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Abstract. The hyperfine splittings of the nuclear energy levels in rare-earth (R) isotopes are sen-
sitive measures of the complex interplay between magnetic exchange and electrostatic crystal-field
interactions operating at the atomic level. Mössbauer spectroscopy has been used to great effect in
the on-going investigation of these fundamental interactions in R compounds and in this paper we
present an overview of 166Er, 169Tm and 170Yb Mössbauer spectroscopy. In particular, we derive
expressions for the nuclear energy level splittings incorporating both magnetic and electric quadru-
pole interactions, using second-order perturbation theory. Such expressions provide a useful means
of fitting experimental spectra and also yield criteria for determining whether or not a proposed set
of energy level values is physical or not. We also present a number of useful rules of thumb for the
analysis of 166Er, 169Tm and 170Yb Mössbauer spectra and, as such, this paper is in effect a Resource
Letter.
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1. Introduction

The rare-earth (R) or lanthanide elements may be quite similar chemically but this
series presents an extremely rich variety of magnetic behaviour, associated with
the progressive filling of the 4f electron shell. Their magnetism is dictated by the
complex interplay between magnetic exchange and crystal-field interactions and
the localized nature of the 4f electron shell provides an excellent arena in which to
study this interplay. Mössbauer spectroscopy has made an enormous contribution
to the study of magnetism in metallic and non-metallic rare-earth compounds alike.

The R series comprises elements La (#57) to Lu (#71), inclusive, and Möss-
bauer transitions have been found in each R element except Ce (#58). A total of 39
isotopes show at least one Mössbauer transition and across the series 49 transitions
have been observed [1]. While none of these transitions is as straightforward as
57Fe or 119Sn, and most are extremely difficult to utilise, several are routinely stud-
ied and in this paper we present an overview of Mössbauer spectroscopy in three
amenable R isotopes, 166Er, 169Tm and 170Yb. In the following paper [2] we will
illustrate their use with examples taken from our recent work on the intermetallic
compounds ErFe6Sn6, Er3Ge4 and YbMn2(Ge,Si)2.
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Table I. Useful Mössbauer transition data

166Er 169Tm 170Yb

Isotopic abundance (%) 33.41 100.0 3.03

Transition energy (keV) 80.557(4) 8.401(8) 84.253(1)

Excited state spin 2+ 3

2

+
2+

Ground state spin 0+ 1

2

+
0+

Excited state half-life (ns) 1.87(3) 4.00(10) 1.608(17)

Internal conversion coefficient 6.93(3) 268(5) 8.05(20)

Natural linewidth (mm/s) 2.04(4) 8.1(2) 2.02(2)

Excited state magnetic moment (µN) 0.629(10) 0.534(10) 0.669(8)

Excited state gyromagnetic ratio (mm/s /T) 0.0369(6) 0.400(8) 0.0375(4)

Ground state magnetic moment (µN) 0 −0.2310(15) 0

Ground state gyromagnetic ratio (mm/s /T) 0 −0.520(3) 0

Excited state electric quadrupole moment (barns) −1.59(15) −1.20(7) −2.11(11)

Ground state electric quadrupole moment (barns) 0 0 0

Energy equivalent of 1 mm/s in joules (×10−27) 43.052(1) 4.490(6) 45.0275(8)

Energy equivalent of 1 mm/s in MHz 64.973(1) 6.776(6) 67.954(8)

Energy equivalent of 1 mm/s in mK 3.1182(1) 0.3252(6) 3.2613(8)

Free-ion hyperfine field (T) [3, 4] 770.5 ± 10.5 668.8 416.6 ± 1.2

Source half-life 26 h 9.4 d 130 d

2. Mössbauer transitions

In Table I we give a summary of the principal Mössbauer transitions in 166Er, 169Tm
and 170Yb, together with a compendium of various constants relating to the nuclear
energy levels involved in these transitions. Most of these data have been taken
from [1].

There are three principal classes of hyperfine interaction which couple the nu-
clear spin system to the atomic electron system [3–8]:

• electric monopole (the isomer shift),
• magnetic dipole (the hyperfine field), and
• electric quadrupole (the quadrupole splitting).

In this paper we shall concentrate on the magnetic dipole and electric quadru-
pole interactions and so all mathematical expressions and simulated spectra given
throughout this paper assume a zero isomer shift. Furthermore, in those cases
where the hyperfine Hamiltonian contains off-diagonal terms the resultant eigen-
vectors will be admixtures of the basis states defined by the nuclear spin I and its
projection m or Iz. For the purposes of clarity we shall label admixed states using
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the original, ‘pure’ state. As an example, the final energy eigenvector resulting
from the effect of the quadrupole asymmetry parameter η on, e.g., the |m = +2〉
state in 166Er will be labelled as |m = +2〉 in diagrams although the state is in fact
an admixture of the |m = +2〉 and |m = 0〉 states, since the relevant off-diagonal
quadrupole spin operator contains the lowering operation I 2−.

Finally, we note that the relative intensities of the six lines in a 169Tm Mössbauer
spectrum, arising from the 3

2 ↔ 1
2 transition are 3 : 2 : 1 : 1 : 2 : 3 for a powder

average whereas for the 2 ↔ 0 transition in 166Er and 170Yb Mössbauer spectra the
relative intensities of the five lines are 1 : 1 : 1 : 1 : 1.

3. Electronic properties

The magnetic and chemical behaviour of R elements in metallic or non-metallic
compounds is generally characteristic of the tripositive R3+ ion and in Table II
we give a summary of the electronic properties of the R3+ ions. At this point we
can make a few important comments concerning the valence behaviour of the R
elements:
• most R ions are tripositive in metallic and non-metallic compounds;
• La3+ and Lu3+ are ‘non-magnetic’ (in the sense of not carrying a magnetic

moment) since their 4f shells are completely empty or full, respectively;
• Yb3+ is ‘magnetic’ but Yb commonly forms Yb2+ which has a full 4f shell

and is ‘non-magnetic’. The difference between the 170Yb Mössbauer spectra
of these two valence states can be striking [2];

• in many compounds Yb has a valence intermediate between 3+ and 2+;
• Ce3+ is ‘magnetic’ but Ce commonly forms Ce4+ which has an empty 4f shell

and is ‘non-magnetic’;

Table II. Electronic properties of Er3+, Tm3+ and Yb3+

Er3+ Tm3+ Yb3+

Number of 4f electrons 11 12 13

Spectroscopic notation of ground manifold 4I15/2
3H6

2F7/2

Spin angular momentum S 1.5 1 0.5

Orbital angular momentum L 6 5 3

Total angular momentum J 7.5 6 3.5

Landé g-factor gJ
6

5

7

6

8

7
Maximum R3+ magnetic moment (µB) 9.0 7.0 4.0

(= gJ |〈Jz〉|max = gJ J )

4f quadrupole term 〈3J 2
z − J (J + 1)〉 (max) 105 66 21

de Gennes factor (gJ − 1)2J (J + 1) 2.5500 1.1667 0.3214
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• in many compounds both Ce and Yb exhibit heavy-fermion behaviour;
• Gd3+ and Eu2+ are S-state ions and have no 4f contributions to the electric

field gradient (EFG) at the nucleus.

4. Calibration materials

Rare-earth Mössbauer spectroscopy often involves much larger velocity ranges
than in 57Fe and the use of a laser interferometer to calibrate high-speed drives
is recommended. In addition, there are a number of compounds available which
provide reliable velocity calibration.

166Er. We propose that the cubic Laves phase compound ErFe2 be used for the
calibration of 166Er spectrometers. First of all, the compound is quite easy to pre-
pare in single-phase form and there is only one Er3+ site whose cubic point symme-
try ensures no lattice contribution to the EFG (assuming there is no magnetoelestic
distortion). The 166Er hyperfine field at 1.4 K is 819.4 T. This calibration field is the
average of the 166Er Mössbauer measurement of 820.5(8) T by Hodges et al. [9]
and the 167Er NMR measurement of 818.4±10 T by Berthier and Devine [10]. It
is implicit here that the so-called hyperfine anomaly which gives rise to a small
difference in the hyperfine field experienced by different isotopes, is negligible.
In any event, such a difference is probably within the experimental error of these
field determinations. For example, in his recent book Guimarães [6] refers to “an
exceptionally high value of −0.5%” for the hyperfine anomaly with 151Eu and
153Eu being measured in various Eu2+ salts by Baker and Williams [11].

169Tm. For similar reasons as in the case of 166Er, we propose that the cubic Laves
phase compound TmFe2 be used for the calibration of 169Tm spectrometers. It is
crucial in the case of 169Tm that a Tm-compound be used for calibration rather
than extrapolating a standard α-Fe calibration since the velocity range required for
a fully-split 169Tm magnetic spectrum is ∼ ±800 mm/s, which compresses a fully-
split α-Fe spectrum into one or two channels! The 169Tm hyperfine field at 1.4 K
is 698.6±5 T. This field has been determined by both NMR [12] and Mössbauer
spectroscopy [13].

170Yb. The velocity range employed in 170Yb Mössbauer spectroscopy is smaller
than either 166Er or 169Tm and there are a number of suitable materials available for
calibration. We have used both YbCrO3 and YbFeO3 for calibration purposes [14].

5. Electric quadrupole interaction

The electric quadrupole interaction is an electrostatic coupling between the nuclear
electric quadrupole moment (when I > 1

2 ) and any electric field gradients (EFG)
existing at the nucleus. The EFG contains contributions from the 4f electronic shell
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Table III. Second-order nuclear spin operators (Oa
nm), quadrupole parameters (Pa

nm) and their
proportionality relationships to the EFG tensor components (Vij )

O20 Oc
21 Os

21 Oc
22 Os

22
3I2

z − I2 1
2 (IzIx + IxIz)

1
2 (IzIy + IyIz) I2

x − I2
y (IxIy + IyIx)

P20 Pc
21 P s

21 Pc
22 P s

22
Vzz 4Vxz 4Vyz Vxx − Vyy 2Vxy

Vzz Vxz Vyz Vxx − Vyy Vxy∑
i

(3z2
i

− r2
i
)

r5
i

∑
i

(3xizi )

r5
i

∑
i

(3yizi )

r5
i

∑
i

3(x2
i

− y2
i
)

r5
i

∑
i

(3xiyi )

r5
i

of the parent R3+ ion and the surrounding charges (including conduction electrons)
in the lattice. There is also a substantial contribution from the asphericity of the
valence-electron charge density as shown by Coehoorn et al. [15]. This is an impor-
tant point as it means that the usual assumption of direct proportionality between
the non-4f EFG and the second-order crystal-field summations, in particular the
assumption that Vzz ∝ A20, using standard notation, lacks a physical basis and is in
effect a useful approximation. For the purpose of the following discussion we will
refer to ‘4f’ and ‘lattice’ contributions to the total EFG at the nucleus but we ask
the reader to bear in mind the caveat of Coehoorn’s work.

The completely general form of the quadrupole Hamiltonian may be written in
terms of nuclear spin operators

HQ = P20O20 + P c
21O

c
21 + P s

21O
s
21 + P c

22O
c
22 + P s

22O
s
22, (1)

where the spin operators (Oa
nm) and the quadrupole parameters (P a

nm) are listed in
Table III.

The constant of proportionality between a quadrupole term Pnm and the cor-
responding EFG term Vij is eQ/[4I (2I − 1)]. The EFG terms are the standard
second-derivatives of the electrostatic potential

Vij = ∂2V

∂ xi∂ xj

.

It is conventional to treat the electric quadrupole interaction within a reference
frame known as the principal axis system in which only the diagonal components of
the EFG tensor {Vij } are nonzero (hence, P c

21 = P s
21 = P s

22 = 0). Conventionally,
we select these axes such that

|Vzz| � |Vyy| � |Vxx| (2)

and Laplace’s equation yields the further constraint

Vxx + Vyy + Vzz = 0. (3)
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Table IV. Rotational transformations of the nuclear spin operators for a general orientation (θ, φ) of
the quantization (z) axis

O20 Os
21 Oc

21 Oc
22 Os

22

O20 → 1

2
(3 cos2 θ − 1) −3 sin 2θ –

3

2
sin2 θ –

Oc
21 → 1

4
sin 2θ cos φ cos 2θ cos φ − cos θ sin φ −1

4
sin2 θ cos φ

1

2
sin θ sin φ

Os
21 → 1

4
sin2 θ sin φ cos 2θ sin φ cos θ cos φ −1

4
sin 2θ sin φ −1

2
sin θ cos φ

Oc
22 → 1

2
sin2 θ cos 2φ sin 2θ cos 2φ −2 sin θ sin 2φ

1

2
(1 + cos2 θ) cos 2φ − cos θ sin 2φ

Os
22 → 1

2
sin2 θ sin 2φ sin 2θ sin 2φ 2 sin θ cos 2φ

1

2
(1 + cos2 θ) sin 2φ cos θ cos 2φ

Often it is possible to use crystallographic point symmetry arguments to deter-
mine the principal axes. For example, a site with a mirror plane point symmetry will
have one principal axis perpendicular to that plane and the other two axes within
the plane. Unfortunately, one cannot identify the individual axes. The standard
asymmetry parameter, within the principal axis system, is

η = Vxx − Vyy

Vzz

= P c
22

P20

and if the R3+ ion is located at a site whose point symmetry is tetragonal, hexagonal
or trigonal (rhombohedral) then η = 0. For cubic point symmetry, the lattice EFG
vanishes. It is important to note here that the principal axes of the 4f and lattice con-
tributions to the EFG need not coincide and in such a case it is necessary to rotate
one of the reference frames onto the other. This can be achieved by the standard
spin-operator rotational transformations, tabulated by Arif et al. [16] and repro-
duced in Table IV. A particularly useful tabulation of all 2nd, 4th and 6th-order
spin-operator rotational transformations, used in describing the crystal-field acting
on an R3+ ion, has been tabulated by Rudowicz [17].

This table is read as follows:

O20 −→ 1

2

(
3 cos2 θ − 1

)
O20 − 3 sin 2θOc

21 + 3

2
sin2 θOc

22, (4)

where the arrow denotes the coordinate rotation. Thus, a simple electric quadrupole
Hamiltonian such as

HQ = P20O20 + P c
22O

c
22 (5)
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which is defined within its principal axis system, transforms to

HQ =
[

1

2

(
3 cos2 θ − 1

)
P20 + 1

2
sin2 θ cos 2φP c

22

]
O20

+ [−3 sin 2θP20 + sin 2θ cos 2φP c
22

]
Oc

21

+ [−2 sin θ sin 2φP c
22

]
Os

21

+
[

3

2
sin2 θP20 + 1

2

(
1 + cos2 θ

)
P c

22

]
Oc

22

+ [− cos θ sin 2φP c
22

]
Os

22 (6)

within a new frame which is related to the old, principal, frame by the polar angles
(θ, φ). Alternatively, we may consider this situation in terms of the two original
quadrupole parameters, P20 and P c

22 which define the EFG, producing the following
set of quadrupole parameters in the rotated frame:

P ′
20 = 1

2

(
3 cos2 θ − 1

)
P20 + 1

2
sin2 θ cos 2φP c

22,

P c′
21 = −3 sin 2θP20 + sin 2θ cos 2φP c

22,

P s′
21 = −2 sin θ sin 2φP c

22, (7)

P c′
22 = 3

2
sin2 θP20 + 1

2

(
1 + cos2 θ

)
P c

22,

P s′
22 = − cos θ sin 2φP c

22.

Within the principal axis frame, the quadrupole Hamiltonian (Equation (5)) may
be written in terms of the fundamental nuclear spin operators as

HQ = eQVzz

4I (2I − 1)

[
3I 2

z − I 2 + η
(
I 2
x − I 2

y

)]
= eQVzz

4I (2I − 1)

[
3I 2

z − I 2 + η

2

(
I 2
+ + I 2

−
)]

(8)

and diagonalization of this Hamiltonian for the case of the excited nuclear state
(I = 3

2 ) of 169Tm yields the doubly-degenerate eigenvalues

E

(
±3

2

)
= +3P20

√(
1 + η2

3

)
, (9)

E

(
±1

2

)
= −3P20

√(
1 + η2

3

)
. (10)

Hence, we obtain the standard expression for the quadrupole splitting (i.e., the
energy splitting between the two Mössbauer transitions)

� = 6P20

√(
1 + η2

3

)
= eQVzz

2

√(
1 + η2

3

)
. (11)
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Table V. Electric quadrupole energies of the five excited states for I = 2 (appropriate to 166Er and
170Yb)

E(+2) E(+1) E(0) E(−1) E(−2)

+6P20 −3(1 + η)P20 −6P20

√(
1 + η2

3

)
−3(1 − η)P20 +6P20

√(
1 + η2

3

)

Figure 1. Quadrupole energies of the five I = 2 nuclear states in 166Er and 170Yb as functions of
the asymmetry parameter η.

In the case of 166Er and 170Yb, the excited nuclear state spin is 2 and the excited
state has a multiplicity of 5. The energies of these states, under the action of an
EFG, are given in Table V [7]. These eigenvalues and the corresponding eigen-
vectors were first derived by Sikazono [18] for the case of 182W whose 100.1 keV
Mössbauer transition is also 2 ↔ 0.

In Figure 1 we show the energies of the five excited nuclear states of 166Er and
170Yb as functions of the asymmetry parameter η. For η = 0 one obtains three
lines whereas for nonzero η there are five lines. This is an important distinction
because quadrupole patterns of 166Er and 170Yb are asymmetric and it is therefore
possible to determine both the asymmetry parameter η and the quadrupole splitting
including its sign. This is in contrast to the case of 169Tm where one can only
determine the magnitude of the product

eQVzz

2

√(
1 + η2

3

)
.
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Figure 2. Effect of the sign of the quadrupole splitting parameter (bottom = positive and top =
negative) on the quadrupole spectra of 166Er and 170Yb for η = 0.5.

In Figure 2 we show simulated spectra of 166Er and 170Yb for η = 0.5. The
asymmetry is clear and permits the immediate determination of the sign of the
quadrupole splitting.

6. Magnetic dipole interaction

The hyperfine magnetic field at a rare-earth nucleus can be written as

Bhf = B4f + Bcp + Bp + BR
nn + Bnon-R

nn + Bext, (12)

where the individual terms are

• B4f is the field due to the incomplete 4f electron shell. The dominant con-
tribution is from the 4f orbital angular momentum L with a weaker dipolar
contribution from the 4f spin angular momentum S. These momenta may be
projected onto the total momentum to express the field in terms of 〈JZ〉 or 〈Jz〉.

• Bcp is the core polarization field which arises from the deformations of the
inner shells by the 4f shell. This field is written in the form

Bcp = −Bo
cp(gJ − 1)〈JZ〉, (13)

where Bo
cp ∼ 6–10 T [3, 6, 8, 19] and gJ is the Landé g-factor of the R3+ ion

(gJ = 1.2 for Er3+).
• Bp is the contribution from conduction electron polarization by the spin of the

parent R3+ ion.
Bp = Kp〈SZ〉 = Kp(gJ − 1)〈JZ〉, (14)

where Kp is a constant.
• BR

nn and Bnon-R
nn are transferred hyperfine fields from any surrounding mag-

netic R and non-R sublattices, respectively, mediated by conduction electron
polarization.
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• Bext represents any externally applied magnetic fields.

The ‘free-ion’ field values given in Table I are the sum of B4f and Bcp for the
fully-stretched electronic state |〈Jz〉| = J and are usually derived from NMR
or similar measurements on non-metallic salts where the effects of conduction
electrons are absent [3, 4].

Therefore, a measurement of the hyperfine field at the R nucleus in an inter-
metallic compound, for example, can be deconvoluted to give a direct measure of
the R3+ magnetic moment since all hyperfine field contributions except Bnon-R

nn and
Bext can be expressed in terms of |〈Jz〉|, providing direct proportionality with the
R3+ magnetic moment. This is an extremely important advantage Mössbauer spec-
troscopy has over other techniques such as neutron diffraction and magnetometry,
as we will show in the following paper [2].

The magnetic hyperfine Hamiltonian can therefore be written as

HM = −µn · Bhf = gnµNI · Bhf. (15)

7. Mixed magnetic dipole and electric quadrupole interactions

In a real material the direction of magnetic order of the R3+ moment, which we can
call Z, need not coincide with the principal Z′ axis of the EFG and it is necessary
to transform one of the axis frames to coincide with the other if we are to obtain
the eigenfunctions of the various nuclear states. Clearly, the eigenvalues (i.e., the
energy) cannot depend on the final choice of axes.

Therefore, in a coordinate system coincident with the principal axis frame of the
EFG the total hyperfine Hamiltonian, i.e., magnetic + quadrupole may be written

Htotal = HM + HQ

= gnµNBhf
(
Iz cos θ + [Ix cos φ + Iy sin φ] sin θ

)
+ eQVzz

4I (2I − 1)

[
3I 2

z − I 2 + η
(
I 2
x − I 2

y

)]
, (16)

where θ and φ are the polar angles of the R3+ magnetic moment (and hence the
hyperfine field) relative to the EFG principal axis system. We remark here that the
total hyperfine field is not necessarily collinear with the R3+ magnetic moment
due to the possible influence of transferred and/or external fields although any
deviation from collinearity will be small. This is the approach used by Kündig
[20] in his classic paper. Alternatively, we may take the Z axis to be along the
direction of the R3+ magnetic moment (hyperfine field) and rotate the quadrupole
part of the Hamiltonian onto the magnetic frame. This is appropriate to magnetic
rare-earth intermetallics where the magnetic term generally dominates the electric
quadrupole.
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Figure 3. Energy level splittings in 169Tm.

In the simple case where the nuclear hyperfine Hamiltonian is diagonal and
η = 0 and θ = 0, the eigenvalues are given by

Em = −gnµNBhfm + eQVzz

4I (2I − 1)

[
3m2 − I (I + 1)

]
(17)

and it is easy to show that in the case of 169Tm ( 3
2 ↔ 1

2 ) the quadrupole parameter
is given by

eQVzz = 12P20 = (V6 − V5) − (V2 − V1), (18)

whereas for 166Er and 170Yb (2 ↔ 0) we have

eQVzz = 24P20 = 4

3

[
(V5 − V4) − (V2 − V1)

]
, (19)

where the line positions Vi are measured in mm/s, numbered from lowest velocity
to highest as shown in Figures 3 and 5.

Similarly, in this simple diagonal case the magnetic hyperfine field is given by

BTm
hf (T ) = 0.60(1) × (V6 − V1) mm/s, (20)

BEr
hf (T ) = 6.77(12) × (V5 − V1) mm/s, (21)

BYb
hf (T ) = 6.66(8) × (V5 − V1) mm/s. (22)
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Figure 4. Simulated spectra of 169Tm.

In Figure 3 we show the nuclear energy level scheme for 169Tm due to magnetic
dipole and electric quadrupole effects and in Figure 4 we show simulated 169Tm
spectra for the simple diagonal magnetic + quadrupole Hamiltonian. It is clear
from the asymmetry in the spectra that it is easy to determine the sign of the
quadrupole splitting, relative to the hyperfine field. In particular, one need only
note the relative sizes of the splittings V2 − V1 and V6 − V5.

In Figure 5 we show the nuclear energy level scheme for 166Er due to magnetic
dipole and electric quadrupole effects and in Figure 6 we show simulated 166Er
spectra for the simple diagonal magnetic + quadrupole Hamiltonian. Once again,
it is possible to determine the sign of the quadrupole splitting relative to the field
by considering the relative sizes of the line splittings V2 −V1 and V5 −V4, although
it is not as clear as in the case of 169Tm.

In both simulations, the spectrum with eQVzz < 0 is the mirror image of the
spectrum with eQVzz > 0, reflected through the zero velocity (since we are ignor-
ing isomer shifts in this paper).

In more complex cases one must diagonalise the full hyperfine Hamiltonian
and the reader is referred to the articles by Kündig [20], Parker [21] and Matthias
et al. [22] for tabulations and graphical presentations of the eigenvalues for various
nuclear spins.

One method for estimating the nuclear energy levels under the action of the full
magnetic + electric quadrupole Hamiltonian is to use second-order perturbation
theory. Thus,

Htotal = HM + HQ

= aIz + P20O20 + P c
21O

c
21 + P s

21O
s
21 + P c

22O
c
22 + P s

22O
s
22

= H0 + H1, (23)
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Figure 5. Energy level splittings in 166Er.

Figure 6. Simulated spectra of 166Er with Bhf = 700 T and eQVzz = +15 mm/s.
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where H0 is the diagonal part and H1 is the off-diagonal part of the total Hamil-
tonian. Using second-order perturbation theory the energies of the various nuclear
states are given by

Em = E0
m +

∑
n

|〈m|H1|n〉|2
E0

m − E0
n

. (24)

This method was applied to the case of 57Fe by Arif et al. [16] and their expressions
are also applicable to 169Tm since both transitions are 3

2 ↔ 1
2 . In this present paper,

we extend the perturbation approach to the case of 2 ↔ 0 transitions, relevant to
both 166Er and 170Yb. The perturbed energy levels are given by

Em = −m� + P20
[
3m2 − I (I + 1)

] + Q21

16
F21 + Q22

4
F22 (25)

where

Q21 = (
P c

21

)2 + (
P s

21

)2
, (26)

Q22 = (
P c

22

)2 + (
P s

22

)2
, (27)

F21 = (2m + 1)2[I (I + 1) − m(m + 1)]
� − 3P20(2m + 1)

− (2m − 1)2[I (I + 1) − m(m − 1)]
� − 3P20(2m − 1)

(28)

and

F22 = [I (I + 1) − m(m + 1)][I (I + 1) − (m + 1)(m + 2)]
2� − 12P20(m + 1)

− [I (I + 1) − m(m − 1)][I (I + 1) − (m − 1)(m − 2)]
2� − 12P20(m − 1)

. (29)

In Table VI we give expressions for the energies of the four excited nuclear
states in 169Tm, deduced from second-order perturbation theory and in Table VII
we give the corresponding expressions for 166Er and 170Yb.

In Tables VI and VII, � is the magnetic-only splitting between adjacent excited
state levels, as shown in Figures 4 and 5.

Fitting of Mössbauer spectra, under the combined action of magnetic dipole and
electric quadrupole effects generally involves diagonalising the full Hamiltionian
to obtain the energy levels (= eigenvalues) and the transition intensities (from the
eigenvectors). Some programs, however, carry out a phenomenological fitting in
terms of the experimentally measured line splittings (labelled E1–E4 in Figures 4
and 5). The individual line positions Vi can be obtained as follows:


V1

V2

V3

V4

V5


 =




−1 −2 −3 −4
−1 −2 −3 1
−1 −2 2 1
−1 3 2 1
4 3 2 1







E1
E2
E3
E4


 × 1

5
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Table VI. Excited state energies for 169Tm (X1 =
(3/4)Q21 and X2 = (3/2)Q22

E
(
−3

2

)
= 3

2
� + 3P20 + X1

� + 6P20
+ X2

� + 3P20

E
(
−1

2

)
= 1

2
� − 3P20 − X1

� + 6P20
+ X2

� − 3P20

E
(
+1

2

)
= −1

2
� − 3P20 + X1

� − 6P20
− X2

� + 3P20

E
(
+3

2

)
= −3

2
� + 3P20 − X1

� − 6P20
− X2

� − 3P20

Table VII. Excited state energies for 166Er and 170Yb

E(+2) = −2� + 6P20 − Q21
36

� − 9P20
− Q22

12

� − 6P20

E(+1) = −� − 3P20 − Q21

( 6

� − 3P20
+ 36

� − 9P20

)
− Q22

18

�

E(0) = −6P20 − Q21

( 6

� + 3P20
+ 6

� − 3P20

)
− Q22

( 12

� + 6P20
+ 12

� − 6P20

)

E(−1) = � − 3P20 − Q21

( 36

� + 9P20
+ 6

� + 3P20

)
+ Q22

18

�

E(−2) = 2� + 6P20 + Q21
36

� + 9P20
+ Q22

12

� + 6P20

for 166Er and 170Yb, and


V1

V2

V3

V4

V5

V6


 =




−3 −6 −9 −6
−3 −6 3 −6
−3 6 3 −6
−3 −6 3 6
−3 6 3 6
9 6 3 6







E1
E2
E3
E4


 × 1

12

for 169Tm.
An important point arising from the second-order perturbation method is that

it allows one to derive inequalities which can be used to determine if a proposed
‘fit’ to a spectrum is physical or otherwise. The factors Q21 and Q22 are positive,
since they depend on the squares of the relevant quadrupole parameters, so one
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can show that in the case of 169Tm, for example, the line splittings must obey the
inequalities [16]

E1 + E3 � 2�, (30)

E1 + E2 + E3 � 3�. (31)

8. Conclusion

The local nature of rare-earth Mössbauer spectroscopy makes it ideally suited to
the determination of rare-earth ionic magnetic moments and valences in metallic
and non-metallic compounds. In this paper, we have presented a summary of the
Mössbauer effect in 166Er, 169Tm and 170Yb.
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