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Uncertainty and error growth are crosscutting geophysical issues. Since the “chaos
revolution” the dominant paradigm has been the “butterfly effect”: the dependence
on initial conditions is so sensitive that errors grow exponentially fast with charac-
teristic times. This was the outcome of studying superficially simple caricatures of
more involved systems. We critically analyze the physical relevance of these mod-
els and the mathematical generality of this effect. We emphasize that the atmos-
phere, oceans, rain etc., are spatially extended turbulent systems, with wide ranges
of spatial scales. Turbulent phenomenology already shows that errors grow only
slowly across these scales; they follow power laws, there are no characteristic times.
An important recent realization is that in spite of strong anisotropies the dynamically
significant range of scales is much larger than previously thought and that the role
of intermittency is drastic and yields much more frequent extremes. The focus is now
on time-space geophysical scaling behavior: their multifractality. It is found quite gen-
erally - not only for turbulent fields- that an infinite hierarchy of exponents is
required to characterize the predictability decay from average to extreme events.
Nevertheless, these laws are meaningful over the whole time range from short to long
term; we give their explicit expression. This multifractal predictability suggests the
advantages of stochastic rather than deterministic sub-grid parametrizations, and
makes stochastic forecasting very attractive.

1. INTRODUCTION

Recently, there have been growing societal pressures to pro-
vide reliable predictions, in particular of extreme geophysical
events (e.g. earthquakes, floods/droughts, cyclones, storms,
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etc.). Prediction time scales range from nearly zero for “now-
casting” to centuries for global change.

Prediction has several meanings, sometimes called “pre-
diction of the first”, “second” and “third kinds”: these cor-
respond to a pure initial value problem e.g. a Cauchy problem
for differential equations, to a change of boundary value
problem e.g. a Diriclet or von Neuman problem for partial
differential equations, or to a mixture of both. Practical prob-
lems, such as global change, typically correspond to the
third type. In spite of advances in prediction techniques,
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rather little has been done to determine their theoretical lim-
its. The existence of limits are usually accepted at least in
principle (e.g. the ‘butterfly effect’), but one still hopes to
extract some information in the midst of noise. This leads to
a fundamental methodological problem, since without an
estimate of the limits, it is difficult to evaluate and hence
improve prediction skills.

This paper focuses on predictability limits and clarifies the
crucial role of spatial scales. Two rather distinct approaches
have been followed: one corresponding to the dynamical sys-
tems approach (‘deterministic chaos’) and the other one based
on spatial complexity and scaling. Although both approaches
share some common features, the types of predictability decay
are quite different, corresponding to exponentials and power
laws respectively. Although this dichotomy was first investi-
gated by Lorenz in the 19607, it is still not widely known.
Since then, our knowledge of scaling processes has mush-
roomed and their close connection with intermittency has
been clarified. Here we discuss the impact of these ideas
showing that the loss of predictability is not smooth in time,
but rather occurs by intermittent “puffs”.

Although the predictability problem is ubiquitous in geo-
physics, most early developments and formalizations have
occurred in the context of atmospheric or climate dynamics,
where they have achieved their highest expression. This paper
provides a general review of concepts together with applica-
tions to geophysics, e.g. hydrology (Sect. 2.3) atmospheric
dynamics (Sect. 3.3). We hope that these examples will stim-
ulate the development of similar applications in other geo-
physical domains.

2. DYNAMICAL SYSTEM APPROACH
2.1. Chaos Revolution?

The notion of “initial condition sensitivity” became well-
known due to the work of [Lorenz 1963a] on his 3-component
model (corresponding to the first three Fourier components
of convection). By the 1980’s such exponential error growth
became the hallmark of the “deterministic chaos revolution”
and it was widely viewed to be a generic property of non-
linear systems.

2.2. Exponential Error Growth

Exponential error growth emerged from the pioneering
work of [Lyapunov, 1907], and was subsequently generalized
into the elegant Multiplicative Ergodic Theorem (MET)
[Oseledets, 1968], a cornerstone of chaos theory. A key
assumption of the theorem is that temporal averages of a sin-
gle sample of the process are the same as the average at one

time over an ensemble of identical processes; i.e. that the
process is “ergodic”. Let us give some heuristics showing
how this theorem follows from this common geophysical
ergodicity assumption. Consider the simplest case, of a discrete
(t=0, 1, 2, 3...) nonlinear mapping G on real numbers. A
well-known example concerns population dynamics [May,
1976] and the approach generally applies to finite difference
approximations to scalar differential equations:

X(t+1)=G(X(0) (1)

The amplitude of the infinitesimal separation §.X () of a
pair of points (Xl (1), X2(t) = X' () + 8 X( t)) is multiplica-
tively modulated by the derivative of the map G at the point
X, i.e.

|6 (e +1)] = | Dy G [8()| (2)

taking logarithms, one obtains:

Log[ X @|/[5XO[]= ¥ Log(|DynG])  (3)

1'=0, t-1

If the process defined by Eq. (1) is ergodic, the right hand
side of Eq. (3) is determined by replacing the time averages
by ensemble averages (square brackets “(.)”):

> rLog(|DyG|)=1(Log (D.G]) (4)

+'=0,t—1
a result which yields an exponential error growth:
16X (1) = e [6.X(0)| (5)
with a Lyapunov exponent:

1 =< Log (DxGl|)> (6)

Equation (5) is valid as long as u is finite, an assumption
usually taken for granted. u corresponds to the inverse of
the characteristic time after which predictions are effectively
impossible. Generalizations to finite d-dimensional systems
proceed along the same lines. However, if we attempt to
generalize this to evolving fields, i.e. to nonlinear partial
differential equations (infinite dimensional (functional)
spaces), we encounter severe difficulties. In fact, only a few
limited extensions have been obtained [e.g. Ruelle, 1982].
Later on (Sect. 3.1), using physical phenomenology, we point
out a key difficulty: the likely small scale divergence of L,
which violates the finiteness assumption of the mathemati-
cal derivation of the MET.



2.3. Low Dimensional Chaos in Geophysics?

2.3.1. Dimension estimates of geophysical attractors. The
exponential growth of error implies that much of the original
information is rapidly lost hence that only a few degrees of
freedom might be required to specify the state of a system
after long times. This raises the possibility that elaborate non-
linear time series analysis techniques might be able to iden-
tify the few relevant parameters and greatly simplify the model.
This explains the excitement generated, twenty years ago,
when the embedding theorem and the correlation dimension
algorithm were discovered. Together, they gave some cre-
dence to the idea that geophysical systems might not only
have finite dimensions, but that the dimensions might be low.

This evolution in thinking started with [Packard et al., 1980]
and [Takens, 1980] who considered a scalar observable 4 of
a (possibly vector-valued and continuous) time-series x(¢)
constrained on a (finite dimensional) strange attractor. They
showed that in order to obtain a faithful image of this attrac-
tor (called a “reconstruction”), it was sufficient to use a (dis-
crete) time series X, = h{x(nAf)}. For instance, among the
many components of the climate x(#), one may consider the
temperature /{x(f) }and reconstruct the climate attractor with
the help of a discrete time series 4 {x(nAf)}. This may be
achieved using “delay vectors” ¥, = (X , X X ..., Xn_( d-l)r)’
for any specified (integer) time delay T, as soon as the dimen-
sion d of the resulting ‘embedding space’ £, that they span is
large enough. Defining the box dimension D), as the the scal-
ing exponent of the number of attractor points N in a box of
size £: N ()= (", the precise requirement is d > 2D, In spite
of'its simple definition, the box dimension D, was numerically
difficult to evaluate for large d.

The correlation dimension algorithm [Grassberger, 1983]
overcame this difficulty [e.g. Schuster, 1988; Tsonis, 1992]:
only the distance between pairs of delay vectors is required, not
the embedding space. The correlation dimension D, of a set
of points is defined as the scaling exponent of the average
number of points in a sphere of radius r centered at one of
them, i.e.:

< N(d,r)>oc rP?@ (7

The advantage of D, is that very large embedding dimensions
d can easily be explored numerically. Initially, strange attrac-
tors were thought to have a unique (fractal) dimension, there-
fore the box-dimension and the correlation dimension were
considered as equivalent. If this property, as well as the other
assumptions of the embedding theorem, is satisfied, then for
large d, the estimates D,(d) should converge towards the the-
oretical value D, —at least over a range of r. This is illustrated
with the help of Figure 1-a, which displays Log < N(d,r) > vs.
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Figure 1: The correlation dimension (D,) algorithm (a) applied to
estimating the dimension D, of a synthetic rainfall series (b). (a)
shows Log<N(d, r)> vs. Log(r). As d increases, the slopes on the
lower left reach an apparently constant value, the correlation dimen-
sion D, = 2.7. (b) the time series produced by a lognormal cascade
with 12 cascade steps, each of factor 2 in scale, i.e. with N = 4096
data points.

Log(r) for a synthetic rainfall time series Figure 1-b. As d
increases, the slopes converge to D, =2.7.

Loosely speaking an attractor dimension measures how
its points are concentrated in the phase space. A low dimen-
sion corresponds to a very small fraction of the available
phase space, implying very constrained dynamics. This
explains the excitement following [Nicolis and Nicolis,
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1984], who analyzed the isotope record of a deep-sea core
and estimated that D, = 3.1 for the climate and concluded that
4 ODE’s might be sufficient to model climate evolution.
Similar analyses have been performed on many geophysical
data sets leading to numerous claims of very low dimen-
sionality (D, = 5-7), especially for rain [Essex et al., 1987;
Fraedrich, 1986; Hense, 1986; Jayawardena and Lai, 1994;
Rodriguez-Iturbe et al., 1989; Tsonis et al., 1993]. Although
the proliferation of low dimension estimates gave some cre-
dence to the applicability of the butterfly effect to geo-
physics, many questions emerged [Marzocchi, 1997] that
we are going to discuss now.

2.3.2. Limitations Due to Sample Size

Although the embedding space is only implicit in the cor-
relation dimension algorithm, an essential problem remains:
empirical analyses are performed on finite samples! This
leads to an artificial confinement of empirical points to a
small fraction of the embedding space and spurious low esti-
mates of correlation dimensions D,(d), which do not reflect
the dynamics. To avoid this problem, a minimal range of
scales is required [Ruelle, 1990]: a decade yields the cele-
brated rule of thumb that the minimum number of points for
D is: N, = 10P [Nerenberg and Essex, 1990] and Essex,
1991]. [Grassberger, 1986] pointed out that the results of
[Nicolis and Nicolis, 1984] were based on only 184 meas-
urements, implying a maximum reliable dimension D, = 2.3,
i.e. less than their estimate of D, = 3.1.

2.3.3. More Questions on the Estimates

The correlation dimension D, and the box dimension D,
required by the embedding theorem are two special cases of
the infinite hierarchy of dimensions (Sect. 3.4.1) that char-
acterize the multifractal behavior of a strange attractor [ Grass-
berger, 1983; Hentschel and Procaccia, 1983]. Physically,
this means that systems are not homogeneously constrained.
For example, the clustering of point pairs characterized by
D, is generally less extreme than the clustering of triplets
(D;), quartets (D,) etc. Perhaps the fundamental point is that
the embedding theorem /ypothesizes that the dynamics are
deterministic. One therefore cannot draw any conclusion from
alow D, this is neither a requisite nor an indication of chaos
(see Sect. 2.4). In particular, nonlinear time series analysis
techniques are inherently incapable of distinguishing between
low-dimensional deterministic systems and high dimensional
stochastic systems. The classical example is the reconstruc-
tion of the stochastic process known as “Brownian motion”
[Osborne and Provenzale, 1989; Theiler, 1991], which is lin-
ear and has a box-counting dimension D (d) = 2 for any d > 2.

Similar results are obtained for a nonlinear stochastic model—
a multiplicative cascade—which has been often invoked for
rain (Sect. 3.4.2) and which displays an estimate D, = 2.7

Figure 1 a, b). According to the sample size criterion
(N = 4096 and log,,(N)=3.6>2.7), this estimate is reliable
but nevertheless does not imply a small number of degrees
of freedom!

2.4. High Dimensional Chaos?

How to deal with geophysical systems if they do not have
low finite dimensions? A radical change that has occurred in
weather forecasting during the last decade illustrates the issue.
Whereas attention had long been focused on large-scale deter-
ministic modeling, it became clear that small-scale uncer-
tainty must be considered as a first order problem.
Deterministic modeling has progressively been replaced by
Ensemble Prediction Systems (EPS) [Molteni et al., 1996;
Palmer, 2000; Toth and Kalnay, 1993]. EPS involves a prob-
abilistic study of the trajectories of an ensemble of solutions
of a deterministic numerical model started from different ini-
tial conditions or from (slightly) different models: e.g. 50 per-
turbed trajectories are routinely run at the European Center for
Medium-Range Weather Forecasts.

Whereas theorists have primarily considered fields as ele-
ments of infinite dimensional functional spaces [e.g. Eck-
mann and Ruelle, 1985], meteorologists are interested in the
large but finite dimensional projection of meteorological
fields onto the phase space (the ‘resolved scales’) of their
numerical models (typically 10°~107 grid-points). There was
agreement on the need to dynamically obtain relevant sta-
tistics by following the time-evolution of the density of points
in phase space. For finite dimensional phase spaces, the equa-
tion for this density is the “Liouville equation” [Liouville,
1838] and has attracted attention in meteorology [Ehren-
dorfer, 1994; Epstein, 1969]. Consider a well-posed finite
d-dimensional differential systems:

X(1)= %)_(= F(X.0) ®)

The probability density p(X,t) (with respect to the volume
measure dX|, dX,,...dX, of the phase state spanned by X|,
X,,...X,) satisfies a phase space continuity equation [e.g.
Nicolis, 1995], the Liouville equation:

)

2 i+ 3 -2 [ (0p(x.n] =0
o Fox, s
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Figure 2: Scheme of the evolution of the empirical pdf in an Ensem-
ble Prediction System according to [Palmer, 1999]: from the phase
space region occupied by the initial ensemble (a), to (b) linear growth
phase, to (c) nonlinear growth phase, to (d) loss of predictability.

Figure 2, reproduced from [Palmer, 1999], displays the
expected time evolution of the empirical solution of the Liou-
ville equation in an EPS phase space (represented for sim-
plicity as being two dimensional, i.e. spanned by a pair of
variables (X|, X,)). After an early linear (b) and later nonlin-
ear (c) period of dispersion, the probability converges quickly
(exponentially) to an invariant measure (d) of a strange attrac-
tor. This is the standard schematic used to illustrate the domain
of numerical weather forecasts (b,c) and the loss of pre-
dictability (d). Below, we question the physical relevance of
this scheme (Sect. 3.4.3).

Due to the scale truncation of the numerical models, the
issue of noisy perturbations arising from subgrid processes
is fundamental. If these perturbations were gaussian white
noises f{¢) of intensity €, then the state of the system would
evolve as:

%K=E(K,t)+1_’(t); (f0 1)) =8, ,6(1~ 1) (10)

and the Liouville equation for the probability density would
generalize into the Fokker-Planck equation [e.g. Gardiner,
1990]:

J 40 .
EP(KJ)*‘;W[Xi(f)l)()_(ﬁ)]_fﬂxp(la =0 (11)

i

where A is the Laplacian diffusion operator (in the phase
space). However, these perturbations may be strongly non-
gaussian and it is better to consider a “fractional” general-

! Hereafter p no longer denotes a probability density, as in a previ-
ous section.
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ization of the Fokker-Planck equation, which involves frac-
tional derivatives (e.g. [Schertzer et al., 2001] and references
therein), in particular, fractional powers of the Laplacian. Fur-
thermore, the noises may be colored rather than white [e.g.
Hasselmann, 1976]. We will now consider the possibility of
taking into account all the scales together.

3. SCALING AND MULTIFRACTAL APPROACHES

3.1. Phenomenology of High Dimensional Systems and
Scale Symmetries

3.1.1. Scale symmetry of generating equations. Geophysi-
cally relevant equations are nonlinear. They can respect (more
or less formal) scale symmetries. This has classically been
known as “self-similarity” [e.g. Sedov, 1972], but with unnec-
essary limitations. Consider the Navier-Stokes equations that
are used in many geophysical domains:

V=2 Wi i prV(p)=0 (12
ot p = Jt

with u = velocity, ¢ = time, p = pressure, p = fluid density',
v = viscosity, = forcing density (external forcing, gravity), as
well as the associated advection-diffusion equations for a scalar
field 6 (f, = forcing density for the scalar, x = diffusivity):

%+(Q-V)9=K‘V29+f9 (13)

In geophysics, active scalar fields 6 are as important as the
velocity field u, e.g. convection, where p sensitively depends
on 6, either the temperature (atmosphere or lithosphere) or
on the salinity (oceans), contrary to the (academic) passive
case (p, f, independent of 6). Although the basic mathemati-
cal properties of their solutions (e.g. existence and unique-
ness) are unsolved “Hilbert problems” [Hilbert, 1902] in both
cases, these equations remain formally invariant under any
(affine) contraction of the time-space (of scale ratios A, A=)

xox/A >t (14)

a s
long as the dependent variables are suitably renormalized:

g—)g/lH;Oee/lH';pep/lH”
vov/ p— p/A”
£_>£/212H71;f‘9_>f‘9/21H/+H”71

1 (15

AH—H 2 +H”

K —K/
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One may either consider the asymptotic case of fully devel-
oped turbulence (with an infinite Reynolds number (Re—e;
equivalently, a vanishing viscosity, v—0) for the incom-
pressible Navier-Stokes equations [e.g. Frisch, 1995]), or con-
sider the case of non-zero eddy (rather than molecular)
viscosity and eddy diffusivity, [e.g. Schertzer and Lovejoy,
1987]. In numerical models, where scales are split into resolved
and (parametrized) sub-grid components this symmetry is
unfortunately broken.

3.1.2. Scaling and quantitative laws in turbulence. Scale
invariance (or scaling) is also a symmetry directly related to
a striking and rather general feature of nonlinear systems:
their high variability in space and time. Indeed, this extreme
variability can easily be understood as the result of a scale
invariant process that is repeated scale by scale, thus multi-
plicatively amplifying even small variability present at larger
scales. This is related to the paradigm of cascades [Richard-
son, 1922] and is exemplified by the basic quantitative tur-
bulence laws: the Richardson law [Richardson, 1926] and the
Kolmogorov-Obukhov law [Kolmogorov, 1941; Obukhov,
1941]. The first relates the relative separation 7(f) of a pair
of particles passively advected by turbulence:

(r@?)=er’ (16)

£ is the spatial average of the energy dissipation rate density,
as well of the density of the energy flux &o smaller scales. The
second relates the shear of the velocity field du(?) to the
scale /:

<6u(€)2>o<52/3!i 2/3 Bk o g 213553 (17)
where E(k) is the energy spectrum at the wave-number £.

Their extensions to a passive scalar field [Obukhov, 1949;
Corrsin, 1951] are:

<59(f)2>o<;?5‘”3f 2/3 Eg(k)N_Z/Sk_5/3 (18)

where y is the flux of scalar variance, £, (k) the spectrum of
the scalar field. Surprisingly, these laws are still beyond the
reach of analytical techniques, including the Quasi Normal
Approximation [Millionshchikov, 1941], the Direct Interaction
Approximation [Kraichnan, 1958; Kraichnan, 1959] (for
review see [Leslie, 1973]), as well from the renormalization
group [Forster et al., 1977]. Indeed, rather ad-hoc modifica-
tions are required to obtain ‘analytical closures’ (Eddy-Damped
QuasiNormal Model [EDQNM, Orszag, 1970] and the Test
Field Model [TFM, Kraichnan, 1971]), which are compatible
with these “mean field” laws. However, closures are unable to
account for intermittency [Frisch et al., 1980], see Sect. 3.4.1.

3.1.3. Eddy turnover time and scaling space-time anisotropy.
In contrast to the exponential predictability decay law (Eq. (5))
for deterministic chaos (Sect. 2.2), Egs. (16)—(18) are power
laws. This is a consequence of the transformation group, which
for any value of the exponents H, H’ leaves the generating
equations invariant (Eq. (15)). The particular values
H=H'=1/3, which correspond to the Kolmogorov-Obukhov
(Eq. (17)) and to Corrsin-Obukhov law (Eq. (18)), can be
found either by purely dimensional considerations or using
the physical notion of “eddy turnover time” 7 (¢ ) The latter
is the characteristic time for a structure of scale ¢ with a
velocity shear across it ou(¢) to “turn over”:

T(0) o< 0/ Su(?) (19)

Since the characteristic time of destruction of structures of
this scale ¢ must be proportional to the eddy turn-over time
[e.g. Robinson, 1971], one finds that the rate of transfer of
energy to smaller scale is:

£(0) o< Su(L)* / T(0) o< Su()/ ¢ (20)
therefore:

Su(l) o< e(0)" 113 t(0)e(e) 07> @)

By performing a spatial average and considering that £(/)
is scale independent and not too fluctuating (i.e. £ =g7),
Eq. (21) yields the Kolmgorov-Obukhov scaling law Eq. (17)
as well as an homogeneous eddy turn-over time 7 (/) :

This confirms that there is a scaling anisotropy between
time and space i.e. the (typical) lifetime of a structure varies
as a power of the scale, in agreement with Eq. (14), with
the “dynamical exponent”: 1-H=2/3, to be used in
Sects. 3.2, 3.4.2, 3.4.3. It also yields the scaling laws for the
passive scalar (Egs. (18)).

3.2. Predictability in Homogeneous Turbulence

3.2.1. The phenomenology of error growth through scales
and the MET. The general phenomenology of error growth
through scales is rather straightforward: an error or uncer-
tainty initially confined to small-scales will progressively
‘contaminate’ large-scale structures through these interac-
tions. This is in sharp contrast with the MET that does not
consider the problem of many nonlinearly interacting spatial
scales. The problem of the evolution of spatially extended
fields was first theoretically investigated by [Thompson,



1957]. Using initial time-derivatives and various meteoro-
logical models, Thompson studied the nonlinear uncertainty
growth due to errors in the initial conditions resulting from the
limited resolutions of the measurement network and of the
models. He estimated the root mean square (RMS) doubling
time for small errors to be about two days, whereas [Char-
ney and al., 1966], using more elaborate meteorological mod-
els, estimated it as five days.

The scale dependency of the predictability times was under-
lined by [Robinson, 1967; Robinson, 1971]. Indeed, if the
notion of characteristic error time 7 is still relevant, it should
depend on the spatial scale ¢ in a hierarchical manner. For
¢ > 7(¢)two fields initially similar at scale / become quite
different (e.g. rather decorrelated) at this scale, but may remain
similar at larger scales. This is in agreement with the follow-
ing estimates of the Lyapunov exponent (¢)e<1/7(¢) and
the characteristic space scale /, reached by the error at time
t (see Eq. (22)):

U)o 1/T(0) 820722 1 (1) VY2 (23)

This shows—contrary to the usual assumption (Eq. (6))—
that unless a break in the scaling occurs leading to smooth
small scale behavior, the Lyapunov exponent ¢ will diverge
at small scales.

3.2.2. Energetics and spectral analysis of the error growth.
Let u'(x,r) and u’(x,7) be two solutions of a nonlinear
system (e.g. velocities for Navier-Stokes equations)
initially identical, but with a perturbation (error)
Su(x,0) = u*(x,0)—u'(x,0) at t=0, confined to infinitesi-
mally small spatial scales. The time-evolution of du(x,?)
corresponds to the effect of butterflies homogeneously dis-
tributed in space, rather than the effect of a single butterfly.
When the nonlinear interactions preserve the kinetic energy
(e.g. Navier-Stokes equations), it is convenient but not suf-
ficient to consider both the correlated (kinetic) energy (per
unit of mass):

¢ (x0)=4u' (x0) 1 (x0) (24)

and the decorrelated energy:
A =1 uxn) =3P xn-u'x))  (25)

as well as the total energy and the energy of each solution:

I en=e e+ Man =t x)) @6
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This implies the relation:
T c A
e (xn)=e(x0)+e (x1) 27)

hence, if the total energy is statistically stationary (conserved
on average), there will be a flux of correlated energy e°(x,)
to decorrelated energy e”(x,¢) . This also holds for the cor-
responding energy spectra E (k,t) = E°(k,f)+ E*(k, ) ,
since the latter corresponds to a linear decomposition of the
former with respect to wave number, k. Therefore, the decor-
related energy spectrum £ A (k1) steadily increases in mag-
nitude from large to small wavenumbers, converging to the total
energy spectrum E7 (k,7)=~ k>3 (Figure 3). The critical
wave number k (f) of the transition from dominant correla-
tion to dominant decorrelation can be defined by
E€(k,(0),t) = E®(k,(#), 1), scales as 1/7, (¢) (Eq. (23)) and
decreases as: k(1) ~1'2.

3.2.3. Consequences and limitations. If the constant of pro-
portionality in the definition of the eddy-turn over time
(Eq. (22)), as well as that relating the latter to the error time,
is of order unity, then taking a “typical values” € =10 m?%s™
and N ~10"m (energy flux and the viscous scale), one obtains
() =133 <107"s, as well as 7, (0) = 7, (m)(¢/1)*"?
and therefore 7, (£)=10s; 1/2 hr; 28 hr; 5.4 days respectively
for ¢ =1m, 1 km, 10° km, 10* km. These estimates are close to
those obtained by [Lorenz, 1969] (Figure 3), but slightly lower
than the numerical (closure, nonintermittent) results obtained
by [Leith, 1971; Métais and Lesieur, 1986] and [Kraichnan,
1970; Leith and Kraichnan, 1972].
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Figure 3: Atmospheric error growth according a quasi-normal clo-
sure simulation [Lorenz, 1969]. The decorrelated energy spectrum
EA(k, 1) initially confined to a few meters (on the right) “pollute” the
larger scales (up to 20,000 km (on the left) after various time inter-
vals (from few minutes to 5 days).
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3.3. Questioning the Lorenz-Leith-Kraichnan Approach

3.3.1. Isotropic models of atmospheric motions. The use by
[Lorenz, 1969] of a k>3 spectrum up to synoptic scales was
considered as paradoxical and speculative, e.g. [Robert and
Rosier, 2001], in any case as in contradiction with the standard
model of atmospheric dynamics that considers large-scale
atmospheric motions as quasi-two dimensional (quasi-2D)
and small-scale motions as quasi-three dimensional (quasi-
3D). This standard model emerges from quasi-linear approx-
imations, in particular the quasi-geostrophic approximation
[Charney, 1948] and the related notion of quasi-geostrophic
turbulence [Charney, 1971]. Furthermore, it seems eminently
sensible since at large scale the atmosphere appears to be a thin
film of thickness 4= 10 km with large horizontal scale
L=20,000 km.

However, 2D and 3D turbulence have quite distinct dynam-
ics and transport properties. 2D turbulent flows are fairly
smooth, since the main dynamical mechanism of 3D turbu-
lence—vortex stretching—is impossible. Whereas 3D dynam-
ics generate vorticity explosively, 2D dynamics only advect
vorticity conservatively. Among various consequences of
this vorticity conservation, there is no longer a cascade of
energy towards smaller scales, but a cascade of enstrophy
(the vorticity squared) with a different spectral slope [Fjortoft,
1953; Kraichnan, 1967] and nearly scale invariant eddy-turn
over times.

In order to hold together, the standard model requires a
“meso-scale gap”, otherwise the 3D turbulence destabilizes the
2D turbulence. The existence of this gap was initially given
some empirical support (Figure 4) by estimates of wind spec-
tra [Panofsky and Van der Hoven, 1955; Van der Hoven, 1957].

In spite of strong criticism [Pinus, 1968], it was eventually
consecrated by [Monin, 1972; Pedlosky, 1979]. As a conse-
quence, [Leith and Kraichnan, 1972] studied 2D and 3D tur-
bulent flow predictability.

More fundamentally, the atmosphere is buoyancy driven so
that we must consider the fact that buoyancy forces generate
another conservative flux [Bolgiano, 1959; Obukhov, 1959],
related to both the potential energy defined by gravity, and
to the large scale stable stratification of the atmosphere. Buoy-
ancy was not considered in the standard model, whereas it is
expected to dominate the kinetic energy flux at large scales.
Unfortunately, this “buoyancy subrange” was originally hypoth-
esized as an isotropic regime i.e. with the same k ' spectrum
in both horizontal and vertical directions. However, as it was
never observed along the horizontal, the idea languished. As
discussed below an anisotropic generalization is required to
yield a coherent model of atmosphere.

[Lilly, 1985] argued that empirical findings in the 1980’s
seriously undermined the standard model. The GASP exper-
iment (Figure 5), the first large-scale campaign to measure
the horizontal velocity spectrum [Lilly and Paterson, 1983;
Nastrom and Gage, 1983b], found no evidence of a
mesoscale spectral gap. This result was confirmed by the
more recent MOZAIC experiment [Lindborg, 1999]. Instead,
they found a Kolmogorov k >3 scaling extending to at least
hundreds of kilometers. This was confirmed in a variety of
climatological and meteorological regimes, including trop-
ical cylonic conditions [Chigirinskaya et al., 1994]. However,
atmospheric dynamics that aircrafts are assumed to measure
can induce fractal aircraft trajectories [Lovejoy et al., 2004]
and hence possible biases due to mixed (nontrivially corre-
lated) measurements of vertical and horizontal fluctuations.
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ferent frequencies. According to [ Vinnichenko, 1969], the high frequency data was taken at “hurricane -like conditions”,
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Figure 5: GASP atmospheric wind spectra [Nastrom and Gage,
1983a] from instrumented commercial aircraft. The basic spectrum
is close to Kolmorogov out to at least several hundred kilometers and
there is no evidence for a “meso-scale gap”.

As an alternative, [Lovejoy et al., 2001] used the fact that the
infra red and visible radiances of cloud fields are strongly
coupled to their structures and to the dynamics and therefore
should be scaling over the same range: the analysis of nearly
1000 satellite images show that the (multi) scaling of the
radiances was respected from planetary scales down to at
least kilometer scales.

[Gage, 1979] proposed that the meso-scale k=3 spectrum
could be explained by a 2D inverse energy cascade. This mod-
ification of the standard model is nevertheless inconsistent
with the empirical evidence that atmospheric variability is
also scaling along the vertical. Using balloon measurements
over heights of 10-20 km the vertical spectrum of the hori-
zontal wind was consistently found (Figure 6) to follow Bol-
giano-Obhukhov (BO) k'3 scaling throughout the
troposphere [Adelfang, 1971; Endlich et al., 1969; Lazarev
et al., 1994; Schertzer and Lovejoy, 1985].

3.3.2. Anisotropic models of atmospheric motions. [Schertzer
and Lovejoy, 1985a] proposed that in the horizontal the sta-
tistics are dominated by the energy flux (leading to
kP , ~5/3 in the horizontal), while in the vertical the
conservative flux generated by the buoyancy force is dominant
leading to P B, =11/5. Contrary to the original BO frame-
work, neither the Boussinesq approximation, nor other sta-
ble stratified reference states are required. Fluid particles
respond to local gradients, not gradients with respect to the-
oretical reference values.
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In this new model, the atmosphere is anisotropic at all scales
and effectively becomes progressively flatter and flatter along
the horizontal at larger and larger scales. The differential flat-
tening can be characterized by an intermediate “elliptical
dimension” 2 < D, <3 [Schertzer and Lovejoy, 1984]:
D, =2+(B,-1/(B,—1) (where j,, B, are the spectral
slopes along the horizontal and vertical directions). When the
horizontal extent of a structure is increased by A, its volume
increases by AP<. The atmosphere is therefore neither 3D
isotropic at small scales nor 2D isotropic at large scales
(D,;= 3 and 2 are the 3D and 2D isotropic cases respectively).
In terms of D,, the current atmospheric debate is between
buoyancy driven flows with D_=23/9=2.555 and flows result-
ing from a gravity wave mechanism leading to D ,=7/3=2.333
(B, =3), [Lumley, 1963; Shur, 1962; Van Zandt, 1982; Wein-
stock, 1978]. Recent lidar based aircraft data from pollution
(considered as a passive scalar surrogate), using simultaneous
vertical and horizontal backscatter measurements, yield
D, 72.5540.02 over the range 3 m to 120 km, very close to the
23/9 model and incompatible with the 2D, 3D and 7/3D mod-
els (Figure 7 and [Lilley et al., 2004]). Note that empirical
evidence of anisotropic scaling have been also found for the
magnetic susceptibility of the earth crust [Lovejoy, 2001] and
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Figure 6: Scaling of the probability distribution of the vertical shear
of the horizontal wind [Schertzer and Lovejoy, 1985b]. The left
curve for S0m thick layers, with thickness increasing by factors of
2 to right (80 radiosonde ascents). The straight lines indicate a ref-
erence slope —5 (corresponding to a power-law probability falloff,
divergence of moments of order ¢>5), and the line spacing indi-
cates Bolgiano-Obukhov (BO) scaling in the vertical.
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Figure 7. Log-log plot of the first order structure function of the
aerosol backscatter ratio [Lilley et al., 2004], a surrogate for the con-
centration of a passive scalar, obtained from 9 vertical cross-sec-
tions (4.5 km thick, 120km long) with vertical resolution 3m,
horizontal resolution 100m. The straight lines indicate the theoreti-
cal exponents (horizontal), (vertical), their intersection determines
point the “sphero-scale” /=10cm. Structures larger than /_ are flattened
in the horizontal, whereas smaller structures are vertically aligned.

for the soil hydraulic conductivity [Tchiguirinskaia, 2002],
so that geophysical stratification may be generally scaling.

3.3.3. Which statistics? [Lilly, 1985] questioned the quasi-
normal closure framework , which implies that the analyses of
[Lorenz, 1969] [Leith, 1971] and [Kraichnan, 1970; Leith and
Kraichnan, 1972] are local as well as global. This is not con-
sistent with the observation that various atmospheric structures
(e. g. rotating thunderstorms [Lilly, 1983]) maintain a stable
identity much longer than their turnover time. [Schertzer and
Lovejoy, 1984] reported that the probability distributions of ver-
tical wind shear amplitude |[0u|, energy flux density & and
potential temperature 6 have power law tails. This means that
for example (Figure 6) the probability of the wind shear |Su|
(as well as it squared §u?) to exceeding a (large) fixed thresh-
old is a power-law :

Pr(|6u|>s) = s~ (28)

the power-law exponent g, is a critical exponent. [Lilly, 1985]
therefore argued that the error statistics should be similarly
divergent and much more variable and extreme than those
estimated in the quasi-normal framework of closures. Indeed,
power law probability tails, are often considered a hallmark of
Self-Organized Criticality [Bak et al., 1987]; the exponent ¢,
being a critical order of divergence of statistical moments

This means that the (theoretical) statistical moments of order
q 2 g are infinite. On finite (e.g. empirical) samples the
moment estimates are finite but grow (i.e. diverge) as the
number of samples increases. This divergence results from
the fact that the weights or frequencies of extremes is much
higher than usual. This is consistent with the fact that the
probability of finding a 10 times larger fluctuation, decreases
only by a factor 107> (e.g. according to Figure 6 the probability
to have a 10 times larger wind shear decreases only by 10°, not
by an exponential factor).

3.3.4. The fundamental role of intermittency. As early as
1942 Landau [Landau and Lifshitz, 1987; Yaglom, 1994] ques-
tioned the assumption of the homogeneity of fluxes used by
[Kolmogorov, 1941; Obukhov, 1941] to derive their scaling
law of velocity shears (Eq. (17)). [Batchelor, 1953; Batchelor
and Townsend, 1949] observed that not only does the “activ-
ity” of turbulence induce inhomogeneity, but the activity itself
is very inhomogeneously distributed: there are “puffs” of
active turbulence inside of puffs of (active) turbulence. This
inhomogeneity has been termed “intermittency”, which may
be even more fundamental for active scalars such as rain and
cloud fields than for the dynamics. These considerations lead
to the general idea [e.g. Leslie, 1973] that a turbulent flow is
only turbulent in tiny fractions of space and time. A precise
meaning to the term “fraction” was achieved with the help
of cascade models.

3.4. Strongly Non Gaussian Statistics and Multifractal
Modeling

In contrast to the limitations of closure models, multi-
fractal models yield strongly non-gaussian statistics and
therefore structures of very different intensities. A key ingre-
dient is a multiplicative property of the models that describe
a cascade of instabilities, i.e. incrementally the heterogene-
ity of fluxes flowing through smaller and smaller structures
increases.

3.4.1. Multifractals and the phenomenology of cascades.
Stochastic multifractal processes originated from the phe-
nomenological assumption [e.g. Yaglom, 1966] that in turbu-
lence successive cascade steps define independent fractions of
the flux, F, transmitted to smaller scales and that a cascade is
scaling (Figure 8). To be more precise, let A =L/¢ be an
intermediate scale ratio (“resolution”), where L is the outer
scale and ¢ the scale corresponding to scale ratio A, and let
A=L/0'=AA" be the total scale ratio of the cascade. Scal-
ing means that the cascade from A to A corresponds to a cas-
cade from ratio 1 to A' contracted by T, of scale ratio A;
T, (f(x)) = f(T,(x)); in the self-similar (isotropic) case T} (x) =



x /A. When combined these two properties imply that the flux

is a multiplicative group, with the equality symbol indicat-

ing that the random variables on each side have identical prob-
ability distributions:

d
Fyon=Fy T, (Fy) (ALA'Z) (29)
Hence we obtain the following scaling law for the statisti-
cal moments:

<Fpd>=2%9 < g1 > (A, A'21) (30)

where the exponent K(g) is the moment scaling function. The

probability distribution for the event {F', > A"} is also scaling

(mathematically, this may be obtained using the Mellin trans-
form [Schertzer and Lovejoy, 1993; Schertzer et al., 2002a]):

Pr{F, 2 A"} oc A7) (€29)

the arbitrary exponent y, which defines a given level of activ-
ity or intensity at all resolutions A, is a “singularity”: the larger
it is, the faster F, grows with resolution/scale A. The scaling
exponent c () of the probability is a statistical codimension
[Schertzer and Lovejoy, 1987] also called the “Cramer” func-
tion [Mandelbrot, 1991; Oono, 1989]. When the embedding
dimension d > ¢ (), it corresponds to a geometric notion of
codimension, so that on a given sample of this process, the
event {F, > A} is almost surely a fractal set of dimension: D (Y)
= d-c(y). In other words a multifractal field can be under-
stood as an infinite hierarchy of embedded fractal sets of
dimension D (y) and supporting a given singularity v, i.e. I,
grows faster than AY with increasing resolution A. The highest
singularities are the rarest, hence ¢ (y) increases with v, whereas
D (7y) decreases. For instance, the schematic Figure 8 displays
a unique extreme singularity, three more intermediate ones, and
extremely low ones for the rest of the (2D) space. In any case,
multifractality cannot be understood as a dimension depend-
ing on scale. Whereas scale invariant geometric sets of points
are fractals, scale invariant fields (i.e. with a value at each
point) are multifractals.

The two scaling functions are related by the Legendre trans-
form [Parisi and Frisch, 1985]:

K(q)= mfx{W—C(V)} a7) = max {or-K9} (32)

Thus the main multifractal properties common to all the
various formalisms are an infinite hierarchy of statistical expo-
nents [e.g. Badii and Politi, 1984; Grassberger, 1983; Grass-
berger and Procaccia, 1983; Hentschel and Procaccia, 1983;
Schertzer and Lovejoy, 1984; Stanley and Meakin, 1988] and
an infinite hierarchy of singularities [e.g. Benzi et al., 1984;
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Figure 8. Illustration of a discrete (in scale) cascade process. The dis-
played first few steps show how the energy flux at large scales mul-
tiplicatively modulates the flux at successively smaller scales. Since
the energy is conserved on average, the flux is concentrated in a
hierarchy of fractal sets whose fractal dimension decreases with
intensity threshold.

Halsey et al., 1986; Parisi and Frisch, 1985]. However, there
are substantial differences. For example, there is an upper
bound for singularities of “geometrical” multifractals [Halsey
et al., 1986; Parisi and Frisch, 1985], where each singularity
is assumed to be supported by a well-defined geometrical
(fractal) set, and for singularities of “microcanonical” multi-
fractal processes that conserve fluxes on each realization as
well as scale by scale [e.g. Benzi et al., 1984; Meneveau and
Sreenivasan, 1987; Pietronero and Siebesma, 1986]. In contrast,
more general canonical multifractals, which conserve only
ensemble flux averages, do not generally have any upper bound
[Schertzer and Lovejoy, 1992]. The resulting extreme singu-
larities yield power probability distributions having power-law
tails (Eq. (28)). which are discussed in Sect. 3.3.3.

3.4.2. Multifractal modeling. Static multifractal models
(pure spatial cuts, without time) have become useful tools for
simulations of clouds [e.g. Arneodo et al., 1999; Naud et al.,
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1996; Wilson et al., 1991] and of other geophysical fields
[e.g. Deidda, 2000; Pecknold et al., 1996; Pecknold et al.,
1997; Pecknold et al., 1993]. Their dynamic versions, i.e.
space-time processes, have been developed for studying tur-
bulence, rain and the predictability [Marsan et al., 1996; Over
and Gupta, 1996; Schertzer et al., 1997; Marsan, 1998]. Mul-
tiplicative processes, in particular when continuous in scale,
can be generated from white noises. Indeed, they can be
obtained by the exponential of an additive process I'; (x) called
the “generator “of the flux (x = (x, y, z) for a 3D spatial process,
X = (x, y, z, t) for a time-space process):

Fl = el—‘}L (33)

In order to respect the scaling property of the statistical
moments (Eq. (30)) the generator must have a logarithmic
divergence with resolution A;I'; o Log(A4); A — o . This is
achieved with an appropriate “fractional integration”, i.e. a
power-law filtering in the Fourier space [for details e.g.
Schertzer et al., 1997]) of a white noise, which can be cho-
sen as a Levy stable noise [Schertzer and Lovejoy, 1987,
Schertzer and Lovejoy, 1997]. One may note that the
anisotropy between space and time (Sect. 3.1.3, in particular
Eq. (22)), as well as the necessary causality condition (asym-
metry between past and future) can easily be taken into
account [Marsan et al., 1996].

3.4.3. Multifractal predictability limits. In order to generalize
the approach followed in the spectral analysis of predictabil-
ity (Sect. 3.2.2) to multifractals, we consider the time evolu-
tion of a pair of fields of common resolution A. They are
identical up to the time £, when one lets the fluxes become
independent at small scales [Schertzer and Lovejoy, 2004].
For simplicity, consider the scalar rain rate R(x,t) illustrated
by Plate 1 (time t along the horizontal, location x along the ver-
tical). Plates 1a-b display a pair of rain rate fields R} (x, 7)
and R? (x, 7) and Plate 1d their absolute difference |5R NEA t)|.
One may qualitatively note the role of intermittency: most of
the difference |5RA(x,t)| is due to a small number of
extremely large values.

[Marsan et al., 1996] checked that the spectral analyses of
multifractal simulations of a velocity component are in agree-
ment with homogeneous turbulence results (Sect. 3.2.2,
and Figure 3). Bursts of violent fluctuations cannot be
accounted for using second order statistical moments, in par-
ticular energy spectra; these are evident in Figure 9 which
displays an ‘elementary’ decorrelated/error energy spectrum,
i.e. not obtained by ensemble average, but only over a unique
sample. It is no longer as smooth as an ensemble averaged
decorrelated/error energy spectrum £ (k, 1) (e.g. Figure 3),
but rather corresponds to a sequence of decorrelation (more
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Figure 9. Elementary error energy spectrum displaying decorrela-
tion bursts ([Schertzer et al., 1997]). This elementary error energy
spectrum is obtained from a unique realization ( is the resolution of
the simulation) rather than from an ensemble average. It is no longer
as smooth as of Figure 3, but rather corresponds to a sequence of
decorrelation bursts at different scales.

generally of independence) bursts at different scales. These
bursts result from the fact that although the energetics of the
upscale cascade of errors remain basically the same, they do
not constrain the largest fluctuations of the errors as much as
in the homogeneous turbulence case.

We emphasized that statistics of second order moments, in
particular their correlation that corresponds to the correla-
tion energy for a velocity field, are unable to account for the
co-evolution of a pair of multifractal fields. Therefore, we
need to consider a covariance of order ¢ for different values
of ¢. This is rather simple for fluxes, e.g. the respective energy
flux densities €} (i=1,2) of a pair of velocities u/(x, 7). Up to
t, the fluxes are identical over the full range of the cascade
process (i.e. over the possibly infinite cascade scale ratio A).
After t,, they remain rather similar only over a decreasing
scale ratio A (7) < A, which necessarily follows a power law.
More precisely [Schertzer and Lovejoy, 2004], the latter is
defined by the dynamical exponent 1-/,, which defines the
scaling space-time-space anisotropy (Sect. 3.1.3, in particu-
lar Eq. (22)):

1<ty Mt)=A; t>ty: A(0) = Min[A, (T/(t— t&)ﬁ] (34)

where T is the outer time scale. As a consequence, one obtains
for the (normalized) covariance of order ¢:
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Plate 1.a—f Simulation of multifractal predictability decay for rain field: (a) and (b) are identical up to t =64, after which
their fluxes become independent. (c) displays the forecast based on their common past and the deterministic conservation
of the flux afterward. Singularities of the fields (i.e. their log divided by the log resolution), as well as of their absolute
differences (d—f), are displayed according to the following palette: white for negative singularities; green to yellow for sin-
gularities contributing to statistics up to the mean; red for singularities contributing to second and higher order moments.
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with K (g, 2) = K(2q)-2K(g). The multifractality K(g,2) of
the joint field €! € is purely defined by that of &/ (K(q)).
The distinctive feature is that instead of being fixed at A (as
for ¢/ =€7) the range of scale ratios [1, A()] also has a power-
law decay (Eq. (34)). The same occurs for its probability dis-
tribution. It is important to appreciate that these power laws
are valid for all time scales, not only the large scales. This is
in a sharp contrast with the schematic sequence of pre-
dictability behaviors presented by Figure 2 and discussed in
Sect. 2.4. The corresponding “Liouville+ MET’ scenario is
therefore not relevant for multifractal fields.

3.4.4. Forecasts and stochastic parameterizations. We
may now explore the question of optimizing forecast pro-
cedures so that the decay law of the (normalized) covariance
C@(eh, €% of order g of the forecast field € and of the
observed field € is as close as possible to the theoretical
C@(el €2) (Eq. (35)). For example, let us point out that
the multifractal behavior of meteorological fields theoret-
ically explains and confirms the recent empirical evidence
that stochastic parametrizations do better than determinis-
tic ones [Buizza et al., 1999; Houtekamer et al., 1996], in
particular in the EPS framework. It suffices to use the fact
that a multifractal field may be defined with the help of a
white-noise. Indeed, past and future components of a white
noise are independent and identically distributed. There-
fore, any white-noise identically distributed to the past com-
ponent is obviously a possible future component. In
particular, the resulting process will in the future keep the
same statistical properties, as well as the same scale ratio.
On the contrary, a future component defined in a deter-
ministic manner cannot have an identical statistical distri-
bution. In particular, its scaling function K (g) is linear
with respect to ¢, instead of being nonlinear as that of the
observations K(g). At best, one can only find a (determin-
istic) procedure to preserve the statistics of a given order ¢.
This is illustrated by Plate 1 obtained by a numerical sim-
ulation, where the (deterministic) future component of the
noise of the forecast field R3(x, 7). (Plate 1¢c) was defined
to preserve the mean (¢ = 1) of the flux. Plates le—f dis-
play the drastic loss of all extreme events (¢ >>1) with
respect to the samples R\ (x, 7) and R%(x, 7). More quanti-
tative statements can be readily obtained with the help of the
covariance C@ (g% €9) of order g. This should encourage the
radical EPS evolution to increasingly account for the ran-
domness of meteorological fields at different scales.

4. CONCLUSION AND PROSPECTS

Prediction in geophysical systems is still in its infancy.
Basic questions such as the nature of error growth and limits
to predictability must be answered if only to allow the pre-
dictions to be seriously evaluated. Geophysics thus faces a
situation somewhat analogous to that of celestial mechanics
a few centuries ago when the ad-hoc epicycle framework
became unmanageable: the definition of a suitable framework
for predictability assessment of geophysical fields still requires
much theoretical work.

We underlined that geophysical systems are not only com-
plex in time, but also in space and therefore rather complex!*P,
where D is the dimension of the spatial extension. This requires
a critical assessment of the relevance of concepts that emerged
from the study of simple temporally complex systems.

In this direction, we have reviewed, compared and contrasted
several frameworks that belong to two broad categories: dynam-
ical systems (or deterministic chaos) and scaling in time and
space. We discussed several critical issues related to the tran-
sition from (geometrical) finite dimensional phase space to
(functional) infinite dimensional ones, in particular the impor-
tance of the anisotropic symmetry between time and space,
as well as the question of singular behaviors at small scales. We
argued that they imply strong limitations on the applicability
of the Multiplicative Ergodic Theorem (MET) and of the Liou-
ville equation. We reviewed the evidence brought by homo-
geneous turbulence phenomenology and statistical closure
models that predictability decay laws are algebraic rather than
exponential. Unfortunately, the quasi-normal framework of
these models prevents them from dealing with intermittency:
the strong heterogeneity of the activity of turbulence, i.e. the
“bursts” of the energy fluxes through scales. We illustrated
the potential of multifractals to quantify the fact that weak and
strong events have different predictability limits, in particular
with the help of a (normalized) correlation of increasing order.
However, the most important single point is that these algebraic
laws hold at all times, not only asymptotically. This contrasts
to the standard predictability framework that involves a
sequence of linear, nonlinear and chaotic regimes. It also shows
and explains why stochastic sub-grid modeling in the context
of Ensemble Prediction Systems may perform much better
than deterministic modeling. In a more general manner, a bet-
ter understanding of the intrinsic predictability limits of natu-
ral phenomena should help us to find alternative modeling
strategies approaching the intrinsic predictability limits.
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