NBw,w_[u, —u_]*. (4)

In the case where u, and o, are slowly varying functions
of T, Eq. (5) predicts that ¢ is a maximum when w+:w_:%,
which we have confirmed to a precision better than 1%. Thus
we have

2
A(L) ] 2 -

1
L)=—lc,(L)+c_(L)|+| ———
C|max( ) 2[C+( )+c_( )] |: TN(L)
where A, c,, and Ty may all possess a size dependence. If we
assume for the moment that A and c, are independent of L at
Tn(L), then the substitution Ty(L)=Ty()+aL™" (see Ref. 5)
yields

A 2
Clmax = Co + (T—> L3[1 +2a(TyL) ™" + a*(TyL) ]2
N

(6)

A Taylor expansion of the term in square brackets (valid
since a<TyL) gives

Clmax = Co + E 1LY + L% + &L°, (7)
(where we have neglected nondivergent terms but retained

the constant ¢,) with

1
éo= 5(c+ +c)— 20a3A27;,5,

¢ = - 10aATy,
&y =—4al’Ty,

&= ATy

The expansion [Eq. (7)] demonstrates that the diver-
gence of  ¢|. is more complex than that given in Eq. (1).
Indeed, in addition to the expected L3 term, there are an
infinite number of correction terms to all orders in L less than
the dimensionality. The source of the corrections is just the
finite lattice shift of Ty(L) and is the reason why the constant
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FIG. 3. Scaling of A(L) vs L™3. For L= we get A;=0.4559(6). In the inset
we show the size dependence of u_ and u,. For L= we get u_=
-1.809 25(15) and u,=-1.35335(62).

term ¢, in Eq. (1) would have a finite value even if the
background heat capacity could be subtracted. A fit to Eq. (6)
for L>6, with Ty=1.7217 and a=0.370 fixed (see Ref. 5),
yields A=0.4574(13), well within the error of our less pre-
cise result A=0.455(15). As shown in Fig. 1(b), the fit is
robust provided we omit the data for the smallest system
sizes.

The last method we use to obtain the latent heat, and one
that gives our most precise result, is also based on a double
Gaussian P(e) at Ty(L). However, rather than extracting A
from the peak height of the heat capacity/site, we extract for
each system size u, and u_ where ¢(7,L) is a maximum (i.e.,
where w,=w_). In Fig. 3 we show the difference, A(L)=u,
—u_ vs L3, while in the inset we show the evolution of U,
with increasing L. The data demonstrate that A contains a
substantial size dependence, and the plot suggests a finite
size scaling of the form

A(L) = A(®) + bL™3. (8)
This dependence of A(L) on L was not taken into account in

our fit for A(e) using Eq. (6). Nor would we be able to
resolve such a finite size scaling form from the divergence of
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C|max- Fitting the data to Eq. (8) for L>6 yields A(x)
=0.4558(6) and b=-20.0(3). Again, the fit is robust and
agrees with the less precise results A=0.455(15) and A
=0.4574(13).

Having obtained a much more precise result for the la-
tent heat, we can now derive improved estimates of the in-
ternal energy/site and entropy/site for the disordered state at
Ty. Our updated results are summarized in Table 1. In the
case of u, we achieve a 25-fold improvement, while for s,
we achieve a 15-fold improvement.

ireviously, we had calculated the latent heat using A
=\2mc;/T;, where the multiplicative constant y27 resulted
from the assumed Gaussian shape of the finite lattice heat
capacity/site. Our improved estimate of A does not rely on
any assumption regarding the shape of ¢(L). The consistency
between the estimates of A, however, demonstrates that the
peak shape is likely to be Gaussian, which can be obscured
by the temperature dependent background.

In conclusion, we have used a more precise method for
obtaining the latent heat for the fcc Ising antiferromagnet.
The methods developed here should be of use to others
studying first order phase transitions. The increase in preci-
sion allows for better estimates of the energy and entropy of
the disordered state. Furthermore, we have also shown that A
contains significant finite size corrections which vanish to
leading order as L™
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