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Turbulent intermittency plays a fundamental role in �elds ranging from combus-
tion physics, chemical engineering to meteorology. There is a rather general agree-

ment that multifractals are being very successful at quantifying this intermittency.
However, we argue that cascade processes are the appropriate and necessary phys-

ical models to achieve dynamical modeling of turbulent intermittency. We �rst
review some recent developments and point out new directions which overcome
either completely or partially the limitations of current cascade models which are

static, discrete in scale, acausal, purely phenomenological and lacking in universal
features. We review the debate about universality classes for multifractal pro-

cesses. Using both turbulent velocity and temperature data, we show that the
latter are very well �tted by the (strong) universality, and that the recent (weak,

log-Poisson) alternative is untenable for both strong and weak events. Using a
continuous, space-time anisotropic framework, we then show how to produce a

causal stochastic model of intermittent �elds and use it to study the predictability
of these �elds. Finally, by returning to the origins of the turbulent \shell mod-
els" and restoring a large number of degrees of freedom (the Scaling Gyroscope

Cascade, SGC models) we partially close the gap between the cascades and the
dynamical Navier-Stokes equations. Furthermore, we point out that beyond a close

agreement between universal parameters of the di�erent modeling approaches and
the empirical estimates in turbulence, there is a rather common structure involving

both a \renormalized viscosity" and a \renormalized forcing". We conclude that
this gives credence to the possibility of deriving analytical/renormalizedmodels of
intermittency built on this structure.

aOn leave from Laboratoirede M�et�eorologieDynamique, Universit�e Pierre et Marie Curie,
Paris, France
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1 Introduction

1.1 Why we need cascades

Turbulence is without any doubt one of the most challenging and presumably

also one of the most frustrating problems for chemical engineering. It seems

rather peculiar that so many practical issues still depend on a paradigm going

back at least since Richardson's famous poem 1: the paradigm of of turbulent

cascades. It is already remarkable that a rather immediate developments of

this paradigm lead to the �rst quantitative law of turbulence: the Richardson

law of turbulent di�usion 2.

It took nearly 20 years before Kolmogorov exploited cascades to derive 3

the scaling law for the velocity �eld itself. Basing himself on three statistical

hypotheses, Kolmogorov postulated a \quasi-equilibrium" for turbulence. The

rate of large scale forcing energy (at outer scale L) leads to a 
ux of energy


owing through the \inertial range" of intermediate scales ` (L >> ` >> �)

towards small scales, where (at a small \Kolmogorov scale" �) it is dissipated.

In the quasi-equilibrium regime the three quantities should be equal, at least

for an appropriate average. The dynamics of this inertial range are there-

fore explicitly dominated by an invariant which was only casually included in

Richardson's law: the 
ux of energy ". More precisely, its average " was con-

sidered. This yields the famous 2
3 Kolmogorov law which states that shears

across eddies/structures (` being the scale, the angle brackets indicate ensem-

ble averages) scale with this 2
3 exponent:

< (�u`)
2 >/ "

2
3 `

2
3 (1)

This corresponds to the even more famous scaling law, derived by Obukhov 4

for the energy spectrum (E(k), k being the wave-number)

E(k) / "
2
3 k�

5
3 (2)

1.2 Analytic approaches to turbulence: closures and renormalization

It is remarkable that for over �fty years very little progress has been made

in improving the (nearly hand-waving) original Richardson and Kolmogorov

arguments. This is true in spite of the development of powerful analytical

tools, including the Quasi Normal Approximation 5, the Direct Interaction

Approximation 6;7 and numerous related analytical \closure" techniques (for

this and related methods, see 8;9 for reviews). This also includes various ap-

plications of the Renormalization Group 10. These techniques share a similar

structure which could be called \renormalized viscosity/renormalized forcing"
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since, in their framework, both terms correspond 59 to the leading contribu-

tions from other scales to the evolution of a given scale. Whereas the notion

of eddy/renormalized viscosity could be traced back to the notion of mixing

length 11, the notion of renormalized forcing seems rather recent and due to

the development of these techniques. The equation of evolution of a Fourier

component of the velocity (û(k; t), k being its wave-vector) follows an equation

of evolution of the type:

[
@

@t
+ �R(k; t)k

2]û(k; t) = f̂
R
(k; t) (3)

where �R is the renormalized viscosity and f̂
R
is the renormalized forcing (̂:

denotes the Fourier Transform) which is usually assumed to be quasi-Gaussian.

However, without appeal to arti�cial ad hoc hypotheses, these attempts have

led neither to satisfactory derivations of the Richardson nor Kolmogorov laws.

The failure of these analytic approaches is even more striking since it was soon

realized that both are at best \mean �eld" laws. In other words even these

lowest order laws are still beyond the reach of present analytical developments!

Indeed, these problems can be traced to the presence of a very strong type of

inhomogeneity called \intermittency" (as �rst pointed out by Landau 12 and

Batchelor and Townsend13). Not only does the \activity" of turbulence induce

inhomogeneity, but the activity itself is inhomogeneously distributed. There

are \pu�s" of (active) turbulence inside \pu�s" of (active) turbulence.

While these analytic attempts have yielded some insight into the structure

of the Navier-Stokes equations and the �rst basic feature of turbulence - its

scaling b - they have been totally unable to handle its intermittency (e.g.14). It

is becoming increasingly clear that this second feature is neither secondary nor

- as is too often suggested (e.g. the expression \intermittency corrections") -

second order. Indeed, although it was less and less explicitly stated, analytical

theories have remained more or less quasi-normal and have therefore been

unable to deal with probability distributions as wild as those of a log-normal

or algebraic type (not to mention the simple idea of pu�s of activity inside of

pu�s of activity).

It should now be no surprise that the cascade paradigm not only pro-

vides a convenient framework to study this phenomenology, but furthermore

yields very concrete models and interesting conjectures. In particular, it is now

increasingly clear that a very general outcome of stochastic cascades is multi-

fractal measures. While the discussion of various precise features of stochastic

multifractals are the main subject of this paper (Secs. 2-4), Sec. 5 shows that

bNotwithstanding they fail, as mentioned above, to overcome fundamental di�culties in
deriving the correct scaling law.
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even deterministic cascades (restrictions of which form the popular \shell mod-

els") also yield multifractals.

In spite of their rather distinct origins, we will see (Secs. 4-5) that these

techniques are all rather closely related to the renormalized viscosity/renormalized

forcing structure of the analytical/renormalization techniques that we men-

tioned above (Eq. 3). We will therefore point out that contrary to certain

claims (e.g. 60) there is the possibility of deriving an analytical/renormalized

model of intermittency. In order to emphasize the crucial importance of explicit

models, let us brie
y recall a further historical point. The �rst concrete con-

jecture on intermittency -the so-called log-normal probability distribution15;16

for the rate of energy dissipation " was formulated with reference to the notion

of cascades, but without any concrete model. It was only after the develop-

ment of an early explicit model 17 that the relevance of log-normality became

contested (Sec. 2.2).

1.3 Low dimensional/deterministic chaos and universality

Another approach to turbulence which has received great attention (especially)

in the last twenty years, is deterministic chaos. Although the word \chaos"

goes back to the Greeks, it has only been in this recent period that it has

taken on a highly restrictive meaning involving deterministic systems with

small numbers of degrees of freedom. Initially Lorenz 18, proposed chaos as

an interesting mathematical caricature of convection. The discovery �rst of

\structural" and then of \metric" universality19 led to an explosion of interest

in chaotic dynamics: the caricatures could yield some fundamental features of

wide classes of physical systems.

Applications of chaos theory were subsequently given a big impetus with

the discovery of practical methods for \reconstructing" the strange attractor

from time series data (e.g. the Grassberger-Proccaccia algorithm20). However,

it became clear that such techniques are inherently incapable of distinguishing

between low dimensional deterministic systems and high dimensional stochastic

systems (\stochastic chaos", see below), whereas the former case is a condition

of applicability of the corresponding methods, if not of the theory. It has

become widely recognized that a small number of degrees of freedom model

is inadequate for turbulence (Fig.1a-b), except perhaps in the low Reynolds

number regime near (but below) the transition to turbulence.

However, for essentially the same reasons as for chaotic systems, cascades

and their resulting multifractal �elds (summarized in Sec. 2) would be physi-

cally unmanageable if not for the existence of universality classes21�23. In their

absence, multifractal models would involve an in�nite number of parameters
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Figure 1: a) A fundamental problem in turbulence is that the number of degrees of freedom
increases algebraically as we go to smaller and smaller scales. Direct numerical simulations

of fully developed turbulence would therefore require a cascade of computers as illustrated
above, i.e. a scale by scale iteration (and radical extension) of the meteorologists' idea of

\nested" models. b) While for direct simulations, this may be out of reach for the next few
decades, this is easily accessible for cascades models in particular for \the Scaling Gyro-

scopes Cascade" (illustrated above) which is rather illustrative of Richardson's poem, since
it corresponds52 to big tops have little tops which feed on their momentum and little top

have smaller tops...
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(e.g. the fractal codimensions). On the one hand, all the details of the model

would be important, while on the other hand it would be impossible to em-

pirically determine an in�nite number of parameters. The existence of stable,

attractive universality classes (\strong universality") has - starting with 24;25 -

now been empirically con�rmed in over twenty turbulent �elds (for a review26).

Recently, a weaker type of universality has been proposed 27�30. Sec. 3 pro-

vides a detailed empirical intercomparison of the (somewhat classical) strong

(L�evy generator) universality 31�33 with the weak (Poisson generator) univer-

sality using both turbulent velocity and temperature data. We �nd - although

both agree well with the data for the medium intensity 
uctuations - that for

both the weak and strong 
uctuations the classical strong universality is much

closer to the data than the weak alternative. We further add new theoretical

arguments why strong universality is relevant for passive scalar advection.

1.4 Stochastic chaos and temporal multifractal modelling

While cascades are indeed the generic multifractal process, due to the existence

of thermodynamic analogues 34�36, multifractals can also be formulated as

an abstract (model independent) \
ux dynamics" 37;38. However for many

applications, it is important to have explicit (constructive) multifractal models.

These are stochastic and therefore can provide phenomenological models for

many large number of degrees of freedom systems including turbulence; calling

them \stochastic chaos" might be more appropriate than the term \edge of

chaos" (referring to the Lyapunov exponents equal to zero in scaling systems).

The �rst generation of cascade models was static (purely in the spatial do-

main) and involved discrete, integer scale ratios. These include \the pulse in

pulse model" 39, the \log-normal model" 17, the \weighted curdling model" 40,

the \�-model"41, the \�-model"42, the \random �-model"43, the \p-model"44,

\Synthetic turbulence" 45, etc. Second generation, more realistic cascades, are

on the contrary continuous in scale 21 (see 46 for numerical implementation).

However since most turbulent systems are scaling but anisotropic, full realism

requires at least spatial anisotropy. Furthermore, since the temporal and spa-

tial scaling exponents are di�erent, space-time anisotropy is required to model

temporal evolution. The basic framework necessary to handle such scaling

anisotropy - Generalized Scale Invariance 47;37 (see 48;49 for numerical imple-

mentation) - is straightforward, and space-time multifractals have already been

explored in the �lm \Multifractal dynamics"50.

These second generation space-time models still have a signi�cant weak-

ness. While they do have the correct space-time strati�cation, they do not

respect causality: the future remains statistically symmetric with the past.
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This arti�cial time mirror-symmetry is broken 51 as soon as one considers a

(generalized) di�usion equation (of fractional spatial and temporal order) for

the singularities (i.e. for the cascade generator). In Sec. 4, we review this

and show how these continuous, causal, space-time multifractal models can

be used to study the limits to predictability of multifractal processes. These

results are important for developing multifractal forecasting procedures which

promise applications in weather forecasting (especially nowcasting), and else-

where.

1.5 Deterministic high dimensional models

Although stochastic multifractal cascade models of turbulence respect various

symmetries of the dynamical equations - notably the scaling and the energy 
ux

conservation, there is nonetheless a large gap between the deterministic Navier-

Stokes equations for the (vector) velocity �eld and these phenomenological

cascades for the (scalar) energy 
ux.

An extension to vector cascades 109, called \Lie cascades", has been con-

sidered in order to bridge the gap. However, in this framework, the extra sym-

metries which must be respected are not yet known. As discussed in Sec. 5, a

deterministic cascade called the Scaling Gyroscopes Cascade (SGC) model 52

is likely to be be indispensable in overcoming this di�culty. This approach is

inspired by similarities between the Navier-Stokes equations of hydrodynamic

turbulence and the Euler equations of a gyroscope which have been noted since

at least Lamb 53, and were given new impetus by Arnold 54 and Obukhov 55.

We discuss a precise series of approximations to the Navier-Stokes equations

which yield SGC for respectively 3-D and 2-D turbulence. The resulting SGC

model is a \model of hydrodynamic type" 55 having the same scaling sym-

metries and quadratic invariants as Navier-Stokes and the same Lie structure

for a sub-set of interactions. Furthermore, we �nd that it has nearly exactly

the same universal multifractal behaviour as the empirical energy 
ux. On

the contrary, a rather di�erent multifractality is obtained for the shell-model

which is derived by over-simplifying the SGC, as done 56 on a similar model

yielding the ancestor57;58 of shell-models. The quantitative di�erence between

the high dimensional SGC and the derived low dimensional shell-model brings

into question the relevance of the (popular) shell-models for investigating in-

termittency.
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Figure 2: Scheme of a multiplicative (discrete) cascade, the horizontal lines symbolize the

scales involved. The process from the outer scale L to L
�
, with the scale ratio � = ��

0, is

the product of two sub-cascades, the �rst one occurs from the outer scale L to L
�
, whereas

the second is a rescaled version (by scale ratio �) of a cascade developed from L to L
�0
.

2 Fundamental properties of multifractal processes

2.1 Multiscaling of moments and probabilities

Dimension and codimension formalisms

Multifractal processes originated from the phenomenological assumption (Fig. 2

for illustration) that in turbulence the successive cascade steps de�ne the frac-

tion of the 
ux transmitted to smaller scales and that a cascade from scale

ratio � to scale ratio � = ��0 is a rescaled version (by scale ratio �) of a

cascade from ratio 1 to �0. To �x the ideas, consider a square domain of size

L � L, characterized by an intensity "0, and at any given step n one divides

the existing structures at scale ln�1 =
L

�n�11

with intensities "n�1 into �
2
1 new

structures at scale ln =
ln�1
�1

= L
�n1

with intensities "n = "n�1 � �" where �1

is an integer and the multiplicative increment �" is a positive random variable

with a second Laplace characteristic function K(q) such that h�"qi = �
K(q)
1 .

The iteration of this generator leads, after N steps (� = �N1 ), to an intermit-

tent �eld with h"q�i = �K(q). Fig. 3 shows such a procedure (with the changes

of notation: L! l0 and �1 ! �).

A continuous version of this model (i.e. in the limit �1 ! 1 keeping �

constant) would be characterized by its statistical invariance properties for
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Figure 3: Schematic diagram showing few steps of a discrete multiplicative cascade process.

any intermediate scale ratio �, e.g. for the scaling function moment K(q):

8� 2 (1;�) : h"
q
�i � �K(q) (4)

where the angle brackets indicate ensemble averages and the symbol� denotes

scaling equality, i.e. the two sides of the equation have the same power law but

may have di�erent prefactors, which could be distinct slowly varying functions

of the scale ratio �.

Generally speaking, for these stochastic multifractal cascades "�(x; t) is

de�ned by an in�nite hierarchy of orders of singularity, brie
y called singular-

ities, 
. This means that at any scale resolution � = L=` (L being the outer

scale, ` the scale of observation)|this process is scaling:

"� � �
"1 (5)


 > 0 being indeed the algebraic order of divergence of "�(x; t) ; � ! 1,

and the frequency of occurrences of a given singularity is governed by the

codimension/Cramer function 21;37;61;62:

Pr (
0 � 
) � ��c(
) (6)
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where \Pr" indicates \probability", 
0 is a random singularity and 
 is an

arbitrary threshold. It is equivalent (by the Mellin transform) to consider

the scaling of the di�erent orders q of moments with the associated scaling

moment functions K(q) (Eq. 4). In fact, c(
) and K(q) are simply related by

the Legendre transform 63:

K(q) = max



(
q � c(
)); c(
) = max
q

(
q �K(q)) (7)

Note that this codimension multifractal formalism is rather generic for

stochastic multifractals and has indeed many advantages66 compared with the

multifractal dimension formalism of deterministic chaos 64. In particular the

codimensions c(
) and singularities 
 are intrinsic, whereas the corresponding

dimension f(�) and singularities � depend on the dimensionD of the space on

which the process is observed, this is the reason we label them by a subscript

D since we have in general:

fD(�D) = D � c(
); �D = D � 
 (8)

and similarly:

�D(q) = (q � 1)D �K(q) (9)

Indeed, the main di�erence between the two formalisms lies in the fact

that while the dimension formalism corresponds to enumerating (determinis-

tic) events, the codimension formalism corresponds to de�ning frequencies of

(stochastic) events, i.e. the limit of the ratio of two enumerations, the ratio of

the number (N�(
)) of structures with singularities 

0 � 
 to the total number

of structures (N�).

Pr (
0 � 
) = lim
N��!1

N�(
)

N�

(10)

This limit can be de�ned even when the determination of N�(
) is problem-

atic for �nite N�. When both enumerations are well de�ned the relationship

between dimension and codimension (Eq. 8) is recovered with the help of the

heuristic:

N�(
) � �fD (�D) ; N� � �D (11)

However, the codimension formalism allows us to explore the interesting

cases which are far beyond the applicability of Eq. 8 and has many interesting

consequences (see Sec. 2.3) which are missed by the dimension formalism, no-

tably the avoidance of the so-called \paradox of negative/latent dimensions".
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Increments of multifractal �elds and fractionally integrated 
uxes

As mentioned above, the multifractal formalism in turbulence was developed

with respect to a scalar measure, the 
ux of energy, namely its density "� (in

respect to the usual volume measure) which becomes more and more singu-

lar at higher and higher resolution (� �! 1). However, directly observable

quantities are rather the (vector) velocity �eld or the temperature �eld. A

classical way 3;15 of analysing these �elds, which is rather reminiscent of ad-

ditive stochastic processes, is to analyse their spatial and/or temporal incre-

ments. Note that for the sake of simplicity, we will consider here only spatial

processes, the extensions to space-time processes will be discussed in Sec. 4.

The statistical moments of the latter are the structure functions, de�ned by

(j �x j= L
�
) c:

h(���)
qi = hj��(x+�x)� ��(x)j

qi (12)

h(���)
qi � h(��1)

qi����(q) (13)

where the scalar �eld � can be a passive scalar �eld, the temperature (�) , or

one component of the velocity �eld (u), the ratio of scale �, corresponding to

the spatial lag is smaller than the resolution of the data � (1 � � � �), ��(q)

is the scaling exponent of the structure function.

Dimensional analysis has been widely used to relate the increments of the

� �eld to those of a related 
ux density d F :

��� � (F�)
a(
L

�
)H (14)

For � = u or � = �, F corresponds respectively to the density of energy


ux " and to a product21 � of the former with the density of the scalar variance


ux �, the involved powers being derived from dimensional analysis 96;97:

�� = (��)
3=2("�)

�1=2 (15)

In both cases, again due to dimensional analysis, a = H = 1=3. The statistical

interrelations between these 
uxes will be discussed in Sec. 3, however let us

already mention that Eq. 14 implies with the help of Eqs. 7-12 for the scaling

moment functions (KF (q) for the 
ux F ):

��(q) = qH �KF (aq) (16)

cAssuming statistical translation invariance, we may omit the location x on the r.h.s.
dThis is a inertial range version of the widely accepted Kolmogorov re�ned hypothesis 15

;16 for the dissipation range.
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whereas with the help of Eqs. 6-12 it implies for the singularities (
�,
F being

respectively the singularities of � and F , with corresponding codimensions c�
and cF ):


� = a
 �H ; c�(
�) = cF (
F ) (17)

It is important to note that corresponding to an important property of

the basic equations, certain 
ux densities are conservative (or stationary). As

discussed in Sec. 3, it is precisely the case for densities of energy (") and scalar

variance (�) 
uxes, whereas it is not for their product (�). The \canonical"

conservation corresponds to scale independent ensemble averages, i.e.:

< F� >=< F1 >() KF (1) = 0 (18)

The much more demanding \microcanonical" conservation will be discussed

in Sec. 2.3. It is also obvious (due to Eq. 16) that in general the increments

are necessarily nonconservative, and H 6= 0 corresponds to a \mean" degree of

non conservation since it is the scaling exponent of the \mean �eld" increments

which could be de�ned as:

< j���j
1
a >a� ��H (19)

Beyond the statistical relationships (Eqs. 16-17), it is rather important

to look for a stochastic model corresponding to them. The �rst - and we

argue still the most satisfactory - are the Fractionally Integrated Flux models

(FIF) which we discuss below. Others include \synthetic turbulence" 84, the

wavelet based approach of Benzi 90, and the bounded cascade model 86. The

�rst two are rather complicated compared to FIF, but are nevertheless genuine

multifractal models. In contrast, the \bounded cascade" (originally developed

as an ad hoc model for clouds) is a microcanonical model whose multiplicative

factors are algebraically killed o� as the cascade proceeds to smaller scales.

Although it looks multifractal at large enough scales, the singularities are in

fact destroyed resulting in a monofractal small scale limit not very di�erent

from fractional Brownian motion. This model lacks a physical basis, and is

incompatible with the observed wide range multiscaling statistics of clouds and

wind turbulence. For reasons discussed further in Sec. 4, fractionally integrated

cascade models 21 have been widely used for de�ning the �eld �:

�� = IH (F a
�) (20)

the fractional integration IH of orderH being de�ned as a convolution (denoted

by ?) with a scaling Green's function G:

12



IH (F a
�) = G ? F a

� (21)

DH � D �H : G(x) /j x j�DH (22)

The order of fractional integration H rather corresponds to a codimension,

since it is intrinsic to the process (i.e. it does not depend on the dimension

D of the embedding space) and is an increment of dimension, and DH is the

associated dimension.

By considering the inverse G(�1), in the sense of convolution, of G (the

unity of a convolution algebra being the Dirac function, denoted �):

G(�1) ? G = � (23)

it is important to note that the �ltering induced by the convolution with G

(Eq. 21) is equivalent to solving the fractional di�erential equation de�ned by

G(�1)

G(�1) ? �� = F a
� (24)

This equivalence will be of fundamental importance for the anisotropic (Sec. 2.1)

and/or space-time (Sec. 4) extensions, however it is already interesting to note

that for the case of isotropic space, G(�1) corresponds to a fractional extension

of the Poisson equation, i.e. by denoting � the Laplacian:

G(�1) = (��)
H
2 (25)

and G is the corresponding (fractional) Poisson solver.

Most of the previous results are easily derived in the Fourier space, since

the Fourier transform of the Green's function satisfying Eq. 22 is:

Ĝ(k) /j k j�H (26)

Finally it is interesting to note that the increments of a fractionally inte-

grated 
ux have rather distinct behaviors at quite larger or smaller scales with

respect to the spatial lag (Appendix A). In comparison, their wavelet trans-

form 87;88 which has become somewhat fashionable e in multifractal analysis,

is rather trivial since it corresponds merely to convolving the scaling Green's

function of the fractional integral with the analyzing wavelet, i.e. to fraction-

ally integrate the latter.

eThe increments being rather consider as a \poorman's wavelet".
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Generalized Scale Invariance (GSI) and Extended Self-Similarity

(ESS)

The usual approach to scaling is �rst to posit (statistical) isotropy and only

then scaling, the two together yielding self-similarity. Indeed this approach

is so prevalent that the terms scaling and self-similarity are often used inter-

changeably! Perhaps the best known example is Kolmogorov's hypothesis of

\local isotropy" from which he derived the 2
3 law for the wind 
uctuations.

Note this had the unfortunate consequence of a priori restricting the relevance

of this law to small scales, whereas empirically it applies up to much larger

(nonisotropic) scales. In order to overcome this shortcoming, the GSI approach

is rather the converse: it �rst posits scale invariance (scaling), and then studies

the remaining non-trivial symmetries. In fact - and this is a commonpoint with

Extended Self-Similarity discussed below - one de�nes a (generalized) scale in

a looser way than the usual a priori, academic distance jxj, (e.g. it does not

need to satisfy the triangle inequality), but rather, GSI de�nes a scale kxk

which is physically de�ned by the process f . For instance, in order to explain

the relevance of Kolmogorov law for large scale atmospheric dynamics 75;76

;83;89 (see Sec. 4.1 for further discussion), one needs to consider a (generalized)

scale de�ned by a balance between kinetic energy 
ux (along the horizontal)

and buoyancy forces 
ux (along the vertical). Because of a di�erence between

vertical and horizontal scalings, the balls B� de�ned by this generalized scale

B�(x0) = fxj jjx� x0jj �
L

�
g (27)

are no longer self-similar spheres, but self-a�ne balls (e.g. ellipsoids, if B1 is

a sphere or an ellipsoid). Indeed the contraction operator of these balls and of

the (generalized) scale:

T�B�0 = B�=��0 (28)

kT�(x)k = ��1kxk (29)

is no longer the isotropic self-similar contraction T� = ��11, but a self-a�ne

contraction generated by a matrix G di�erent from the unity:

T�(x) = ��Gx = e�log(�)Gx (30)

These rather straightforward geometrical features correspond to impor-

tant dynamical features of the process. Indeed, using generalized scale notions

instead of usual distances in the scaling Green's function (Eq. 22) and the

f In a way analogous to that in which the distribution of matter and energy determines
the metric in general relativity.
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corresponding fractional di�erential equation (Eq. 24) one obtains self-a�ne

fractional integration/di�erentiation, i.e. operators involving di�erent orders

of integration/di�erentiation instead of an unique one. In spite of its complex-

ity, such an operator satis�es an unique (generalized) scaling law (similar to

Eq. 22):

T�G � �DHG (31)

On the other hand, the ratio of the volumes of the balls B1 and B� cor-

responds to the Jacobian of the transformation T� and therefore its scaling

yields an e�ective \elliptical" g dimension Del:

Del = Trace(G) (32)

volume(B�) = ��Delvolume(B1) (33)

Until now, we discuss only the linear and deterministic case of GSI, which

will be indeed needed for Sec. 4. However, in order to address the relationship

with the notion of Extended Self Similarity (ESS) 90�92, which will be used

in Sec. 3, let us �rst mention that most of the linear GSI features remain for

nonlinear and/or stochastic GSI, which, as a one parameter group, is de�ned

by its in�nitesimal generator, i.e. by di�erentiating Eq. 30:

� �
@T�

@�
= �G � T� (34)

ESS corresponds to considering the scaling in a turbulent cascade not with

respect to the usual distance, but with respect to an e�ective scale de�ned

by the third order moment of the velocity �eld. As can be inferred from

Kolmogorov 2
3
law (Eq. 1), these two scales are equivalent in the inertial range.

This can be argued more rigourously with the help of the (exact) Kolmogorov
4
5 law 93:

< (�u`)
3 >=

4

5
"` (35)

However, the situation is quite di�erent in the dissipation range, due to

the fact the molecular viscosity becomes extremely e�cient in damping out

the 
uctuations. Nevertheless, one may hope that the scale de�ned by Eq. 35

and which decreases much faster than the usual distance, will be the e�ective

scale on which the scaling properties will be observed, i.e., beyond the inertial

range. If this is indeed the case (Sec. 3) this should correspond to a generalized

gThe term \elliptical" refers to the shape of the balls under GSI transform.
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(although isotropic) scale generated by a nonlinear generator. The empirical

suppport to ESS, as well as a possible alternative (based on a Lie cascade 109

consideration), are discussed in 106. One may note that anisotropic ESS has

been recently used in order to establish 94;95 a similarity between 
ows with

di�erent geometries (in fact anisotropies), as foreseen in the GSI framework.

Generators of the cascade

Not only is the contraction operator T� a one parameter group (Sec. 2.1) but

it rescales the one parameter group of the 
ux density F�:

F�=���0 = F� � T�(F�0) (36)

which admits also a generator �� de�ned as:

F� = e�� (37)

satisfying the additive property:

��=���0 = �� + T�(��0) (38)

In the limit � & 1, �� yields the in�nitesimal generator of the group.

In a general way, the generator should be thought as resulting from some

convolution (e.g. a fractional integration) from a white-noise 
, called the

sub-generator of the �eld 21. However, due to the fact that the scaling funtion

K(q) of the 
ux F is nothing other than the (Laplace) second characteristic

function of its generator h:

< F
q
� >=< eq�� > (39)

the generator should have a logarithmic scale divergence in order to satisfy the

multiscaling power law (Eq. 4):

�� � log � (40)

This latter condition restricts the type of integration involved, since consider-

ing:

�� = g ? 
� (41)

where g is the Green's function for this convolution, and 
� is the corresponding

white-noise at resolution �, i.e. independently identically distributed random

hIt is also called the \cumulant generating function", since the coe�cients of its Taylor
expansion de�ne the cumulants of the generator.
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variables over pixels of the same resolution. Therefore the characteristic func-

tion (K��) of the generator (��) corresponds to a \path integral" over all pixels

(i) of the characteristic function (K
� ) of the sub-generator (
):

K�� (q) '
X
i

K
� (qg(xi)) (42)

This equation greatly simpli�es in the case of an extremely asymmetric

and centered L�evy stable sub-generator with a L�evy index � (0 � � � 2) i,

since the (Laplace) second characteristic function of the latter has a scaling

behavior (which will correspond to fundamental properties to be discussed in

details in Sec. 2.2) :

K
� (q) = c�q
���D (43)

where c� is the singular cumulant of order �. This yields for Eq. 42:

K��(q) = c�q
�

Z
jxj�L

�

g�(x)dDx (44)

Considering a scaling g, i.e. according to Eq. 22, which implies that g� is of

the same type:

g�(x) /j x j��:DH (45)

the condition of logarithmic divergence (at small scales) corresponds to a zero

dimension of fractional integration for g�, therefore a corresponding codimen-

sion equals to the space dimension D and yields in a rather straightforward

manner the adequate order H 21 of g:

DH =
D

�
; H =

D

�0
(46)

where �0 is the conjugate of �:

1

�
+

1

�0
= 1 (47)

Note that extensions of these results to anisotropic cases (thus involving GSI)

are trivially obtained by replacing D by Del and j:j by k:k in the above equa-

tions.

iThis index � must not be confused with the order of singularity in the dimension for-
malism (see Sec. 2.1).
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Finally, it is important to check that the Fractionaly Integrated Flux model

(FIF) is Galilean invariant, not only for theoretical reasons, but also in view

of practical applications (in particular for now/fore-casting).

The Galilean transform of a scalar �eldX1(x1; t1) expressed in the Galilean

frameR1, intoX0(x0; t0) in the Galilean frameR0, withR1 having a uniform

translation speed U0 in respect to R0, corresponds to

X1(x1; t) = X0(x0; t) (48)

with the Galilean group UU
0

transform for the coordinates:

(x1; t1) = UU
0

(x
0
;t0) = (x

0
� U 0t0 ;t0) (49)

Since white noises are statistically Galilean invariant, we need only to consider

the Galilean transform of the Green's functions. This is achieved by simply

changing the (generalized) scale function k:k1 into k:k0, according to Eqs. 48-

49. The non invariance of the (generalized) scale function k:k is due to the fact

that the scale contraction operator T� does not commute with the Galilean

group UU
0

, therefore is transformed by conjugation with the latter:

T
(1)
� = UU

0

T
(0)
� U�1U

0

(50)

2.2 Multifractality and Universality classes

The general framework

Mathematically, an in�nite number of parameters is generally necessary to

specify a multifractal process. This is because the hierarchy of singularities

can have an arbitrary (convex and increasing) codimension/Cramer function

c(
) or -equivalently- an arbitrary (convex) scaling moment functionK(q). Un-

less only a few of the in�nite number (Fig.4 for illustration) of parameters turn

out to be physically relevant, determining the universality classes or basins of

attraction (Fig.4 for an illustration), such cascades would be unmanageable

either theoretically or empirically. The pioneering claim17 on log-normal uni-

versality in turbulent cascades was shown to be questionable due to the singular

small scale limit40. More recently, there had been opposite claims65;67 denying

any universality for multifractals. However, even if the singularity of the small

scale limit does indeed prevent iterations of the process towards smaller scales

from approaching a universal limit, this in no way contradicts the general idea

of universality by considering other types of iteration 21;23.
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Figure 4: Scheme of a basin of attraction: a stochastic law could depend on as large a

number of parameters as the theoretician would like to introduce. Nevertheless, iterations of
the corresponding process (e.g. summing identically independent increments for a random

walk) could converge to an attractive law depending merely on few relevant parameters
(e.g. the \universal" Brownian motion depend on only the �nite mean and variance of an

elementary step) which de�ne the corresponding basin of attraction.

It was shown 68 that two mechanisms (with possible combination) yield

universality: (i) \nonlinear mixing" of these processes: multiplication of inde-

pendent, identically distributed processes over identical ranges of scales; (ii)

\scale densi�cation" of the process: introducing more and more intermediate

scales. In both cases, multiplying processes corresponds to adding generators

(Sec. 2.1).

Weak and strong universality

Two types of universality 22 can be distinguished: \strong universality" when

the generator is stable under renormalization (as displayed on Eq. 43), \weak

universality" when the generator and its iterates are only loosely related; they

no longer involve stability under rescaling and/or recentering. It seems rea-

sonable that one must seek weak universality only when there is a failure of

strong universality. The strong universal scaling functions K(q) and c(
), cor-

responding to a stable L�evy generator, which process is often called incorrectly

\log-L�evy" j are:

jLet us emphasize that the terms \log-L�evy" or log-normal for the process is rather
misleading, because the small scale limit of the latter, as well as its observables obtained by

an integration are no longer log-L�evy nor log-normal, due to multifractal phase transitions
(sect. 2.3). However, and only for simplicity sake, we will keep this traditionnal terminology.
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c(
) = C1

�



C1�0
+

1

�

��0

; K(q) =
C1

�� 1
(q� � q) (51)

However, a weak universal multifractal process has been considered 27 yielding

\log-Poisson" statistics 28�30:

c(
) =
�
1� 
+�


c
�

�
1� log 
+�


c
�

��
c ; 
 � 
+ ;

c(
) =1 ; 
 > 
+ ;

(52)

K(q) = q
+ + (�
�q
�

1 � 1)c � q
+ � c+

�
1�


+

c

�q
c (53)

which turns out to be 22 the classical (and rather trivial) Poisson limit (using

a smaller and smaller elementary step �1=N = �
1=N
1 ! 1; N ! 1) of the

�-model42;69;70.

The latter model is the canonical (binomial) model generated by the

(Bernoulli) two-state generator 
 on elementary discrete step scale ratio �1:

Pr(
) = ��c1 �
�
+ + (1� ��c1 )�
+
� ; 
+ ; 
� � 0 ;

�
K(q)
1 = �

q
+�c
1 + �

�q
�

1 (1� ��c1 )

(54)


+ is the upper bound of singularities; c (� c(
+)) is its codimension and

can be chosen rather arbitrarily; 
� is the lower bound of singularities and is

constrained by canonical conservation (Eq. 18). The (monofractal) �-model is

recovered for 
� = 1; 
+ = c = C1. Assuming (non-fractal, D=1) �lament-

like structures (whereas in MHD turbulence one considers extreme events on

current sheets 71;72, i.e. D=2) for the highest order singularity and homoge-

neous eddy turn over times, She and Leveque 27 therefore selected:

C = 2; 
+ =
2

3
) �


�

1 =
3

2
: (55)

this choice has some important and questionable consequences for the extreme

events (Secs. 2.3 and 3).

On the contrary, the central limit theorem was used to show 68 that the

(renormalized) nonlinear mixing of (discrete) �-models leads to a (continuous)

\log-normal" multifractal process (i.e. � = 2).
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2.3 Theoretical and observable bounds on singularities, Self Organized Criti-

cality

For normal and L�evy (� � 1) generators (the corresponding processes are

inaccurately termed log-normal and log-L�evy) there are no bounds on the

singularities 
, as is generally the case for canonical processes (Eq. 18). On

the contrary, micro-canonical conservation, i.e. per realization of the 
ux of

energy (e.g. the microcanonical version of the �-model called the p-model 44):

8� :

Z
"�d

Dx =

Z
"1d

Dx (56)

not only involves many arti�cialities 37, but imposes an upper bound: 
 � D

(the dimension of space). For D = 1, it corresponds to Novikov's celebrated

inequality73 obtained in fact by imposing microcanonical conservation by con-

sidering, instead of the energy 
ux, its dissipation, bounding it by volume

integration. The relevance of the dissipation in the inertial range is question-

able, especially in the limit of the in�nite Reynolds numbers. On the other

hand, the necessity of a physical bound to singularities has been argued 74

on the basis of the �nite speed of sound. On the contrary, one can consider 75

both incompressible Navier-Stokes equations (without any characteristic veloc-

ity, in�nite speeds of sound) and the physical issues of compressible turbulence

involving compressibility e�ects. The corresponding hypersonic gradients are

of course beyond the scope of incompressible Navier-Stokes equations. It can

be argued 75;77;23 that not only do unbounded singularities pose interesting

problems of observation and estimation, but are a requisite to the introduc-

tion, via �rst order multifractal phase transitions, of a non classical Self- Or-

ganized Criticality 78;79 (SOC), which is often desirable in order to explain the

phenomenology of extreme events. For SOC singularities, the observed singu-

larities (empirically bounded by 
s, the maximum reachable singularity (see

below) in the samples studied) has a codimension di�erent from the theoretical

one given by Eq. 6:

c(
) = qD
 �K(qD) ; 
s � 
 � 
D = K0(qD) (57)

where 
D is the critical singularity of transition to SOC. Therefore, the ob-

served codimension for SOC singularities (
s � 
 � 
D) follows the tangent

instead of the theoretical parabola-like codimension, which means that the

probability distribution of these extreme events has an algebraic fall-o�. Con-

sequently there is a divergence of higher order moments q � qD for in�nite

samples. However, the �nite size of empirical datasets impose the bound 
s,
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and with this condition the Legendre transform of Eq. 57 yields the following

estimated K(q):

K(q) = 
sq � c(
s); q � qD (58)

i.e. is also linear in q, of slope 
s. One may note that we have:


s � 
D =
c(
s)� c(
D)

qD
(59)

When the number of samples increases, 
s ! 1 which corresponds to

divergence of higher moments. More precisely, the number Ns of the sam-

ple scales as Ns ' �Ds (at the resolution �), where the exponent Ds is the

\sampling dimension" can be estimated:

c(
s) = D +Ds � �s (60)


s is the highest singularity almost present in the sample and �s is the overall

e�ective dimension of the sample. The fact that c(
s) > D is the origin of

the paradox of negative/latent dimension of the dimension formalism which

we already mentionned.

One must note that ironically the �-model was developed to illustrate the

generality of divergence of moments for multifractal �elds, which is obtained

as soon as its basic parameter qD (originally denoted �):

qD ' (c �D)=(
+ �D) (61)

is greater than 1, which correspond to c > 
+ > D. However the parameters

(Eq. 55) chosen by She and Leveque 27 for the canonical ��model/log-Poisson

model do not satisfy these conditions and therefore do not yield SOC like all

microcanonical multifractal processes (Eq. 56).

2.4 Double Trace Moment (DTM) and normalized powers of a multifractal

�eld

A striking feature of universal mulitfractals is that their scaling functions

(Eq. 58) are non analytical at q = 0, with the only exception: � = 2. The

Double Trace Moment 80�82 technique (DTM) { which corresponds to raising

the data (at the highest resolution), to the power �, then to estimating the

scaling of the corresponding (trace-) moments computed at various degraded

resolutions{ has been widely used to test25 the non analyticity ofK(q) (� < 2)

at q = 0. In fact, this technique corresponds to estimating the scaling function
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K(q; �) (similar to K(q), Eq. 4, K(q; 1) � K(q)) of the normalized � power of

the �eld 77:

"
(�)
� =

"
�
�

h"
�
�i

(62)

therefore:

K(q; �) = K(�q) � qK(�) (63)

which obviously has the same type of analyticity as K(q). Indeed, for (strong)

universal multifractals:

K(q; �) = ��K(q) (64)

The corresponding codimension function to K(q; �), i.e. the scaling expo-

nent function of the corresponding probability distribution of the singularities


 of the �eld:

"
(�)
� � �


0

; Pr(
0 � 
) � ��c(
;�) (65)

is:

c(
; �) = c(

 +K(�)

�
) (66)

K(q; �); c(
; �) are, as K(q); c(
), dual for the Legendre transform. The crit-

ical singularities 
s and 
D , discussed in sect. 2.3 generalized into 

(�)
s and



(�)
D , corresponding (for any given �) respectively to the maximum observable

singularity due to the �nite size of sample (�nite �s in Eq. 60) and the (�nite)

critical order of statistical divergence for higher order moments. They de�ne

in the plane (�; q) two critical curves of \multifractal phase transitions" 77,

respectively of second (q
(�)
s ) and �rst order(q

(�)
D ). In the case of universal

multifractals, we have:

c(


(�)
s

��
) =

�s

��
(67)

q(�)s = (
�s

C1��
)
1
� (68)

K(q
(�)
D ) =

D

��
(q
(�)
D � 1) (69)
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Figure 5: A sample of simultaneous velocity and temperature data, showing intermittencies

at all scales.

Figure 6: The Fourier power spectrum of the velocity and temperature data, in log-log

plot, showing a power-laws for more than 2 decades, with slopes of � � 1:70 for velocity
and � � 1:62 for temperature; a dotted straight line of slope �5=3 � �1:67 is shown for

comparison.
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3 Velocity and temperature turbulence: scaling exponents for in-

termediate, weak and extreme events

The traditionnal way of testing the validity of scale invariant models in tur-

bulence is to compare empirical estimates of the structure function (Eq. 12)

scaling exponents (Eq. 13) to theoretical values corresponding to di�erent mod-

els (e.g. strong or weak universality, Sec. 2.2). These models generally have

one to three free parameters, which are then determined using theoretical jus-

ti�cations or empirically.

As we discuss below, it turns out that there are mainly three qualitatively

di�erent ranges of singularities:

� Intermediate range. Velocity structure functions up to moment of order

7 can be empirically estimated and compared to log-Poisson and \log-

L�evy" models; this corresponds to considering intermediate orders of

singularities. Indeed, as shown recently by an unsuccessful collective

attempt to reach (arti�cially) a consensus 99, clear agreement can only

be obtained up to moments of order 7.

� Low range. We can also focus on low orders of singularities, associated

with moments of orders near 0; in this way, we investigate possible non-

analyticity predicted by the \log-L�evy" model 2.4. This is a direct test

capable of simply distinguishing strong universality from other models.

� High range. We �nally consider high order singularities, associated with

moments of order larger than 7; this is another direct way of testing the

log-Poisson model which rests on an assumption of a �xed largest order

of singularity, whereas the \log-L�evy" model has no upper bound and

therefore leads to multifractal phase transitions (Sec. 2.3). This implies

that the values of the large orders of moments will depend on the number

of realizations studied in the sample.

3.1 Intermediate order singularity analysis

The data and their spectra

We consider here time series of velocity (� = u) and temperature measurements

(� = �) recorded with a sonic anenometer located 25 m above ground, over

a pine forest in south-west France, sampling at !s = 10Hz (see 103 for a

presentation of the dataset). We analyzed 22 pro�les of duration 55 minutes

each. Samples of the velocity and temperature data are shown in Fig. 5. They

clearly show a huge intermittency, with 
uctuations at all scales.
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Figure 7: Empirical values of the structure function scaling exponent �V (q) for the velocity
�eld compared to log-Poisson and log-L�evy models. Up to moments of order 7 the two

models provide excellent �ts and cannot be discriminated.

Figure 8: Our estimates of ��(q) plotted vs. q, for moments up to 5. Also shown for
comparison the values reported in other studies: all the empirical data we report here are
very close to each other. The thin continuous lines correspond to the theoretical models

proposed in the text: this shows that the �ts are very good, and that each of these two
models can be considered to be compatible with the data for q � 5.
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The energy associated with each scale is given by the power spectra, which

within the inertial range follow a scaling behavior:

E(!) � !�� (70)

over frequencies from about !s=1000 to !s=2 (see Fig. 6 for the two spectra).

� is the exponent of the scaling of the power spectra. We obtain for the

velocity data �u ' 1:7, which is not far from the Kolmogorov 5=3 value 3. The

slight di�erence with the exact 5=3 value is usually attributed to intermittency

e�ects, as discussed in the next section. For the temperature data, we obtain

�� ' 1:62, which is less steep than the 5=3 value which would be obtained in the

case of homogeneous Obukhov-Corrsin turbulence 96;97. This is in agreement

with the value reported in 100, and shows that the \intermittency correction"

to the famous \5/3 law" for temperature is of opposite sign as for the velocity.

Structure functions: general case

We recall that dimensional analysis has been used to relate the increments of

the � �eld (u or �) to those of a 
ux F�. This yields Eq. 14 and by consequence

a linear relationship (Eq. 16) between the structure function scaling exponent:

�� and the scaling function of the 
ux KF and H, the latter corresponds at

the same time to a \mean degree of conservation" (Eq. 19) and to the order

of the corresponding fractionally integrated cascade model (Eq. 21) .

Velocity structure functions

For velocity turbulence, F is the energy 
ux density " and is usually assumed

to be a canonically conservative, i.e. K"(1) = 0 (Eq. 18). The parameter values

H = a = 1=3, obtained by dimensional analysis, give a third order moment of

the velocity structure function: �V (3) = 1 in agreement with the Kolmogorov
4
5 law (Eq. 35). Therefore, �V (q) (Eq. 16) depends only on the form of K"(q),

which has di�erent analytic expressions for the di�erent cascade models: see

Eq. 51 for the log-L�evy model and Eq. 53 for the log-Poisson model.

We here �rst test these di�erent universal models directly using the struc-

ture functions. For better precision their scaling exponents �V (q) were esti-

mated 22 with the help of extended self-similarity techniques 90�92 (ESS, see

discussion above). Furthermore, the use of absolute values in Eq. 12 allows

one to obtain a (near) continuous empirical curve for �V (q) whereas other

works 27;29;30 estimate only the �rst 10 integer moments. Fig. 7 displays our

empirical estimates of �(q); q 2 (0; 7), the empirical values of Benzi et al. 92,

those of Van de Water 99, as well as the theoretical estimates of the log-L�evy
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(with � = 1:5 and C1 = K0(1) = 1� 3�0(3) = 0:15 for Eqs. 51 and 16, see 22)

and log-Poisson (with c = 2 and 
+ = 2=3 for Eqs. 53 and 16, see 27) models.

We see that the di�erent experimental estimates are in very good agreement

with each other, and that the two models we test (with the values of the pa-

rameters given above) are in excellent agreement with experimental estimates,

and therefore cannot be directly discriminated.

This is nevertheless an important achievement, since for now, up to mo-

ment of order 7, several teams agree on the empirical values of scaling ex-

ponents of velocity structure functions. This can be used, for example, to

determine the free parameters in the competing multiplicative models.

Temperature structure functions

For temperature structure functions, dimensional arguments still give Obukhov-

Corrsin law 96;97, i.e. H = a = 1=3, however the 
ux F = � (Eq. 15) involves

not only the conserved energy 
ux "�, but also the conserved scalar variance


ux �� �
�
L
(���)

2�u�. It is not necessarily conserved, and its moments have

no known simple expression in the general case. Some asumptions have to be

made for the correlations (e.g. between � and � or " and ��, see 105;106 for

more details).

� A simple but rather unrealistic hypothesis would be to consider that

the 
uxes " and � are completely correlated 21. This leads to much

simpli�cation:

KF (q) = K"(q) = K�(q); ��(q) = �u(q) (71)

� The opposite extreme hypothesis 107, corresponds to " and � are com-

pletely independent. In this case, the characteristic functions add, and

we obtain (see also 105):

KF (q) = K�(3q=2) +K"(�q=2); ��(q) = q=3�KF (q=3) (72)

This hypothesis is obviously much more unrealistic, due to the fact that

the velocity �eld advects the scalar �eld, so the two 
uxes are likely

to be at least somewhat correlated. The negative power in " is also a

problem105 for low values of the wind shear, which may render K"(�q=2)

divergent (this is the case if " is a strong universal multifractal with

0 < � < 2).

� The correct hypothesis is obviously between the two. Here, the precise

hypothesis we follow in 105 is an hypothesis of independence of the in-

crements �� and �u (not of the �elds themselves, which are certainly
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correlated). It has some theoretical grounds 104 and yields the following

expression:

KF (q) = K�(3q=2)�K"(q=2); ��(q) = q=3�KF (q=3) (73)

This was shown to be empirically veri�ed 105 up to moment of order

about 6.

In this latter case, we argued 106 that, due to the fact that nonlinear

mixing (Sec. 2.2) of multifractal processes lead to universalityk, the 
uxes "

and � belong to the same universality class (i.e. the same value of �), as well

as the 
ux �. Eq. 73 then yields:

C1F = (3=2)�C1� � (1=2)�C1" (74)

We empirically obtain �� ' 1:5 � 0:1 and �� ' 1:4 � 0:1, which is com-

patible with � ' 1:45� 0:15 and (using C1� ' 0:16� 0:02, C1� ' 0:22� 0:02)

C1F ' 0:34 � 0:04 (see 106), the 
ux � is not conserved, because K�(1) =

K�(3=2)�K"(1=2) ' 0:19� :02 6= 0.

On the contrary, the log-Poisson model is not strongly universal and there-

fore is not stable under nonlinear mixing. Indeed the form of K(q) in Eq. 53

is not closed under linear combination as given by Eq. 73. As a result, we

see that it is rather impossible for temperature turbulence to have log-Poisson

statistics in the case where the two 
uxes " and � do have log-Poisson statis-

tics. Nevertheless, we empirically test the proposal of Ruiz Chavarria et al. 101

who merely assumed that the temperature 
uctuations follow a log-Poisson law

(see Eq. 53) for ��(q) = q��(1)�K(q), without considering the problem of the

nonlinear product between two 
uxes (Eq. 15). They proposed on empirical

grounds the following values: ��(1) ' 0:37� 0:02; 
+ ' 0:31; c ' 0:84� 0:1.

For precise empirical estimates of ��(q), we used the ESS, as in 100;101.

Fig. 8 displays the resulting function ��(q), for moments up to order 5 (with

a 0:1 increment). For comparison, the empirical results 100;102 are plotted on

the same �gure.

The very good correspondence observed in this �gure indicates that the

two universal models with the above parameters are compatible with the data

through the medium range of moments (q � 5). Despite the incompatibility of

the log-Poisson assumption for velocity and at the same time for temperature

(they can hardly simultaneously have log-Poisson statistics), we use belowmore

sensitive techniques in order to discriminate log-Poisson and log-L�evy models,

using methods dealing with low order singularities.

k In the case of passive advection, it indeed corresponds to the original \test �eld" argu-
ment37.
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Figure 9: Double trace moment estimate of the energy 
ux: K(3; �) vs. � in a log-log plot,
where K(q; �) = K(q�) � qK(�). The log-Poisson model yields a slope (=�) of 2 (due to

analyticity), whereas empirical values yield � ' 1:5.

3.2 Low order singularity analysis

General case

In order to better discriminate the models, we must use analysis techniques

directly dealing with the nonlinearity of the �(q) curve. This is done using two

di�erent methods.

The �rst one is the DTM technique (Sec. 2.4), which can be applied to

a positive multifractal 
ux. The non-conservative data (if �(1) 6= 0) must

then be transformed through a fractional derivative before applying the DTM

(see 25).

The second method involves analysis of the function f(q) = q�
0

(0) � �(q)

(see 108); note that �nite di�erence approximates are often adequate. We have

already discussed (Sec. 2.4) the fact that K(q), K(q; �), �(q), and other related

quantities (such as f(q) when � > 1), are non-analytical at q = 0. In general

(when � 6= 2) this latter quantity is precisely (as K(q; �)) a non-integer power

law. This can be seen using the following expressions:

�(q) = qH �KF (aq) = q�(1) � a�KF (q) (75)

�
0

(0) = �(1) + a�
C1F

�� 1
(76)
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f(q) = q�
0

(0)� �(q) = a�
C1F

�� 1
q� (77)

Therefore, in a log-log plot, f(q) vs. q should display a slope of �.

These methods are useful in order to directly determine the main multi-

fractal parameter, �. The value of C1F is then only a multiplicative constant

which is much easier to determine. These analysis techniques help to dis-

criminate between di�erent universal models. They show the relevance of the

log-L�evy model for the low and intermediate orders of singularities.

Low order singularity analysis for velocity data

The velocity data have been transformed into energy 
ux through a fractional

di�erentiation (for details see 25). The DTM technique is then applied: this is

applied in Fig. 10; it clearly shows that log-L�evy universality is closer to the

data than log-Poisson, especially for low order singularities.

We also applied the \f(q) technique" directly on the velocity data. The

result is shown on Fig. 9: it clearly yields � ' 1:5 instead of �=2 for the log-

Poisson model and �-model (see theoretical curves). In Sec. 5, we also show

that similar values for � are obtained from numerical simulations of SGC,

which could be considered as Navier-Stokes caricatures.

Low order singularity analysis for temperature data

As for the velocity case, we intend to discriminate the models using another

analysis technique. The DTM technique is not applied here because the cor-

responding 
ux is not simple, as shown above.

Also shown in Fig. 8 are respectively the homogeneous Obukhov-Corrsin

case (��(q) = q=3), and the tangency at q = 0 (��(q) = q�
0

�(0)) with �
0

�(0) '

0:53. Using this latter estimate, Fig. 11 displays a log-log plot of f(q) vs. q.

The thick and straight line corresponds to the universal model with � = 1:45,

which �ts the data rather well, although there is a discrepancy for very low

order of moments/singularities, which is presumably due to the sensitivity

limitation of the the measuring sensor. The dotted line represents the log-

Poisson model. One may note that the deviation between the two models will

be clearer as soon as one explores su�ciently low orders of moments: since we

consider shears, this requires storing data using more digits (larger dynamical

range).

31



Figure 10: A direct test of the non-analyticity of the velocity data, using the f(q) function
(see text). The data are compatible with the log-L�evy model, showing non-analyticity, and

at the same time are not compatible with log-Poisson model for weaker events, because the
latter is analytic.

3.3 High order singularity analysis

General case

The main physical feature of the log-Poisson model is in fact an hypothesis of

a �xed maximum singularity. Because it is universally �xed, this maximum

singularity should be the same for any number of realizations: it should be

reached already for one realization; it should also not depend on the sampling,

and be stable even if the number of realizations increases.

In order to check this, we studied the in
uence of the number of realiza-

tions, i.e. we decomposed our data series into 704 di�erent portions of length

512 datapoints each, because the maximum scale ratio for the scaling range is

about 500. First, we considered the estimation of �(q) for one realization: for

this, for each portion i of the dataset, we estimate one �i(q). We then take the

mean of all these exponents �i(q) as being �1(q), the scale invariant function

for one realization:

�1(q) =
1

704

X
i=1;704

�i(q) (78)

For 704 realizations, we evaluate �704(q) using an ensemble average for all
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Figure 11: The non-analyticity tested on the temperature data, compared to the two models
studied here, in log-log (decimal log) plots. A straight line of slope smaller than 2 is an

indication of non-analyticity, and thus a con�rmation of the validity of the log-L�evy model.

the realizations l. In case of a �rst order multifractal phase transition (see

Sec. 2.3), associated to a divergence of moments at q = qD, we have the

following behavior for �(q):

�704(q) = �1(q) ; q < qD (79)

�N (q) = c(
N )� 
N q ; q � qD (80)

where 
N is the maximum singularity reached for N realizations. When N

increases, the slope �
N of the straight line for q � qD decreases, and the

intercept c(
N ) increases.

Therefore, as shown in 103;22, a study of the large q asymptote of �(q) for

1 and 704 realization is a way to directly detect the divergence of moments

and quantitatively estimate its order.

High order singularity analysis for velocity data

In Fig. 12 we apply the method described above to velocity data. The linear

asymptote for 1 realization has the equation �1(q) = 0:205q + 0:5, for q � 7.

lLet us note the distinction: �704(q) is obtained through a log-log plot of the ensemble

average of all the values of the moments, whereas �1(q) is the mean of all the values obtained
through a log-log plot of the moments for each realization.

33



We see also that the estimates for 1 and 704 realizations deviate signi�cantly

from each other for moments order q � qD ' 7� 0:5 and that for these values

�(q) is linear as predicted by Eq. 80 (with 
s;u = �0:205 and �0:124 and

c(
s;u) = 0:5 and 1:11 for 1 and 704 realizations respectively). We may note

that in the log-Poisson model there is also a linear asymptote: �(q) = 1
9q + 2.

This behavior is clearly not compatible with our data: for 1 realization, the

asymptotic slope is too large, and if we increase the number of realizations,

it decreases, becoming smaller than 1
9
. This would have been more obvious if

we had more realizations, but even here for 704 realizations the intercept of

the asymptote is clearly too small to be compatible with log-Poisson extreme

events.

We �nally note that the critical moment qD = 7:�0:5 of the order of diver-

gence of moments was previously estimated with di�erent methods103. As was

done in 103, we predict here that all structure function scaling exponents are

linear for moments larger than this critical value, with a slope which decreases

with the number of realizations as more and more SOC structures are analyzed

(see 83 for meteorological implications). This seems to be implicitly con�rmed

by the \consensus paper" 99 where the only agreement obtained between dif-

ferent researchers for turbulence structure functions was the value of �(q) up

to order 7. The di�erent teams involved in this paper had di�erent numbers of

realization in their data sets, giving di�erent values for the asymptote, easily

explaining why a \consensus" cannot be reached for a universal and de�nitive

value for the empirical asymptote of �(q).

High order singularity analysis for temperature data

As done for the velocity, we study the temperature structure functions for

1 and 704 realizations. This is shown in Fig. 13. For moments larger than

5 the empirical values become linear, with an asymptote whose slope de-

creases with the number of realizations. For one realization we obtain �1(q) =

0:11q + 0:68. When 704 realizations are used, the linear asymptote has the

equation �704(q) = 0:06q + 0:78, for q � 5. One may note that is not far from

the empirical asymptote 0:06q+ 0:84 proposed in 101. But this does not mean

that the log-Poisson is con�rmed: these values were �tted in 101 using their

empirical asymptote, which happens to be roughly the same as ours (because

we had roughly the same number of realizations as they did). However, the

log-Poisson model assumes that this asymptote is already reached for one real-

ization, whereas we just saw that this is not the case. This change of the slope

and intercept of the asymptote with the number of realizations is therefore

another strong piece of evidence against the log-Poisson model. Even if we
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Figure 12: The asymptotic behavior of the scale invariant moment function for the velocity
�eld, for 1 and 704 realizations, compared to the log-Poisson model. We may note that an

empirical departure from the \bare" log-L�evy model is expected, because observables are
associated to multifractal phase transitions. This arises here at the moment of order 7.

Figure 13: The asymptotic behavior of the scale invariant moment function for the temper-

ature �eld, for 1 and 704 realizations, compared to the two models studied here. As for the
velocity data, we oberve a �rst order multifractal phase transitions at the moment of order

5: for larger moments, an asymptotic straight line is reached, with a slope depending on the
number of realizations.
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did not �nd it here, we can infer that with a larger dataset one obtains an

asymptotic slope smaller than that proposed in 101.

We may note �nally that the value of qD for temperature 
uctuations is

smaller than for velocity. The consensus on empirical values of ��(q) should

therefore be restricted to lower moments than for velocity.

4 Causal space-time multifractals

4.1 General considerations

A general feature of turbulence is that for structures with given size `, there is

a typical lifetime (e.g. \eddy turn-over time") �`, related dimensionally by the

shear velocity (see below). In such system, and notably for atmospheric tur-

bulence, the velocity itself is scaling over much of the dynamically signi�cant

distances, and one is immediately led to a space-time scaling model in which

space-time is strati�ed due to the scale dependence of the velocity, while a scale

independent velocity, the original Taylor's hypothesis of frozen turbulence 123,

would yield isotropic space-time. This space-time model is quite at odds with

the usual meteorological phenomenology which posits on purely phenomelogi-

cal grounds a whole hierarchy of qualitatively di�erent dynamical (highly scale

dependent) mechanisms. Fig. 14 illustrates this with a reproduction of the

standard view of the atmosphere indicating the typical lifetimes and sizes of

various atmospheric phenomena. This �gure - or close variants - can be found

in almost all introductory meteorological texts. Indeed, so di�erent is this from

the scaling approach discussed here, that at �rst sight, it is not obvious how

the two can be reconciled. However, it is easy to see that this schematic is not

only compatible with scale invariance, but even demands it! The reason is that

the phenomena all lie along a diagonal on the log-log plot indicating that the

lifetime/size relation is a power-law; that the law has no characteristic size (in

this scale invariant view, the spread of values about the straight line is simply

a manifestation of intermittency, stochasticity). Better still: the slope is very

close to the (Kolmogorov) value of 2/3 which is theoretically predicted using

cascade processes and dimensional analysis (see below). In short, a priori, it

is su�cient to simply drop the ad hoc supposition that di�erences in appear-

ance correspond to qualitative dynamical di�erences. This alternative view,

the \uni�ed scaling" model 76;47, of the atmosphere involving anisotropic but

scaling multifractal cascades, is indeed the only one compatible with these ob-

servations, especially within the \meso scale" range (around 10 km, the scale

corresponding roughly to the \thickness" of the atmosphere).

In turbulence, experimental methods for measuring the intermittency are
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Figure 14: Schematic diagram showing a typical phenomenologist's view of meteorology

(reproduced from Atkinson121 who adapted it from Orlanski122. The straight line, added by
the authors, is the Kolmogorov scaling �` � `

2=3 where we have made the interpretation that
the lower right corner of the inner frame is 2 m and 10 s, whereas the upper left intersection

of the inner frame with the extension of the line corresponds to one month.
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mostly based on 1-D time series; thus purely spatial and purely temporal

properties are very rarely analyzed all together. Instead, they are usually

linked through Taylor's hypothesis. Historically, a very di�erent approach

was needed for rainfall �elds; such �elds have been shown to respect scaling

symmetries, on wide ranges of scales 124, perhaps from 10�3 m to 106 � 107

m. Although rain is certainly far from being simply a passive scalar advected

by the atmospheric turbulence it may nevertheless respect the same cascade

phenomenology. Indeed, the use of radar data (1-D time series of 1 to 3-D

spatial scans), and the statistical link between radar re
ectivity and rainfall

intensity, have given an original view on the relationship between spatial and

temporal properties of the cascades. Quite naturally, Taylor's hypothesis was

questionned 132;125;133 ;124;26; more precise assessments of the dynamics of the

spatial cascade had to be investigated.

Recently, two models have been proposed for rainfall (Over et al. 126 and

Marsan et al.51 for rainfall and turbulence), while another model127 was dealing

with turbulence, all going beyond the simple Taylor's hypothesis. However, the

models proposed in126;127 are based on Markovian Lagrangian dynamics; this is

in contradiction with the fact that the Navier-Stokes equations possess scaling

symmetries along both the spatial and the temporal axis (a property that is

expected to hold for rainfall). Building directly on these symmetries, the model

described in 51(see also Brenier et al. 50 for a similar but non-causal approach)

is a natural extention of traditionnal cascade models, classically de�ned on a

spatial domain, to space-time domains, taking into account both the scaling

anisotropy between space and time (accordingly to the Kolmogorov-Obukhov

theory, for turbulence) and the breaking of the mirror symmetry along the

temporal axis, i.e., causality. Note that, similarly, the SGC model detailed in

Sec. 5 (see also 52) leads also to multiscaling in both space and time.

In this section, we will consider the space-time extension of fractionally

integrated 
ux models, and study both their predictability limits and their

forecasting capacity.

4.2 Causal cascade models

Space-time anisotropy

As explained in Sec. 2.1, cascade models operate through a scale-invariant

generator acting from the largest scale L down to the smallest scale l = L
�

of the system, � being the maximum resolution or scale-ratio, thus creating

structures at all scales.

These structures created at all scales ` 2 [l;L] are interpreted as typical

eddies transfering energy to smaller scales through a shearing process; such
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eddies possess a life-time �` depending on `, after which they are considered

to have been swept by other structures. In the framework of homogeneous

turbulence 3;4, this life-time is a characteristic time for each scale, and scales

like:

�` � `
2
3 ���1=3 (81)

with �� being homogeneous in space and in scale. For inhomogeneous turbu-

lence 15;16, the same scaling relation should hold only on the average, whereas

at any given scale `, the eddy turn-over time �` is spatially intermittent, and

depends on the non-homogeneous �` rather than on ��.

In the (D + 1-dimensional) space (D-dimensional)-time (1-dimensional)

domain, Eq. 30 becomes

T� : (x; t)! ��G(x; t) (82)

The Kolmogorov-Obukhov theory leads to choosing the matrix G as

G =

�
1D 0

0 1�Ht

�
(83)

with Ht =
1
3
(for turbulence) measuring the departure from isotropy, and 1D

the identity D � D matrix (thus isotropic for all purely spatial cuts; note

however that atmospheric turbulence has been found 42 to exhibit a scaling

anisotropy between the vertical and the two horizontal directions). The oper-

ator is characterized by the elliptical dimension Del such that the Jacobian of

the transform of Eq. 82 is ��Del . Here, this dimension is simply the trace of

G, i.e., Del = D + 1�Ht.

The generalized scale function k:k, introduced in Eqs. 27 and 29 now has

the property

kT�(x; t)k = ��1k(x; t)k (84)

Causality

In the space-time domain, Eq. 41 becomes

��(x; t) = g(x; t) ? 
�(x; t) (85)

For self-a�ne, space-time cascades, we are led to consider the �lter

g(x; t) � k(x; t)k�
Del
� (86)
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In order to generate a causalm multifractal, the �lter g should be de�ned as a

retarded Green's function. Thus g \contains" the main characteristics of the

cascade, i.e., anisotropy and causality:

g(x; t) =

(
k(x; t)k�

Del
� t > 0

0 t < 0
(87)

In Fourier space, the determination of an explicit form for g can be quite

involved (it is the convolution of k(k; !)k�Del=�
0

, 1
�
+ 1

�0
= 1, with the Fourier

Transform of the Heaviside generalized function). However, one can always

choose the simple form51

ĝ(k; !) �
1

jkj
Del
�0 � (i!)

Del
�0(1�Ht)

(88)

The causal generator is therefore the solution of the generalized di�usion equa-

tion

g(�1)(x; t) ? ��(x; t) = 
�(x; t) (89)

g(�1) corresponding to a fractional space-time di�erential operator.

For illustration, we can single out two simple examples, both with � = 2

(the generator has Gaussian statistics): (1) D = 2 (i.e., two spatial dimensions

and one temporal dimension), Ht = �1, thus �` � `1=2, giving the same

anisotropy as for Brownian motion; the di�usion equation reduces to [@t �

�]��(x; t) = 
�(x; t), which is nearly the heat di�usion equation, except for the

limited integration domain (
� is �ltered so to remove its components k(k; !)k

outside of the range [1; �]), responsible for the stationnarity of the generator;

(2) D = 1, Ht = 0 (isotropic case) giving [@t + (��)1=2]��(x; t) = 
�(x; t);

this is to be compared with its purely spatial (i.e., non-causal) version, given

for any D by ĝ�1(k) = jkj�1. This simple case is indeed at the origin of the

model. Note that a non-limited integration domain version of this di�usion

equation would lead to an equivalent Langevin description corresponding to

\Cauchy 
ights" 135.

Causal fractionally integrated 
ux model

For the space-time domain, non-conservative multifractals ��, like the tur-

bulent velocity (at least scalar, i.e., corresponding to a single component of

m\causal" used here as an abbreviation for \causal antecedence", or even space-time
contiguity, as described in 128.
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the vector) or the scalar concentration, are deduced from their corresponding


uxes F� through a causal fractional integration of order H:

�̂�(k; !) = Ĝ(k; !) cF a
�(k; !) (90)

with Ĝ(k; !) being a causal version of k(k; !)k�H ; the simplest choice corre-

sponds to 131

Ĝ(k; !) �
1

jkjH � (i!)H=(1�Ht)
(91)

In fact the large 
exibility on the choice of the Green's function satisfy-

ing the adequate scaling can be used in order to establish some contact with

the notions of renormalized viscosity and renormalized forcing. Indeed, Eq. 3

corresponds to:

Ĝ�1
R (k; !)û(k; !) = f̂

R
(k; !) (92)

where the renormalized Green's function Ĝ�1
R is of the form:

Ĝ�1
R (k; !) = �i! + �R(k; !)k

2 (93)

Therefore, Eqs. 92-93 and Eqs. 90-91 are equivalent if:

Ĝ(k; !) � Ĝ
H=(1�Ht)
R (k; !) (94)

f̂R(k; !) � Ĝ
H

1�Ht
�1

R (k; !)cF a
�(k; !) (95)

This points out that the renormalized forcing should be rather extremely in-

termittent, whereas, until now, the analytical/renormalization approaches pre-

supposed a quasi-Gaussian behavior.

We have simulated a causal scalar turbulent velocity shear �eld on a 2-D

(in space) 1-D (in time) domain (Fig. 15), for � = 1:5, Ht = 1=3, H = 1=3,

a = 1 and C1 = 0:1. Note the longer life-times of the largest structures,

compared to the life-times of smaller structures.

4.3 Decorrelation process of causal multifractals

Predictability

The sensitivity of nonlinear dynamics to small perturbations has been widely

popularized with the help of the \butter
y e�ect" metaphore in deterministic

chaos (few degrees of freedom). Two 
ows initially very close in phase-space

will tend to diverge exponentially with time, becoming fully uncorrelated in
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Figure 15: Numerical simulation of a causal turbulent scalar velocity shear �eld, on a 3-
D domain (2-D in space, 1-D in time); � = 1:5, C1 = 0:1, Ht = 1=3, H = 1=3, a = 1.
We display six spatial 2-D scans, the �rst scan at the upper left corner, followed by three
consecutive scans (at regular intervals corresponding to a time step, the typical life-time of
the smallest structures) from center to bottom, left column, and upper right corner, then

(from center to bottom, right column) the scans at 8 and 16 time steps after the �rst scan.
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a �nite characteristic time (the inverse of which is the Lyapunov exponent).

For fully developed turbulence (in�nite number of degrees of freedom), due to

scaling both in space and time, there is no characteristic time of the process,

and one thus expects an algebraic decorrelation in time. The characteriza-

tion of this phase-space divergence, or decorrelation process, in turbulence

has been discussed mainly for atmospheric 
ows (Lilly 110 and Houtekamer 111

for reviews). Closure techniques for homogeneous turbulence: Quasi-Gaussian

approximations 112, the Test-Field model 113, or the EDQNM model 114, lead

to a characterization of the temporal evolution of the cross-correlated energy

spectrum for two 
ows initially di�ering only for wavenumbers larger than an

\error cut-o� wavenumber" ke(t = 0). These models are intrinsically limited

by strong assumptions on the statistics of the solution, thus missing the es-

sential feature of the intermittency of the process. More recently, an approach

based on shell-models has been proposed115;116, de�ning generalized Lyapunov

exponents. However, shell-models drastically lose their spatial dimensionality

(see 52 and Sec. 5 for discussion and alternatives) and keep only a very re-

duced number of degrees of freedom, chosen typically around 30 for numerical

purposes; therefore their relevance to turbulence predictability issues remains

questionnable.

The causal cascade model for turbulence indeed allows for a complete

description of this decorrelation process, i.e. its average behavior given by

the classical spectra (second order statistics), as well as its strong variability

by considering higher order statistics. It is important to note, as described

in Appendix B, that the decorrelation of two �elds identical up to a time t0
and then diverging, as their subgenerators become independent, is statistically

similar to the auto-decorrelation in time of a single �eld. Temporal increments

���;�t over time-lags �t:

���;�t(x; t) = ��(x; t+�t)� ��(x; t) (96)

are the relevant quantities of interest in order to study this process, not only

at all scale, but also at all order (i.e. with help of the corresponding structures

functions). A dipole e�ect (see Appendix A) points out that there should

be a sharp contrast between scales larger and smaller than the time lag �t

occuring at all order statistics. Indeed, for scales larger than the time lag, the

e�ective order of fractional integration is decreased, whereas for smaller scales

the increments are rather similar to the original �eld, because the two terms

on the r.h.s. of Eq. 96 are independent.
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Spectral decorrelation

The engery spectrum of the increments ���;�t(x; t) is the spectrum of (auto-)

decorrelation:

E�(k;�t)�(k + k0)jkj1�D =< c���;�t(k; t)c���;�t(k0; t) > (97)

whereas the correlated energy spectrum EW�
is:

EW�
(k;�t)�(k+ k0)jkj1�D =< �̂�(k; t)�̂�(k

0; t+�t) > (98)

and

E�(k) = EW�
(k;�t) + E��

(k;�t); 8�t (99)

where E�(k) is the classical spectrum (e.g. giving for � = u the Kolmogorov

law k�5=3) of the �eld ��. The dipole argument yields (Appendix A):

k << ke(�t)) E�(k;�t) ' k�2E(k) (100)

k >> ke(�t)) E�(k;�t) ' E(k) (101)

and indeed it was shown 131 that:

E��(k;�t) = E�(k) (1� �(k;�t)) (102)

where � is a cut-o� function of the form�(k;�t) = k(1; k
ke(�t)

)k�(1+2H)+K(2;a)

(the spectral exponent is equal to �5=3 + K(2; 1=3) for turbulent velocity),

ke(�t) � �t�1=(1�Ht) being the cut-o� wavenumber. For k >> ke(�t),

�(k;�t) � k�(1+2H)+K(2;a) << 1 and thus E��(k;�t) = E�(k), i.e., the

small scales are completely decorrelated, while for k << ke(�t), �(k;�t) = 1,

and thus E��(k;�t) = 0, i.e., the large scales are still completely correlated.

We simulate the decorrelation of a �eld �� with universal parameters � =

1:1 and C1 = 0:82, on a 2-D space-time cut (1-D in space and 1-D in time). The

anisotropy exponent Ht is taken equal to Ht = 1=3, and the �eld is fractionally

integrated (order H = 1=3, and a = 1). The ensemble average is done on 10000

realizations.

Fig. 16 displays E�� for these simulations. Though the large scales (k <<

ke(�t)) do contain uncorrelated energy, it is clear that it is negligeable com-

pared to the correlated energy at the same scales; with �t increasing, the

cut-o� wavenumber ke(�t) decreases, and the uncorrelated energy spectrum

tends to the classical energy spectrum (for our simualtions corresponding to a

k�1:75 law) over the whole range k > ke(�t).
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Figure 16: Uncorrelated energy spectra for temporal intervals �t increasing linearly, from
bottom to top. Universal parameters are: � = 1:1, C1 = 0:82, and the anistropy was given
by Ht = 1=3. The �eld has been fractionally integrated (orderH = 1=3, a = 1). The dashed

line corresponds to the jkj�1:75 law.

Figure 17: \Elementary" uncorrelated energy spectrum (see text for de�nition) for �t equals
to the a time-step, i.e. the typical life-time of the structures at smallest scale, for a single
realization of the �eld ��, at wavenumber k = 64. Same �eld as in the previous �gure.
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Quantifying the intermittency of the decorrelation process

However, as already argued in 131, the spectra de�ned above are not su�cient

on their own to account for the intermittency of the decorrelation process.

Indeed, Fig. 17 shows, for a single realization of the simulations described for

Fig. 16, the quantity jc���;�t(k; t)j2 for k = kmax = 64 and �t = �tmin > 0,

thus �t being the typical life-time of the structures at the smallest scale

of resolution. The uncorrelated energy spectrum is the ensemble average of

this (stationnary) quantity (called hereafter \elementary" uncorrelated energy

spectrum); the process now is seen as being strongly variable, and looks much

more like an intermittent succession of violent and sudden \bursts" of decor-

relation rather than smooth and predictable. The spectra de�ned above are

only relevant for the prediction of the average behavior of this process.

A crucial question is then how to de�ne the pertinent measures in order

to properly quantify the intermittency. As was argued in 131 for 
uxes F�,

a very straightforward idea would be to de�ne generalized (all order statistics

and not only second order statistics) spectra, i.e., correlated and uncorrelated

energy spectra of the normalized �-power of F�:

E
(�)
W�

(k;�t)�(k + k0)jkj�1+D =
< cF �

�(k; t)
cF �
�(k

0; t+�t) >

< F
�
� >2

(103)

which can be directly deduced from the correlation measure C
(1)
� (F; �;�x;�t)

de�ned in Appendix B (see 131). It was shown in 131 that, for a given �, such

spectra completely characterize the decorrelation process for a single order of

singularity 

(�)
F



(�)
F =

dK(q = 2; �)

dq
(104)

thus really corresponding to a mono-fractal measure; among these spectra, we

recover for � = 1 the set of spectra de�ned in the previous section, which

clearly indicates their intrinsic limitation. In the contrary, by letting � vary so

that 

(�)
F explores the whole range of orders of singularity of the multifractal

F�, we are able to give a proper account of the complete statistics (average

behavior and strong variability) of the process.

For fractionally integrated multifractals ��, the equivalent of Eq. 103 is

somewhat more involved, and does not seem to be explicitly solvable. However,

one can argue that, since the transition from a 
ux F� to its fractionally

integrated form �� merely consists in shifting the orders of singularity of F�
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by the fractional order H, it is expected that EW�
for �� indeed singles out

the order of singularity 

(�)
� such that


(�)� =
dK(q = 2; a�)

dq
+H (105)

Another approach is to de�ne a di�erent set of measures; indeed, the

spectra

E
(�)
� (k; !) k(k; !)k�Del+1�(k+k0)�(!+!0) =

< c���(k; !)c���(k0; !0) >
< F

K(a)
� >2�

(106)

are more easily derivable. We derive it for � = 2 (see Appendix C); an inter-

polation of this result to all � leads to

E
(�)
� (k; !) � k(k; !)k�2H��2(��1)Del�1+K(2�;a) (107)

Note that the two known cases (� = 1 and � = 2) are retrieved here.

It is easy to check that E
(�)
� , in the same way as the generalized spectra

E
(�)
W�

andE
(�)
��

, singles out for every � a di�erent order of singularity. Therefore,

we conclude that the spectra E
(�)
� are indeed pertinent for characterizing the

variability of the decorrelation process.

4.4 Forecasting

We now test the forecasting capacity of the causal space-time cascade models.

It was already argued in 51 that one can compute a predictor of a 
ux F�
known up to a given time t0 from the retrieved subgenerator, thus de�ned up

to t0; indeed, the construction of universal, causal, space-time multifractals can

be seen as the causal mapping of the subgenerator 
(x; t) to the multifractal

F�(x; t)


(x; t) �! F�(x; t) (108)

for (x; t) belonging to a given domain. The inverse operation

F�(x; t) �! 
(x; t) (109)

is naturally possible, and we thus de�ne, for F�(x; t) known up to t0, the

\past" subgenerator 
p(x; t). A possible realization of the future of F�, thus

F�(x; t = t0 +�t), is given by the direct causal mapping of 
(x; t < t0 +�t)

such that
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Figure 18: The generation of the two contributions Fp;� and Ff;� to F�. The �gure on top

shows that Fp;� is constructed by limiting the integration domain of 
(x; t) on the \past"
�eld (in gray), while (bottom �gure) the corresponding domain for Fp;� is only on the

\future" �eld, and the generated Ff;� is therefore the result of a space-time cascade with a
scale-ratio of k(1;�t)k.


(x; t) = 
p(x; t); t < t0 (110)


(x; t) = 
f (x; t); t > t0 (111)

where 
f is a realization of a L�evy white noise (thus independent of 
p). It

is easy to see that F�(x; t = t0 + �t) is decomposable in two multiplicative

terms:

F�(x; t0 +�t) = Fp;�(x; t0 +�t)Ff;�(x; t0 +�t) (112)

where the two terms Fp;� and Ff;� have very di�erent meanings: Fp;� is

the mapping, in the future, of 
p; it is thus entirely determined by the past,

i.e., from the known values of the �eld F� up to t0, and corresponds to a

relaxation from the past, known �eld to 1 (constant in both x and t) as �t

increases and eventually reaches 1 (the integral time). In contrast Ff;� is the

mapping, in the future, of 
f ; it is thus purely stochastic, does not depend on

the past, and corresponds to a normalization term. Thus the optimum forecast

of F�(x; t > t0) given F�(x; t > t0) is

< F
q
�(x; t0+�t)jF�(x; t < t0) >= F

q
p;�(x; t0+�t) < F

q
f;�(x; t0+�t) > (113)
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Finally, we note that < F
q
f;�(x; t0+�t) >� (���1e )K(q) with ��1e = k(1;�t)k,

since Ff;� simply results from a cascade developed from the cut-o� scale �e
down to the maximum resolution � (see Fig. 18). We then obtain

< F
q
�(x; t0 +�t)jF�(x; t < t0) >= F

q
p;�(x; t0 +�t) (���1e )K(q) (114)

A similar development can be obtained for the fractionally integrated �eld

��; however, an explicit expression corresponding to Eq. 114, in this case

of a non-conservative multifractal, does not seem to be easily derivable. An

exception is for the moment of order 1, giving

< ��(x; t0 +�t)j��(x; t < t0) >= �p;�(x; t0 +�t) (115)

where �p;�(x; t) = G(x; t) ? F a
p;�(x; t). An exemple is given in Fig. 19; we

display the predicted �eld < ��(x; t0 + �t)j��(x; t < t0) > for a simulated

��(x; t < t0) (see caption for parameters). Since, for the moment of order 1,

the normalization term is equal to 1, as given by Eq. 115, we observe here

only the relaxation term. The predicted signal is then merely a �ltered signal,

since at �t, all the components at wavenumbers k such that k > ke(�t) are

smoothed out.

5 Scaling Gyroscopes Cascade (SGC)

5.1 Shell-models and beyond...

The complexity and unsolvability of the Navier-Stokes equations have lead to

the consideration of some simpli�ed caricatures of them, which nevertheless

preserve some fundamental properties of the original ones. One well-known

example is the Burgers equation, which as a 1-D turbulence model gives pre-

cious hints on intermittency although it has unfortunately the drawback of

introducing compressibility. The so-called \shell-models" 57;58 have been very

popular caricatures of Navier-Stokes equations from which they conserve the

quadratic interaction and invariance for the 
ux of energy, however in an ex-

tremely simpli�ed framework since they are only scalar (not vector) models

and retain only the spatial scale dependence instead of location dependence.

Indeed, these models consider the time evolution of the averaged characteristic

velocity shear un (with corresponding vorticity knun) on the shell de�ned by

the wave-vectors jkj ' kn, the wave-number kn being the inverse of scale of

the corresponding eddies which is discretized in a exponential way (ln = L=�n,

L being the outer scale). Their equation of evolution is of the following type:
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Figure 19: An exemple of predicted ��(x; t = �t+ t0), for a 2-D cut (1-D in space and 1-D
in time); parameters are: � = 1:5, C1 = 0:15, Ht = 1=3, H = 1=3, a = 1, � = 512. We
display 1-D spatial cuts of the �eld at �t = 1; 2;3;5; 9 and 20 times the typical life-time at

the smallest scale (from top to bottom and left to right).

50



�
d

dt
+ �k2n

�
un = knunun�1 � kn+1u

2
n+1 (116)

We will show below that these models correspond to an over simpli�cation

of a more complete model. This model, which is obtained by keeping only

certain type of interactions of the Navier-Stokes equations, is indeed needed

since the spatial dimension is absent in shell-models, whereas it is crucial for

the development of intermittency. The relevance of this drastic dimensional

reduction was already questioned 52;118, as well as the relevance of models

having a number of eddies which do not increase algebraically with the inverse

of the scale. Indeed this number N (`) should scale as N (`) � `�D, where `

is the scale and D is the dimension of the model. D can be lower than the

dimension of the turbulence itself (e.g. for a D-dimensional cut, D being a

number independent of the scale 119).

In order to take into account the spatial dimension, while keeping an expo-

nential discretization of scales (which is not manageablewith fast Fourier trans-

forms), we introduce a tree structure of eddies: each eddy having N (�) = �D

sub-eddies whose location is labeled by (i) (in correspondence to its center xin,

the distance between two neighboring centers being of the order of ln). This

type of space and scale analysis has been widely used for phenomenological

cascade models and is indeed a precursor of orthogonal wavelet decomposi-

tions 120. To the eddy of size ln and a location xin corresponds a velocity

�eld (buin) and vorticity �eld (bwi
n) Fourier/wavelet components, as well as the

corresponding wave-vector (kin):

buin � bu(kin) ; bwi
n = ikin ^ buin ; kn = jkinj (117)

Along this tree-structure, we show that for 3-D turbulence as well as for

2-D turbulence, the equations of evolution due to direct interactions between

eddies and sub-eddies are analogous to the Euler equations of a gyroscope.

The corresponding indirect interactions are obtained by coupling an in�nite

hierarchy of gyroscopes. Overall we derive from rather abstract considerations

on the structure of the Navier-Stokes equations (its Lie structure) dynami-

cal space-time models which can be called Scaling Gyroscope Cascade (SGC)

models. It is interesting to note that the recognition of the similarities54;55 be-

tween the Navier-Stokes equations of hydrodynamic turbulence and the Euler

equations of a gyroscope can be traced back to Lamb53.

The SGC yields concrete models which can be used to investigate fun-

damental questions of turbulence, in particular its intermittency. Not only

does the SGC yield the inverse energy cascade sub-range as well as the direct

enstrophy sub-range for the two-dimensional turbulence, but the multifractal
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characteristics of the former are extremely close to those of the direct energy

cascade of three-dimensional turbulence. We also �nd a surprisingly close

agreement with various empirical studies of atmospheric turbulence.

5.2 Navier-Stokes equations and Euler equations of a gyroscope; Arnold's

analogy

Consider the Navier-Stokes equations, for the velocity �eld u(x; t), written in

the Bernoulli form (� being the kinematic pressure, i.e. for barotropic 
ows:

� =
R

dp
�(p)

+ u2

2
, p being the (static) pressure; � is the 
uid viscosity):

�
@

@t
� ��

�
u(x; t) = L(x; t)� grad(�) (118)

where L is the Lamb vector and w is the vorticity �eld:

L(x; t) = u(x; t) ^w(x; t) (119)

w(x; t) = curl(u(x; t)) (120)

with the associated incompressibility condition:

div(u(x; t)) = 0 : (121)

The curl of Bernoulli's equation (Eq. 118) corresponds to the well known

vorticity equation: �
@

@t
� ��

�
w(x; t) = [w(x; t); u(x; t)] (122)

the Lie bracket then being de�ned as:

[X;Y ] = Y � grad(X) �X � grad(Y ) (123)

The analogy pointed out by Arnold 54 is between the vorticity equation

(Eq. 122) and Euler's gyroscope equation.

Consider the �rst Euler's theorem or Euler's gyroscope equation (i.e., equa-

tion for a rotating rigid body attached to a �xed point with no torque):

dM

dt
= [M;
] �M ^
 (124)

where M is its angular momentum and 
 its rotation (both relative to the

body frame); the Lie bracket being de�ned by the vector product ^. The
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(quadratic) non linearity of this (apparently linear) equation results from the

linear relationship between angular momentum and rotation via the (second

order) moment of inertia tensor I or its inverse (J = I�1), both being sym-

metric:

M = I �
 ; 
 = J �M (125)

Therefore, the gyroscope equation is quadratic in the angular momentum. The

equation of motion relative to the body frame (Eq. 124) is equivalent to New-

ton's law of the conservation of angular momentum relative to space (Ms):

dMs

dt
= 0 (126)

This second Euler's theorem is in fact a particular case of Noether's theo-

rem stating that there is an invariant associated with every equation of motion.

There are two associated quadratic invariants to (Eq. 124), the �rst one being

the square of the angular momentum (M2). The second quadratic invariant is

the kinetic energy of the body:

T =
1

2
M �
 �

1

2
M � (J �M ) (127)

One may note that the Fourier components of the �elds require us to

consider the rather straightforward extension to complex gyroscopes (complex

conjugates being denoted by an overbar):

dM

dt
= [M;
] (128)

The Hermitian extension of the Euclidean structure preserves the quadratic

invariants, since the notion of mixed product (denoted by (.,.,.)) n is un-

changed:

dT

dt
= <(M;
;
) � 0 ;

dM2

dt
= 2<(M;
;M) � 0 (129)

< denoting the real part of complex variable.

In the perspective of Arnold's analogy, the vorticity and the velocity are

respectively the analogues of the angular momentum (M ) and of the rotation

(
), the �eld analogue of the inertial tensor, is the curl. However, there are

fundamental di�erences between their respective Lie algebra. Indeed, while the

Lie algebra (so(3)) corresponding to Euler's gyroscope, associated with the Lie

n(a; b; c) = a � (b^ c).
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group (SO(3)) of rotations in the three-dimensional space, is �nite (since it can

be de�ned as the set of three dimensional vectors (<3) with the vector product

(Eq. 124)), the Lie algebra corresponding to the vorticity equation (on a sub-

set D of <3) is in�nite. Indeed, the latter can be de�ned as being the set of

divergence-free vector �elds and it is associated with the group (being noted

SDi� D by Arnold) of the one-to-one volume preserving transformations of D.

Both are obviously in�nite o. The in�nite dimensionality is not only related to

the intervention of partial instead of ordinary di�erentiations, as well as to the

�eld nature of the velocity, but fundamentally to the phenomenology of fully

developed turbulence. Indeed, an in�nite number of degrees of freedom should

intervene when considering the singular limit of the viscosity going to zero

(or correspondingly the Reynolds number going to in�nity): one expects the

development of a spectrum similar to the Kolmogorov-Obukhov spectrum 3;4

down to a viscous scale which goes to zero, i.e. a range of scalesp goes to in�nity.

A linear drag can be introduced into Euler's gyroscope equation (Eq. 124) in

analogy to the viscous term of Navier-Stokes equation (Eq. 118). However, the

singular perturbation corresponding to the latter has a global e�ect by creating

a 
ow of energy down to smaller scales in 3-D turbulence (of enstrophy in 2-D

turbulence), although it intervenes directly only in the viscous range. This

fundamental scale problem clearly points out the necessity of dealing with an

in�nite dimensional Lie algebra. As shown in the following sections, it rather

involves an in�nite hierarchy of gyroscopes rather than being analogous to one

of them. Furthermore, even for a �nite number of modes, the Lie bracket

(Eq. 123) de�ned by the vorticity equation (Eq. 120) does not correspond to

the vector product. It is not dimensionless and introduces therefore a scale

dependency. However, it is relevant for 2-D turbulence, but in a new context.

5.3 Analogy based on the Lie structure of turbulence

For 3-D turbulence an analogy rather opposite to Arnold's one can be consid-

ered: the velocity, the vorticity, the energy and the helicity are respectively

the analogues of the angular momentum (M ), of the angular velocity (
), of

the square of the momentum (M2) and of the energy (M � 
). This anal-

ogy can be better appreciated when one considers interactions which yield a

divergence-less Lamb vector. Indeed, the pressure gradient does not intervene

any longer (since it is only needed to enforce incompressibility) in the r.h.s. of

oIt might be important to note that the intrinsic dimensions of the algebra or groups, are

not to be confused with the dimension of the spaces on which one of their representations
acts. Indeed, the latter could be in�nite even in the case of a �nite algebra.

pHowever, as discussed in the next section, the number of degrees of freedom is larger
than the range of scales.
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Bernoulli's equation (Eqs. 118-120) which is therefore analogous to the Euler

equation (Eq. 124): �
@

@t
� ��

�
u(x; t) = u(x; t) ^w(x; t) (130)

More generally, one may introduce in the Bernoulli equation (Eq. 118)

instead of the pressure gradient the projector P (r) (resp. bP (k) in Fourier

space) on divergence-free vector �elds :

Pi;j(r) = �i;j �rirj�
�1 ; bPi;j(k) = �i;j � kikj=k

2 (131)

which yieldsq an expression (either in physical space or in Fourier space) rather

similar to the Euler equations of rigid body motion (Eq. 124):�
@

@t
� ��

�
u(x; t) = P (r) � u(x; t) ^w(x; t) (132)

�
@

@t
+ �k2

�bu(k; t) = bP (k) � Z
k+p+q=0

bu(p; t) ^ bw(q; t)dp (133)

In a general manner, the Navier-Stokes equations (in the Fourier space) for

3-D turbulence corresponds to an in�nite hierarchy of gyroscope-type equa-

tions. The (complex) analogues of M and 
 being respectively the triplet

(u(k); u(p); u(q)) and (w(k); w(p); w(q)) of a triad (k + p + q = 0) of direct

interactions, the Lie bracket being the vector product modulated by the pro-

jector bP (k).
It is well known that 2-D turbulence is rather peculiar, since it has a

family of invariants rather di�erent from the 3-D case (or from any extensions

to dimensions d > 2). This is due to the simple fact that the vorticity (!), as

well as the potential vector (	) of a 2-D 
ow are orthogonal to the plane of

the 
ow and are therefore de�ned by their scalar components along the axis

perpendicular to the 
ow:

! = !z ; 	 = 	z ; ! = ��	 (134)

	 being the stream function, z is the unit vector in the z direction. This or-

thogonality introduces some simpli�cations in the vorticity equation (Eq. 122)

and its corresponding Lie bracket (Eq. 123):

[w(x; t); u(x; t)] = �u(x; t) � grad(w(x; t)) (135)

q Indeed P (r)(u) = u and P (r)(grad(�)) = 0.
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there is only advection, the stretching term (w � grad(u)) being strictly zero.

This introduces the enstrophy (!2) as a second quadratic invariant, whereas

the helicity (! � u) is strictly zero. The Fourier transform of the vorticity

equation: �
@

@t
+ �k2

� b!(k; t) = Z
k+p+q=0

d2p
�
	(p); !(q)

�
(136)

involves the following Lie bracket:

�
	(p); !(q)

�
=

1

2
(q; p; z)

�b	(p)b!(q)� b!(p)b	(q)� (137)

and corresponds to an in�nite hierarchy of gyroscope-type equations. The

(complex) analogues of M and 
 being respectively the vectors (!(k), !(p),

!(q)) and (	(k), 	(p), 	(q)) of a triad (k+p+q = 0) of direct interactions. The

enstrophy is therefore the analogue of the square of the momentum, whereas

the (turbulent) energy is the analogue of the energy of the gyroscope. The

Laplacian is the analogue of the inverse of the inertial tensor.

5.4 Discretization of Scaling Cascades of Gyroscopes

The projector bP (k) (Eq. 133) corresponds to the velocity-vorticity vertex of

interactions for a triad of wave vectors (k, p, q) maintaining merely the or-

thogonality condition corresponding to incompressibility (Eq. 121):

k � bu(k; t) = 0 (138)

it has the advantage of being dimensionless.

However, this projector reduces52 at �rst order to the identity for nonlocal

direct 8 interactions (max(k; p; q) � �min(k; p; q), � being the arbitrary non-

localness parameter) which satisfy some orthogonal conditions (fjkj � jpj '

jqj and p ? kg and fjpj � jkj ' jqj and bu(p)kkg). This nonlocal orthogonal
approximation yields estimates of the renormalized forcing and viscosity (see

Sect. 1.2) of Eq. 133:�
@

@t
+ �k2

�bu(k) = Z
jpj��jkj

bu(p) ^ bw(p)ddp +�Z
jpj���1jkj

bu(p)ddp�^ bw(k)
(139)

The similarity considered in Sect. 5.3 is more obvious after discretization

of nonlocal orthogonal approximation along the tree-structure of interactions

(see Fig. 5.4) based on the fundamental triads of (direct) interactions (kin�1,

k2i�1n , k2in ), between a mother and two daughter eddies (i = 1; 2n�1). And for
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Figure 20: Schematic diagramme of a discrete Scaling Gyroscope Cascade model. In this

one dimensional cut, each eddy is a daughter of a larger scale eddy and the mother of
two smaller scale eddies. The light thin line indicates interactions for eddy (3;3) in 3-D

turbulence, whereas the dashed line indicates its interactions in 2-D turbulence. The thick
line points out one of the possiblemost energetic paths, corresponding to a possible reduction

to a shell-model.
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3-D turbulence, one obtains 52 the following equation of evolution (omitting

temporarily the interactions outside of the triad (kin�1, k
2i�1
n , k2in ) as well as

the viscous term) for the analogues of the momentum (cM ) and of angular

velocity (b
):
dcM i

n�1

dt
= cM i

n�1 ^
b
i

n�1 ;
b
i

n�1 = J i
n�1

�cM i

n�1 (140)

with the following matrix representations:2
6664
bu2in
buin�1
bu2i�1n

3
7775 =

hcM i
n�1

i
;

2
6664
b!2i�1n

0

b!2in

3
7775 =

hb
i
n�1

i
(141)

and the analogue (J i
n�1

) of the projection of inverse of the inertia tensor on

the triad corresponds to:

J i
n�1

= knK ; [K] =

2
6664

0 0 1

0 0 0

1 0 0

3
7775 (142)

The equation of evolution of bujm corresponds therefore to the coupling

of two equations of gyroscope type (Eq. 140), therefore to the following (in

general complex) scalar equation of evolution for the velocity amplitude bujm of

the wave vector kjm:�
d

dt
+ �k2m

�bujm = km+1

h
jbu2j�1m+1 j

2 � jbu2jm+1j
2
i
+ (�1)jkmbujmbua(j)m�1 (143)

a(j) being the location index of its \ancestor" (= E
�
j+1
2

�
), E(x) being the

integer part of the real x (E(x) � x < E(x) + 1 ). On this equation, the two

�rst terms of the r.h.s. correspond to a renormalized forcing, whereas the last

one to the renormalized viscosity.

The SGC model for 3-D turbulence can be reduced to the shell-model

de�ned by Eq. 116, as soon as one observes (as done on a similar model 56)

that at each time there is a most active path on the tree connecting the largest

structures to the smallest ones (with a unique eddy at each level) along which

most of the energy transfer occurs (see Fig. 5.4). This very crude understanding
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Figure 21: The energy spectrum (averaged over 1024 realizations) of the SGC for 2-D tur-
bulence (forcing at level n = 10) displays an inverse energy cascade for low wave numbers
(levels n < 10) with an algebraic slope close to �1 = 1:67, as well as a direct cascade of

enstrophy for high wave numbers (levels n > 10), with a slope close to �2 = 3:0. Logs are
base 10.

of intermittency corresponds to eliminating the spatial index j in Eq. 143 with

the very unfortunate consequence of eliminating the crucial spatial dimension,

as discussed above.

The �rst order approximation used for discretization in the case of 3-D tur-

bulence cancels in the 2-D case since the Lie bracket (Eq. 137) is strictly zero

for any interaction triad having two parallel wave-vectors. One has therefore

to consider a second order approximation 118: instead of considering direct in-

teractions between eddies of two successive levels (mother and daughters), one

has to consider interactions between three successive levels (mother, daughter

and grand-daughter). This implies (see Fig. 5.4) that direct interactions link

a given level (m) of the cascade to the two previous ones (m � 1, m � 2) as

well as to the two following ones (m + 1, m + 2). This yields an algebra more

involved than for the case of 3-D turbulence (Eq. 143) and which is generated
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by commutators of b	 and b!:
C
i;i0

n;n0 = (qi
0

n0
; pi

n
; z)[	(pi

n
); !(qi

0

n0
)]

�
@
@t

+ �k2m
� b!jm = C

a(j);a(a(j))
m�1;m�2 +

P
d(j)=22j�1;22j (C

d(j);a(j)
m+1;m�1

+
P

d2(j)=24j�2;24j C
d2(j);d(j)
m+2;m )

(144)

The analogues of the energy and of the square of angular momentumare in-

deed invariant, since we have the detailed conservation laws (similar to Eq. 129)

for any triad ((k; p; q); k + p+ q = 0):

[	(p); !(q)]	(k) + [	(q); !(k)]	(p) + [	(k); !(p)]	(q) = 0 (145)

[	(p); !(q)]!(k) + [	(q); !(k)]!(p) + [	(k); !(p)]!(q) = 0 (146)

Due to the existence of these two invariants, the SGC yields a spectrum

subrange (with slope �5
3 ) which corresponds to an inverse energy cascade

as well as spectrum subrange (with slope �3) which corresponds to a direct

enstrophy cascade (see Fig. 5.4).

5.5 Multifractal features of SGC

Contrary to the multiplicative processes 17;125 the SGC models are fundamen-

tally deterministic: only the forcing could be stochastic. However, it was

checked that the SGC is rather independent 52 of the type of forcing used.

Therefore, we used for simulations a constant unit forcing which intervenes

only at a given level of the cascade (on the level n = 1 and on the level n = 10

for the 3-D case and the 2-D case respectively). Long runs for large Reynolds

numbers (e.g. 1024 large eddy turn-over times) are easily performed on work

stations, using inaccurate fourth-order Runge-Kutta scheme. In order to ex-

hibit clearly the two scaling subranges for 2-D turbulence simulations were

used 32 levels of the SGC and for 3-D turbulence simulations 19 levels of the

SGC yielding Re ' 6�107. Spectra in the 3-D case simulations display52 an ab-

solute slope close to the Kolmogorov-Obukhov 3;4 � = 5
3
which corresponds to

the trivial scaling of Eq. 143 when assuming a constant 
ux of energy. Spectra

of 2-D case simulations (Fig. 5.4) yield clearly the energy subrange (algebraic

slope extremely close to �1 = 1:67) as well as the enstrophy subrange (slope

extremely close to �2 = 3:0).

However, spectra do not give direct insights on intermittency. We charac-

terized this intermittency in the framework of universal multifractals. 3-D SGC
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Figure 22: Curves of DTM with the order of moment q = 1:5 for 3-D SGC at medium
level n = 7 and its corresponding \shell-model": � - the spatial 
ux of energy of SGC

(� = 1:4�0:05 (the slope of the curves) and C1 = 0:25�0:05 (the intercept with the vertical
axis)); � - the time series of energy 
ux of SGC (� = 1:5 � 0:05, C1 = 0:25� 0:05 ); <

- the time series of energy 
ux of \shell-model" (� = 0:6 � 0:05, C1 = 0:4 � 0:05 ). The
latter estimate with � < 1 qualitative di�erent behavior of multifractality: singularities are

bounded.

numerical simulations clearly support (Fig. 5.5) strong universality (Sect. 2.2)

(the misnamed Log-L�evy processes) rather than weak universality (e.g. log-

Poisson statistics), only the former possess attractive and stable properties.

Log-L�evy statistics of (conservative) 
uxes are de�ned by only two param-

eters: the mean fractality C1 and the L�evy index � of multifractality. We

estimate (Fig. 5.4) them by a DTM analysis (Sect. 2.4) with an order of mo-

ment q = 1:5, starting from the level 7 of 3-D SGC simulations. Similar results

were obtained with various values of order of moments q 2 (0:8; 2). These

results, C1 = 0:25� 0:05; � = 1:4� 0:05 for the spatial 
ux of energy of SGC

and C1 = 0:25 � 0:05; � = 1:5 � 0:05 for the time series of energy 
ux of

SGC are close to those obtained for atmospheric turbulence 25;117;83;109. On

the contrary, the one-path model or shell model (Eq. 116) for 3-D turbulence

yields C1 = 0:4� 0:05 and � = 0:6� 0:05. The latter estimate with � < 1 cor-

responds to qualitative di�erent behavior of multifractality37;68: singularities

are bounded, whereas they are unbounded for � � 1.

61



Figure 23: Estimate of the scaling functionK(q) obtained on the SGC runs (dotted line), as

well as the theoretical curves corresponding respectively to the strong universal multifractal
corresponding to the SGC (C1 = 0:25; � = 1:5), to the weak universal multifractal (dashed

lines) based on the She and Leveque choice of parameters, and its approximation by a
corresponding strong universal multifractal (i.e. C1 = 0:11 and � = 1:62). Solid lines

correspond to empirical and theoretical curves K(q) obtained for \shell-model" with � =
0:6� 0:05 and C1 = 0:4� 0:05 .

Conclusions

We have argued that intermittency is a fundamental aspect of fully developed

turbulence and can only be understood as the result of cascade processes acting

over wide ranges of scales involving a large number of degrees of freedom.

We �rst reviewed some of the salient features of cascades emphasizing their

generic multifractal limit and some basic multifractal properties (including

multifractal phase transitions and the link with self-organized criticality). We

argued that - just as for low-dimensional chaos - that without the existence

of stable, attractive universality classes, that multifractals would involve an

in�nite number of parameters and would hence be unmanageable. They would

be useless both theoretically and empirically. Fortunately, both strong and

weak types of universality classes exist; we outlined the current state of the

debate and showed - using turbulent velocity and temperature data - that only

strong universality is compatible with the data for both weak and extreme

events. Since it has not yet been convincingly demonstrated that the weak

universality classes are really attractive, this may not be too surprising; in

any case it clearly poses the question as to which is the physically appropriate

route to universality (\nonlinear mixing", \scale densi�cation", a combination
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of the two, or other).

The bulk of the paper was devoted to developing cascades in two direc-

tions. First, we show how they can be used for anisotropic, causal, continuous,

space-time turbulence modelling. This takes us far beyond the usual static,

discrete, isotropic and acausal multifractal processes which dominate the mul-

tifractal literature. On the other hand, we address the fundamental criticism

of multifractal turbulence modelling: the gap between the phenomenological

(and stochastic) cascades and the dynamical (and deterministic) equations.

The history of the attempts to overcome this gap go back over twenty �ve

years to the development of shell models. Collectively, these are systematic

sets of approximations to the Navier-Stokes equations which keep many of the

symmetries (such as quadratic invariants) and scaling but reduce the nonlinear

interactions to a �xed �nite (and small) number per wavenumber octave. We

show that a more consistent set of approximations (in 2-D as well as in 3-D

turbulence) maintains the spatial dimensionality and a number of degrees of

freedom increasing algebraically with wavenumber, and yields a Scaling Gyro-

scopes Cascade model. We show numerically that (contrary to shell models),

that this is in nearly an identical universality class to the turbulence data.

These developments furthermore point out that there is a rather common

structure of the di�erent models involving a subtle balance between a renor-

malized viscosity and a renormalized forcing. However, we showed that the

latter is rather far from being quasi-Gaussian as hypothesized in the analyt-

ical closures or renormalized techniques which failed to obtain its mean �eld

behavior (without rather ad hoc hypothesis) as well as its large 
uctuations,

i.e. its intermittency. Going well beyond curing the de�ciencies, this should

give the possibility of deriving analytical/renormalizedmodels of intermittency

built on this structure.
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Appendix A: Increments of a fractionally integrated 
ux

We �rst consider the properties of (space) increment of the fractionally inte-

grated �eld �� of a 
ux F�, de�ned by Eqs. 21-20:

���;�x(x) = ��(x+�x)� ��(x) (147)
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Due to the linearity of the convolution, this increment is the convolution

of the same 
ux F�, but with the increment of the corresponding Green's

function, i.e. :

�G�x(x) = G(�x+ x) �G(x) (148)

To �rst order we obtain a \dipole e�ect" at large scale:

jxj >> j�xj ) �G�x(x) '
x

jxj
��x

dG(x)

djxj
(149)

the order of integration for the increment is therefore decreased by one com-

pared to the �eld �� itself, while at small scales we obtain rather a `unipole

e�ect":

jx+�xj << j�xj ) �G�x(x+�x) ' G(x+�x) (150)

jxj << j�xj ) �G�x(x) ' �G(x) (151)

the increment corresponds to the di�erence of two independent �elds (the

domains of integration of the two contributions do not overlap), therefore has

the same behavior as the �eld ��. There is therefore a sharp contrast between

scales larger and smaller than the space lag. Nevertheless, the scales of the

order of j�xj yield the main contributions of the convolution corresponding to

the two approximations, as soon as both diverge with this scale, i.e. structure

functions of order q do scale with j�xj, as soon as K(q) satis�es:

q(H � 1)K(q)qH (152)

The same considerations hold when considering a generalized scale (jjxjjj

instead of jxj),although its gradient (which intervenes in the r.h.s. of Eq. 149

is slightly more involved (due to the fact that the generator G 6= 1). For tem-

poral increments and corresponding causal Green's function (Sec. 4), we have

the same phenomenology, although one may rather consider directly the time

partial di�erentiation of this Green's function, which yields in correspondence

to Eq 149:

jtj >> j�tj ) �G�t(x; t) ' �t @tG(x; t) (153)

Eqs. 150-151 remain rather unchanged.
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Appendix B: predictability and auto-decorrelation

We show that, for a space-time causal multifractal �eld F�, the two measures

C
(1)
� (F; �;�x;�t) =< F

�
�(x; t) F

�
�(x+�x; t+�t) > (154)

for a single �eld F�, and

C
(2)
� (F; �;�x;�t) =< F

(1) �
� (x; t0 +�t) F

(2) �
� (x+�x; t0 +�t) > (155)

for two �elds F
(1)
� and F

(2)
� identical up to time t0 and diverging after t0

(for universal multifractals, this can be restated at the subgenerator level: for

t < t0, 

(1)(x; t) = 
(2)(x; t), and for t > t0, 


(1)(x; t) and 
(2)(x; t) are two

independent realizations of the same white noise), are statistically identical,

and characterize two similar processes (the loss of predictability is the conse-

quence of the divergence of a �eld and its \perturbated" copy, or equivalently

the temporal auto-decorrelation of a single �eld).

Indeed, in the case of C
(1)
� , the two terms F�(x; t) and F�(x+�x; t+�t)

result from the same path of the cascade down to the resolution � such that

��1 = k(�x;�t)k. This classical argument (for self-similar �elds 17;98;129;130,

for self-a�ne �elds 51) is based on the fact that two structures, at a given

resolution, of a cascade are correlated through their common ancestors. The

cascading process being Markovian, this correlation is determined by looking

at their common ancestor at the largest resolution, thus at resolution � =

k(�x;�t)k�1. The two remaining paths from � to � are independent (see Fig.

5.5).

On the other hand, the two terms F
(1)
� (x; t0+�t) and F

(2)
� (x+�x; t0+�t)

of C
(2)
� can similarly be linked. Let �0 = j�tj�1=(1�H) and �00 = j�xj�1. In-

deed, F
(1)
� (x; t0+�t) and F

(1)
� (x; t0) have their common ancestor F

(1)
�0 (x; t0) at

maximum resolution �0; the same observation can be made for F
(2)
� , and select

F
(2)
�0 (x + �x; t0) as the common ancestor at maximum resolution. Consider

the two extreme cases: (1) �0 >> �00, then the two structures de�ned above at

resolution �0 are indeed identical, and (2) �0 << �00, then we need to look to

the structures at resolution �00. The two corresponding structures, F
(1)
�00 (x; t0)

and F
(2)
�00 (x; t0), are identical.

We have shown that the two structures involved in C
(2)
� are correlated

through their common ancestor at resolution � = minf�0; �00g, or more di-

rectly r � = k(�x;�t)k�1. Thus C
(1)
� and C

(2)
� both obey the same scaling

rthe functionmaxj�xj; j�tj1=(1�H) is a possible choice for the scale function k(�x;�t)k.
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Figure 24: Two structures, at resolution �, separated by (�x;�t), are correlated through
their common ancestor at maximum resolution � = k(�x;�t)k�1. The two paths, from �

to �, are independent.

law 51:

C
(1)
� (F; �;�x;�t) = C

(2)
� (F; �;�x;�t) � �2K(�)k(�x;�t)k�K(2;�) (156)

Note that the existence of the cut-o� scale is easily deduced from Eq. 156: for

j�xj >> j�xe(�t)j � j�tj
1

1�H , the correlation measure follows the j�xj�K(2;�)

law, while for j�xj << j�xe(�t)j it scales as j�xj
0: the process can be char-

acterized by the cut-o� scale j�xe(�t)j � j�tj
1

1�H .

Appendix C: determination of E
(�)
�

We derive the expression of E
(�)
� for the 2-D cut, i.e., D = 1, thus 1-D in

space and 1-D in time. The extension to higher dimensional case is obvious.

E
(2)
� is the product of a non-causal Green's function Ĝ2(k; !)Ĝ2(�k;�!) (see

Eq. 90) with a convolution product involving a four-point correlation on the

conservative �eld F�:

< �̂2�(k; !)�̂
2
�(k

0; !0) >= �(k + k0)�(! + !0) Ĝ2(k; !)Ĝ2(�k;�!) (157)

�FT [< F a
�(0; 0)F

a
�(�x1;�t1)F

a
�(�x2;�t2)F

a
�(�x3;�t3) >] (158)

where the Fourier Transform (FT) acts on �x1, �x2, �x3 ! k and �t1, �t2,

�t3 ! !. The four-point correlation term can be solved identically as the

more traditionnal two-point described above; we �nd
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< F a
�(0; 0) F

a
�(�x1;�t1) F

a
�(�x2;�t2) F

a
�(�x3;�t3) > (159)

� �4K(a) P[

3Y
n=1

k(�xn;�tn)k
�K(n+1;a)+K(n;a)] (160)

where P is the operator of permutation on the indexes (6 permutations for 3

indexes). Given the symmetry in the indexes in Eq. 158, we eventually get

< �̂2�(k; !)�̂
2
�(k

0; !0) >= �(k+ k0)�(!+!0) �4K(a) k(k; !)k�4H�3Del�1+K(4;a)

(161)

Interpolating this result to all �, we expect E (�) to scale like

E
(�)
� (k; !) � k(k; !)k�2H��2(��1)Del�1+K(2�;a) (162)

The terms in the scaling exponent of k(k; !)k are understood as: (1) �2H�

is the contribution from the Green's function of Eq. 90; (2) �2(� � 1)Del �

1 results from the equivalent of 2� vectorial Fourier Transform (acting on

(�x;�t)), one leading, due to the invariance by translation, to the � functions;

we then obtain 2� � 1 times �Del, a scaling in k(�x;�t)k�� leading to a

scaling in the Fourier space in k(k; !)k�Del+� ; �nally, the integration term in

k(k; !)k�Del+1 (l.h.s. of Eq. 106) gives the �2(�� 1)Del � 1 contribution; and

(3) the intermittent correction K(2�; a).
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