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Abstract

Fractal andmultifractal concepts are introducedvith the help of rain and turbulent
phenomenology, awell as withthe help ofvery simple toymodels. Aparticular emphasis is
placed on defining the adequate formalism to take into accourstraightforward manner the
random nature of th&elds, aswell as itconsequences. It is first shoviimat thenotion of
(statistical) codimension is much more convenient, and presumably muchfundesnental
than the notion oflimension, in order teharacterize thérandom) singularities ofhe fields.
Within this formalism, rather generic features of stochamstittifractal processesre discussed:
multifractal universality, finite sample size andecond order phaseultifractal transition,
statistical divergences and first order phametifractal transition.All of these features are well
beyond the scope ofdeterministic-like multifractal formalisnrand haveenormouspractical

importance. This is in particuléine casdor the extremes of the fields at largeale, e.g. the



climatologicalfluctuations of the geophysicéélds. It is alsashownthat theseresultscan be

easily extended into a scaling anisotropic framework.

1 Introduction

Everyone has some rather intuitive notions ofitibermittency of precipitation. They abased
on a commorsense anegempirical knowledge: most othe time itdoes notrain furthermore
when it rains its intensitgan be extremelyariable. Nevertheles#e correspondingadequate
mathematicaframework had been paradoxically rather eludimea while and began to be
elaborated only durinthe last 15years. Indeedthis variability of precipitationwhich occurs
on a wide range of (space atmtie) scaleand intensity, isvell beyondthe scope ofclassical
approaches in Geophysics. A symptom of this problem correspondsfétilileat the raimate
r, which isthe basic quantity of interesor precipitation, has strongcale dependence.
Therefore, it has no self-consistetdfinition of a functionr(x,t) of space coordinates and
time t, contrary to an hypothesis which Hasen often taken agranted. Indeed, it should
correspond to a density odin per elementary space-time volume (in generalefmmentary
horizontal surfacdx and elementaryime incrementdt) and thereforeshould have a scale
independentimit for small scales. Inother words, contrary to classicahssumptionghe rain
rate r does not correspond toragular (mathematical) measudR(x,t) with respect to the
(Lebesgue) volumeneasure More precisely the rain rate cannot be defined asdéesity
r(x,t) of the measure dR(x,t) with respect to the Lebesgue measure, i.e.
dR(x,t) =r(x,t)dxdt. We will showthat stochastic multifractdields offer a very convenient

and operational framework to handle such stochastic (multi-) singular measures.

As a consequence, stochastialtifractal fields overcome thetrong limitations of traditional
approaches to studying extremely variable fields. These approaches are compelled to proceed to
drastic scaletruncations, transformingoartial differential equations (PDE) into ordinary
differential equations (ODE), arbitrarily hypothesizing regularity offiblels, and performing

ad-hoc and unjustified parameterizations (in particidamnon explicit scales). These various

manipulations and mutilationgiolate a fundamental symmetry of nonliné@DE's: scale
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invariance. Even in spite of these (over) simplifysgsumptionsthe consequences of such
choices are ultimately compleand unwieldynumericalcodes. Often the relevance ofuch
codes, remain highly questionable:increasingly, they are "tested” by making
“"intercomparisons” with other models! This is the case for rain field modeling, in particular due

to the large difference between the explicit scales of the model and the observation scale.

The alternative approadhat is discussed below is othe contrarybased on dundamental
property of the nonlinear (e.g. Navier Stokes) equations: scale invariance. thdesid)plest
way of understanding hoextreme variabilityoccurs over a verjarge range of scales is to
suppose that the same type of elementary process acts at each relevant scale (from the large scale
to theviscosity scale). At firstthis began as &actal approach.even before thevord was
coined, with Richardson'scelebrated poem on self-similar cascad€&c(jardson 1922]).
Then it evolved (afterl983), into a multifractal approach. The earliest scale invariant
multifractal models, which we will review, are superficially quite simple phenomenological "toy
models"”. Nevertheles#hey yield exotic phenomena (exotic compared to conventgmnabth
mathematicatlescriptions othe realworld...) and have highly nontrivial consequences! For
example, as we will see later, simptascade models already give rise to a fundamental
difference between observables and truncatetessesand such alifference is a general
property of the wide class of "hard"multifractal processes (which distinguishetween
"dressed" and "bare" properties respectiveliflese models produce hierarchies of self-

organized random structures.

2 Fractal notions

2.1 Fractal dimension and counting occurrences
Fractal (geometricalsets (Mandelbrot 1977; Mandelbrot 1983]) providethe simplest
nontrivial example of scale invariancélnfortunately, weare usually much more interested in
fields (with values atach point or at eacheighborhood of points) and rarely interested in
geometricalsets. Howeverpver longtime series,fractal dimensionscan still beuseful in

“counting the occurrences of a given phenomenon™eag as this questiocan properly be
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posed. Ifthis isthe case and the phenomenorsasling,then the number of occurrences
(N,(I) at resolution scalein space and/or time of a phenomenon occurring on a set A) follows
a power law(here and belowhe sign [J means equality withirslowly varying andconstant

factors).

1\
N, (1) (I) (1)

D is the (unique) fractal dimension, generally not an integer, and L is the (fixed) krglest

For a veryclassical example, seeig. 1, which illustratesthe Cantor, set and itsmain

properties.

For instance, let us consider the occurrences of rain: Fig. 2 dispérgsords of rain events
during the last 45years in Dedougou Kfubertand Carbonne] 1989]). These authorshow
that the occurrence of raingays inintervals of duration T is fractal, have a dimension
Dg = 0.8, which accounts fothe fact that the raievents on théime axis form a Cantor-like
set. Amusingly,the wet season isoften considered to last 7 months pgear, and
0.8=Log(7)/Log(12). We recall that the standard Cantor set (see Fig.1) which is obtained by
iteratively removing the(closed) middle section of the unit interval is of dimension
Log(2)/Log(3) = 0.63.

2.2 Codimension and probability of events
A strong emphasis has been very unfortunately placed for years and y&argabdimensions
and especially their connections withe mathematicallydefined Hausdorff dimension: this
connection suffers of martyoubles, whichare rather symptomatic of a fundamemedblem.
Indeed, it turnut that it is quite moreewarding (Bchertzerand Lovejoy 1992]), atleast
quite less cumbersome, to uiee notion of codimension as the fundamentation, whereas
usually thelatter isintroduced in a restrictivevay (as discussed below) withe help of the
former. Indeed forstochastiqprocessespne is not so muchble to countevents,but rather

their frequency, especially when the latter is finite, whereas the former is not!



One must note that the notion of codimension is not restricted to stograsissesalthough

it is definitely required for them! Indeed, the notionfigictal codimension can be defined both
statistically and geometrically. While the geometrical definition is much pugalar, wewill
demonstrate that the statistical definition is much nuseful andgeneral since not only it is
already interestingor deterministicprocessesput it is rather indispensabl®r stochastic

processes, whereas dimension notions get into trouble.

2.2.1 Geometriadefinition of afractalcodimension:

Lest us recall the classical definition of the fracatlimension, i.eits geometricdefinition,

which we will show as being rather restrictive. L&t E (E being the embedding space with
dim(E) = D anddim(A) = D,(A) the (geometric) dimension of the s&t then the (geometric)

codimensionC,(A) is defined as:
C,(A) =D - D,(A) (2

This definitioncorrespondsnerely to an extension of the (integer) codimension definition for

vector sub-spaces, i.eE, and E, being in direct sum (i.eE n E, =0 ):

E=EUE, O codim(E)=dm(E,) (3)

This definition(Eq. (2)) boundsabove the codimension by the dimension of the embedding
space, since the fractal dimension (as the Hausdorff dimension) should be non-negative, i.e.:

D,(A) =0~ C (A<D (4)

In factthis constraindoes not holdanymore asoon as we considehe codimension to be
more fundamental than the notion of fractal dimendibis obviously requires tantroduce
directly the notion ofcodimension.One obtains such alefinition consideringthe scaling
behavior of the probability okevents,rather than theimumber, therefore leaving from

enumerations to probabilities.

2.2.2 Statisticaldefinition of afractalcodimension:

Let us consider a sequence of evelstslefined with higher and higher resolutidn i.e. with

: L : o
smaller and smaller inner scalé= 3 In the simplest case; it wiltorrespond to dractal
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geometric set defined by a deterministic or randtmative procedure(e.g. the Cantorset,

illustrated inFig. 1). Amore general framework idiscussed imppendix A. In a general

manner, we expect that the measure of the fraction of the probability ©paceupied byA,
is thinner andthinner, aswell as scaling. Therefore, udet define its fractal (statistical)
codimension by the asymptotic scaling exporentvhen it exists- of their probability (denoted

by Prin the following ):

A>>1: Pr(A)~A"° (6)

Let us emphasize thatshould not depend on thketails of the sequence everfts, but rather
their asymptotic behavior, as well as the one of their probabilities. WWeef, 's have a well-
defined limit A, it is rather convenient to use the short hand notateiC(A). In Appendix A,

we discuss this as well as other generic cases, whidhstance involve thepperlimit of the

A,'s (i.e. the set of points that belong to infinitely maky. In any casethe A;'s, aswell as

their possible limit, no longer need to be compact, and their embedding (probabilityXpace
can be an infinite dimensionapace.There is noupper bound tdhe statisticalcodimension,

since:
C(Q)=0, C(d)=0c O C(A) O[0,] )

Q, O are particular cases of almost sure events, respectively null events.

A rather generic andsefulexamplecorresponds tahe intersection by (fractal) random balls
B,, of finer and finer resolutiom (smaller and smaller sizé :AL), of a given(possibly

random) seG:

A =B nG (8)

In order to fully explore (in fact cover) the 98t the centers athe balls are independently and
uniformly distributed (with respect tihe Lebesgue measure of the embedding sjiEcand
independently fronthe probability distribution ofG (if any). If E is notbounded,one must

consider the corresponding Poisson distribution. WBehas somescaling propertye.g. is a

fractal geometricset) weexpect that the probability oA, 's defined byEq. (8) will have a



scaling behavior (Eg. (7)). Furthermore, wh&ns a geometric set we expect that its statistical

codimension, denoted by(G), correspond to its geometrical codimensiay(G))-

Example
The rather academiCantor se(Fig. 1) is anlluminating example. Here¢he ballscorrespond
to sub-segments defined Bye iteration of thelivision a segment into\, =3 sub-segments.

Due to the fact thatnly 2 sub-segments overaBe kept, whenthe ballresolution is increased

by the facton, = 3, its probability of intersecting decreases by a factor 2/3:

Pr(BgA N A) = 2Pr(BA N A) (9)

therefore:

C(G) = Log(3/2) —q- Log(2) =C,(G) (10)
Log(3) Log(3)

This is a result, which isot only easy to derive but aldwlds for random Cantosets.
Furthermorethe latter donot need to be restricted tassagment, butould be definedor the

full real axis.

2.2.3 Intersectiortheorem

It is not only straightforward tevaluate thecodimension of the intersection ofvo events

E, OFand E, OF, but importantfor many applicationsFor instance itcorresponds to the
measurement by a fractaétwork (e.g. World Meteorological Organizationetwork, Lovejoy

et al, 1986], or alocal monitoring network $alvadori et al. 1994]) of afractal set

(occurrences respectively of rain apdllution). If the series of two eventE ) ,E,, are

independent, then the (statistical) codimension of their intersection is:
C(E, n E,) = C(E,) + C(E,) (11)

i.e. codimensions just add fdhe intersection of independent fractabcesses. This is an
immediateconsequence of the faittat the probability of the intersectigfor any A) factors

into:

Pr(E, nE,,)=Pr(E,)Pr(E,,) (12)



therefore the corresponding exponents (Eqg. (6)) just add. It is wonibtéchat the derivation
and the validity othis "theorem" is far from beingbvious when usinghe deterministic and
geometric definition (see for discussidtajconer, 1990]). Indeed, there are many cases that are
rather troublesome, whictcan be perceived bgonsidering simple examples wiihteger
dimensionge.g. the intersection ofwo planes in ahree dimensional embedding spat®es

not alwaysyield a geometric codimension equals2lp However,these annoying cases are

irrelevant for statistics.

Furthermore, the theorem of intersection can be extended to the case of depesaatsnwith
the help of conditionatodimensions @chertzerand Lovejoy 1993]; Balvadorj 1993];
[Salvadori et al.2001]). The latter corresponds to the exponent of the conditional probability in

a rather straightforward extension of Eq. (5):

Pr(E, [, ,) ~ A~ (13)
which yields:
C(E, n E,) = C(E||E,) + C(E,) (14)

due to the fact that (for any):

Pr(E, nE,)= Pr(El,/\‘EZ,/\)Pr(EZ,/\) (15)

2.2.4 Uniontheorem:

One obtains readily a similar theorem for the intersection of two events:

C(E, 0 E,) <inf(C(E),C(E,)) (16)
wherethe equality is obtainedhenthe series of two events | ,E, , areindependent. This

results from the fact that for any:
Pr(E,, OE,,)sPr(E,)+Pr(E,) (17)

wherethe equality is achieveldr independencedith the help ofEq. (5), ityields Eq. (16).
This theorem immediately demonstrates that enlarging an &emith the help of a null event

(C(E,) = o) will not change its codimension.
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2.2.5 Relatingthetwo definitionsof codimension:

In order torelate thetwo definitions of codimension ithe case of a finiteD-dimensional

embeddingspace, it isconvenient tausethe fact that the probability of the eve(®, n G) is

defined as the ratio of the number of balls intersec@@nd of thetotal number of balls

(indeed intersecting the embedding space), we have:
N(Bx n G)

Pr(BA N G) ~ N(BA)

(18)

since each of theumbers involved irthe ratio defining the probabilitfEq. (18)) admits a

dimension as a scaling exponent (Eqg. (1)):
N(B,nG) _ A 5@

19

N(B») AP (19)
As far as this estimate is valid, it yields with the help of Eq. (8) that:

Cy(G)<D=dim(E) < O C,(GF C(G) (20)

However, whereashere is no limitation onC (Eq. (7)), there is anupper bound on the
geometrical codimensio(Eg. (4)). Therefore,the equivalence between theo definitions

does not hold any longer as soon({&) > D:

C(G)>DO C(&r C,(G)f D) (21)

A straightforward consequencetigt the fractatimension D(G) computed withthe help of
the statistical codimension (i.e. by inverting Eq. (2) v@(®) instead ofCy(G)) will be non
positive:

c(©)>D DD D 0 22
p(G)=p-c@ & (22)

The non-positiveness of thispparent dimensiorcorresponds tothe so-called “latent”

dimension “paradox” (e.gMandelbrot 1991]) which is then immediately clarified sinE&G)

cannot be understood as a determiniggometric dimensidn It is only astatisticalexponent,

1 in particular, there is no possible definition of a negative Hausdorff dimension.
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which is furthermore defined witkhe help of the (statisticaodimension, onlythe latter

statistical being intrinsic since directly defined (Eg. (5)).

This is not surprisingthe statistical definition overcomes many limitations of kHeusdorff
dimension which is definefbr compactsets(hence bounded setdhie codimension measures
therelative scarcityof a phenomenon (the frequency ofatcurrence), wheredake dimension
measures itabsolute scarcitfthe number of its occurrencelDbviously, we do noheed to

know the latter in order to be able to determine the former.

2.2.6 Thesamplingdimension:

We emphasized the fact that the (statistical) codimension can be defined in a rather more general
manner than the (geometric) fracdimension,since it needs not be restricted tofimite
dimensional embedding spa&e nor tocomponensets A. However,empirically we never

deal directlywith infinities. Especially, this is true sinaghen doingstatistical analysis we

always use finite size samples. Itis thus quite important to understanthappeins when we

more and more explore the probability space, which can be understibedsaest ofall possible
realizations(as illustrated byFig. 3), by studyingmore and moresamples. Obviously, the
"effective” dimension of this subspace of probability spébe "effective” embedding space)
should increase. Indeed, considering(more or les®) independent samplesach of
dimensionD and resolutiom (i.e. the ratio of the largest scaleth® smallestesolved scale),

the total number of pixels examined will be of the order:
N[N, =A% (23)

wherethe "samplingdimension” Dg [Lavallée et al. 1991; Schertzerand Lovejoy 1989] is

defined as:
_ log N,

logA (24)

Ds

2A more precise condition will be discussed later.
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This shows how the effective dimensican be increased abo\® (a unique sample) and this
allows us (forlarge enough Ns, D,) to render positive any negative (statistical) dimension!
Indeed, consider aavent sufficiently rare so thaf(A) > D, we will nonetheless obtain a

positive intersection dimension withur sample assoon asD, is largeenough,indeed the

(statistical) dimension being:

D,(A) =D+ D, - C(A) (25)

it becomes positive for large samples:
D,(A)>0 forany D,>C(A)-D (26)

The limits caseD,(A) =0 (D, = C(A) - D), corresponds tthe presence of isolatguints in
our sample:when D, < C(A) - D almost surely A is not present aur sample, it isalmost

surely present wherD, < C(A) - D.

2.3 Beyond fractal geometry
Fields having different levels of intensity rarely reduce to the oversimplified biueastion of
occurrence or non-occurrence. The latter is relevant only if the fractal dimension of occurrences
does not depend in a sensitimenner with respect tthe threshold defining anegligible
intensity. Otherwise, we have to address the fundamental question: wiatfidd at different
intensities and at different scales? In the casmiof the dimension of the rain occurrence
depends fflubert and Carbonnell991;Hubert et al, 1993;Hubert et al, 1995]) indeed on the
threshold defining a negligible ramate. Generalizations of fractal/scale invariance idgaisig
well beyond geometry were desperately needed and appeat®@3nwhenthe dogma of a
unique dimensiorwas finally abandoned Hentscheland Procaccia 1983], [Grassberger

1983], [Schertzer and Lovejpy984]).

3 Phenomenology of turbulent cascades
The phenomenology of (scalar) turbulent cascades hadfibsediscussed irthe context of
hydrodynamic turbulence (sincRifhardson1922]) and wheré¢he structures were considered

as eddies. However, this phenomenology is much more general and not restricted to a hierarchy
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of eddies,since we simply followhow the "activity" of turbulence becomes more and more
inhomogeneous at smaller and smadleales.The phenomenology of turbulent cascatiass
corresponds to generalparadigm, for fields wherthe activitytends to beconcentrated more
and more at smaller and smaller scales. In the case of turbulen@etithiig can be estimated
in a rather precise manner by the rate at which energy is transferred to soa#sihence the

fundamental importance of the density of the energy flux to smaller seafes (

We will see that the most general property will be that a scaling field cannot be characterized by
a unique (fractal) geometrget, but by an infinite hierarchy ofhem, hence the genericame
"multifractal” (a term coined by ParidBgnzi et al. 1984;Parisi andFrisch, 1985]. However,

we will show that under this innocenexpressionthere exists a much richer diversity of

multifractal processes and phenomena than is usually realized.

The key assumption in phenomenological models of turbulence (Whgame explicitvith the
pioneeringwork of Yaglom ([Yaglom 1966]) isthat successive stepsefine (independently)
the fraction of thdlux of energy distributed over smallscales. Notéhat it is clear that the
small scales cannot be regarded as adding energy; they only mddelateergypassed down
from larger scales. Thexplicit hypothesis ighat the fraction of thenergy flux (or'activity")

from a parent structure to an offspring will be determined in a scale invariant way.

In the (pedagogical) case of "discrete casgaddels" (the much moreealistic continuous
scales model will be discussedSect.6),"eddies"are defined by the hierarchical amerative
division of a D-dimensional cube into smalleub-cubeswith a constant ratio of scales,
(greater than 1, very often equal2p More precisely,the initial D-dimensional cubey of

size L is divided step by stepfor each nON into smaller sub-cubes
A (i, =01..A" -1 j =1,2..D), which form a disjoint cover of} and are of sizd, = /\—Ln

1

In otherwords, the D coordinates; of a sub-cube at step are defined irbase A, with the

3 However as discussed bgdhertzer and Lovejoyl995], the scalar cascade frameworkimsufficient to dealwith the
vectorial nature of turbulence, but can be extended to 'Lie cascades' framework.
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help of only n first digits. The density of thdélux energy €, at thestep n is supposed to be

strictly homogeneous on each "sub-eddies"” of séalee. &, a is a step function:

£00=Y & 1, () @)

1=0

wherel, is the characteristic function of tisab-cubel,. The energy densitg, _, at step

n

n—21 will be multiplicatively distributed to sub-eddies:
€,(X) = HE(X)E,-1(X) (28)

with the help of a multiplicative incremént
He(0) =Y peyL, (%) (29)

wherethe variablesue! are usuallyassumed to belentically and independently distributed

(i.i.d.), as well as independent of the variakdgs

In spite of their over-simplistic and somewhat awkward discrete discretization, these models are
already able to givé&ey understanding of some dfie fundamentals of cascageocesses,
which will be confirmedfor continuousscale cascades (s€ect. 6), which are indispensable

to take into account other (statistical) symmetries (e.g. translation invariance).

3.1 Unifractal insights and the simplest cascade modepB{model)
The simplest cascadvodel, often called 3-model, takes the intermittency of turbulence into
account by assumingNpvikov and Stewartl964]; Mandelbrot 1974]; Frisch et al, 1978]
that eddies are either dead (inactive) aive (active). This correspongldo the fact that the
multiplicative incrementgue's have two states (see Fig. 4 for an illustration) :

Pr(ue =A%) =A" (dive)

e (30)
Pr(ue =0)=1-A, (dead)

The boostue = A,° >1is chosen so that the ensemble averagisdconserved:

4The notationd for multiplicative increments, is analogous to the syn‘éofor additive increments.
5The B-model is oftendefined morevaguely thanthis. We follow the more precisestochastic presentation by
[Schertzer and Lovejoyl984].
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<pe>=1e-<g >=<g,> (31)

where <.> denotes the ensemld@erage. Aeachstep inthe cascade the fraction of théve
eddies decreases by the fact@@=A,"° (hence the nameB*model") and converselyheir
energy flux density is increased the factorl/ 3 to assurgaverage) conservatiorfter n

steps, this drastic and simple dichotomy is merely amplified by the total scal@,fatio
Pr(e, =A)=A""™ (aive)

_ (32)
Pr(g,=0)=1-A," (dead)

Hence either the densityoes on taiverge withan (algebraic) order okingularity ¢ or is at

oncecalmed down to zero! Following our discussion (and definitighgn in Sect. 2.2,c is

the codimension of the alive eddies, hence their corresponding diméhs®whenc < D:

D.,=D-c (33)

S

This is the dimension of the support of turbulence @rdesponds tthe fact that the average

number of alive eddies (in tiflemodel is

(N =(a")"" (34)

3.2 The simplest multifractal variant (a-model)
We already pointed ouhat on the empiricalevel, occurrences of raiare not so much
informative. For instance, a 1 mdaily rain rate is rather negligible compared ta@50 mm
daily rain rate! Fig. 5 displays the rain rate at Nimes (France) during a few gedrayeraged
over varying time scales T (from a day tgear). Thisfigure illustrates the greattermittency
of rain rates: most of the time it is negligible, while sometimes it reaches 200 mm (even 228 mm
in a few hours—the famouSctober1988 catastrophe!)— in comparistire daily average is
~2.1mm. The variability is so significant ithis time seriesthat [Ladoy et al, 1993] and
[Bendjoudi et a].1997 find evidence of divergence of high order statistical moments (a subject
we will discussmore in Sect. 7). Qualitatively this variability seems strikingly analogous to
that of the energy flux cascade in turbulence (as displayBdyir6), ananalogy thaturns out

to be quite profound.
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On the theoretical level tiiemodel turns to be a poor approximation to turbulence because it is
unstable under perturbation: as soon as we consider a@afistic alternative to the caricatural
dead/alive dichotomy, most of the peculiar properties ofthmdel are lost. To show this, the
"a-model" ([Schertzer and Lovejp$¥984]) was introduced. It wasamed thisvay because of

the divergence of moments exponentt introduces. In the notation usedlow, this exponent

is rather denoted|,, wherethe “D” emphasizes that depends ornhe dimension of spacB

over which the multifractal is averaged. In any case, this exponent should not be confused with

the Lévy, nor with the strange attractor notation.

Rather than only allowing eddies to be either “dead*abve” we consider a moreealistica-
instability allowingthem to be either “more active” @iess active” according to thdollowing

binomial process:

Pr(ue=A")=A¢ (increase)

: i (35)
Pr(ue=A) )=1-A,° (decrease)

with y, =§ (>0 andy_= —5 (<0). ThepB-model is recovered witlr =1, a'=0.

The ensemble “canonicatonservationEq. (31)) implies that here are realgnly two free

parameters out of, y,,y_, since it corresponds to:

AV #A) -2 =1 (36)

The "p-model” [Meneveauand Sreenivasan1987] andthe “binomial multifractal measure”
correspond to microcanonical versions ofdhmodel, i.e. which means that the flux of energy

is strictly conserved,not only onthe average. This constrairitndamentally changes the

properties of the processes, as we shall see below.

Thepure ordersof singularity y_ and y, lead to the appearancernixed ordersof singularity,
as soon ay_> - (the 'B-model"), mixed singularities of differendrdersy(y_<y<y.),
are built upstep by step through @mplexsuccession ofy_ and y,. For instance consider

two steps of the process, the various probabilities and random factors are:
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Pr(ue =A%) =2, (two boosts)
Pr(ue =A,""")=2A,"°(1-21,"° (oneboost and one decrease) (37)
Pr(ue =A,”") = (1_/\1‘C)2 (two decreases)

This process hathe same probability and amplificatidactors as the three states- model
with a new scale ratio of” i.e.,

Pr(ue = (1,7)") = (A%)
Pr(ue = (Alz)(my,)/z) — 2(/\12)_C/2 _ 2()\12)_C (38)
Pr(us — (Alz)h) — 1—2()\12)_C/2 + (Alz)_c

Iterating this procedure, after=n" +n" steps we find:
_ny.tny
n"+n

Pr(e, = ()" = LA (10 )

Voo , n"=1..,n;, n"=n-n

(39)

n
where %{% is the number of combinations of n objects taken k at a time. impigs that we

may write:

Prie, 2 (4")")=Zp, (1) (40)

The p;’s are the “submultiplicities” (the prefactors in thbove), ¢; are thecorresponding
exponents (“subcodimensions”) add" is the total ratio oscales fronthe outer scale to the
smallest scale. Notice that the requirement ¢ha} = 1 implies that some of thé,” are greater
than one(boosts)and someare lessthan one(decreases)that is, some y, >0 and some
y; <0.

In otherwords, leaving the simplistic alternative dead or alivg { model” for the alternative
weak or strong (o - model” ) leads to the appearance of a full hierarchy of levelsuofival,
hence the possibility of a hierarchy dimensions otthe set ofsurvivors forthese different
levels. Therefore the field can benderstood as 'multifractall,e. defined by an (infinite)

hierarchy of fractal sets.

4 The general multifractal framework
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4.1 The codimension function]c(y)

The pedagogical example of tkkemodel is helpful togetinsights for ageneral formalism
adequatdor more general cascageocesses. For instance,the numbem of cascadesteps

becomes large in tha-model, one obtains asymptotiexpressions(Eq. (40)) which are

l
independent of theteps,but depend only othe total ratio ofscale,denotednow by A — L

instead ofA,":
Pr(e, 217g)~ A~ (41)

This is a basienultifractal relationfor multifractal processes, whicherelystates, irthe light
of our earlierdiscussion orthe notion of codimensio(see Sect2.2, in particularEq. (5)),

that the measure of the fraction of the probability space corresponding to the events
A (y) ={(x, ) UEXQ] €, (X,w) = AV &} (42)

has a (statistical) codimensia(y). As already emphasized, in general there is no upper bound
on c(y). On the other hand, due to the nested hierarchy of these events

(OA,y=sy: A(yv)OA(Y)) c(y) is an increasing function of.

Other fundamental properties, which will be readily derived with the help of statistical moments
(next section, Sect. 4.2are thatc(y) must be convex anithat if theprocess isonservative

(i.e. any A: < ¢, >=¢&;), thenc(y) has the fixed pointc(C,) = C,, whereC, is at the saméme
a singularity corresponding tbhe mean of th@rocess and itsodimension: c(y) is at this

point tangent the first bisectrixFig. 7 illustrates these properties of the codimension function

c(y). This graphical representation helps also to estimate the limitations due to the finite size of

a sample. Indeed, corresponding to our discussiamersampling dimensiofSect. 2.2.6),
there is a "sampling singularityy,; i.e. the maximum almossure maximum singularity

presents in a sample of sampling dimensign. This singularity has a codimensiegual to
the effective dimension of sampling (see Fig. 8), therefore:

y(D;) =c™(D+D) (43)
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With no surprise, this heuristicestimate can besecured, ateastfor D =0, by rigorous

mathematical derivation .

4.2 The Multiscaling of Moments|K(d)] and the Legendre Transformation

Underfairly general conditions its probability distribution or (all) its statistical moments may
equivalently specify the properties of a randweariable. More precisely, for anon-negative

random variable x, these two representations are linked by a Mellin transformation M, which is:

(x38) = M(p) =[x plx)ce (44)
gty o Lot
p(x) = M L(xa1) | (A xddg (45)

(essentially these are simply the Laplace and inverse Laplace transformddgshhdn fact, if
the moments are not increasing too quickly withdhger g (more preciselyyhenthey satisfy
the “Carleman criterion”—sed-gller, 1971]), only the knowledge ofthe moments of integer
orders is required. The relevance of this condition for turbulence haveliseessed (Drszag
1970)), but it is important to notehat the Mellinduality is nevertheless Sghertzer and
Lovejoy 1993])relevantfor cascades and somewhmbre general than the Legendre duality
pointed out by Parisi and Frisch 1985] in arestrictive multifractaframework (see Sect.3)
than the stochastic one we are presently discussing.

However, it is useful teheck that the latter is an asymptoti { o) result fromthe former
for the corresponding exponents. Sifg) is the exponent that characterizes the scaling of the
probabilities, we introducéhe corresponding functionK(q) to characterize thenoments,

anticipating that the two will be related:
(€)= %@ (46)

For large LogA, we canuse the saddle point approximatiofiaplace's method, see for

example Benderand Orszag 1978]) which yieldsasymptotic approximations to integrals of

exponential form. One obtains th&{q) is related toc(y) by:

& =I dPr(e, )€ ~IdPr(eA) AV ~I:|_og(,\)dc(y) A9 ) e (47)
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which yields the asymptotic behaviot (- o):

J-iomdy eln(y)(qw—c(y)) _ engn(A) |]nyax{q [y _ C( y)} E’ A >> 1, (48)

as well as therefactor, which we do not consideere. Asimilar expansiortan bedone for
the inverse Mellin transforreg. (45),and we have therefore the (involutive) Legendre duality

for the exponents:

K(q) = m;:\X{qv—c(y)} = c(y)= mgX{qy— K (a) (49)

This demonstrates that both curves are convex (dtieetéact that iterating twice the Legendre
transform on a non-convex curve yields otiig "convex hull* of thiscurve). One may note
that it is rathesstraightforward todirectly demonstrate itor K(g). This also meanthat the
curve c(y) is the envelop of the tangencieskofg) and reciprocally (seEig. 9). Hence there

is a simple one-to-one correspondence between moments and orders of singularities.

4.3 Comparison with other multifractal formalisms

Until now, we discusserhultifractal notions within a codimension framewor®dhertzer and
Lovejoy 1987b; Schertzerand Lovejoy 1992] it is thereforetimely to compare itwith
dimensionframeworks. Inrelation to the nonlinear scaling of the velocity structumctions
[Anselmet et al.1984], i.e.statistical moments of the velocitycrements, Parisi andFrisch,
1985] introduced a notion of multifractals by consideritige geometric distribution of the
singularities of the velocityncrements.With the help of the so-called refined self-similar
hypothesis Kolmogoroy 1962; Obukhoy 1962], the latter can be related linearly to the
singularities of the energflux. However, they consider neither a probability spatcer a
cascadeprocess,but rather a geometric distribution of tlsengularities. The popularf(a)
formalism was introduced by IHalsey et al. 1986] who dealt with multifractal “geometric
attractors” and in many respect emphasizedripdicit non-random framework developed by
[Parisi andFrisch, 1985]. Rather than consideririfpe density of thenultifractal measurep,

(the non-random analog of the turbuleny, they considerethe measure itself integrated over

a ball (box) sizelL./ A.
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In both cases, it was assumed that the support of the singularities, which in our notatidns

be defined as:
S(y)={X&(x) = A&} (50)

has a well-defined limit (fractal) dimension, as well as its (lower) limit:

Sy)=limS§(y) =00 SV (51)

A A>A

which corresponds tthe set ofpoints, whereghereexists a given resolutiod , after which
they have a singularity. In fact,these definitions and assumptiare too muctldemanding.
First, due to the (approximate) equality sign in Eq. (50), instead afeqaality sign involved

in Eq. (42), the supportS, (y), contrary to the events, (y), are not ingeneral hierarchically
nested.Therefore Parisi and Frisch, 1985] werecompelled to add an ad-hdypothesis to
assure this feature as well as the convexitthefanalogue ot(y). If we change thigquality
sign tothe inequality ofEq. (42), S (y) corresponds to &-dimensional cut of the event
A, (y), i.e. the restriction ofhe latterfor agiven @@ . As a consequence of Appendix A,
whereaghe (upper) sequence\, (y) and its (upper)imit A(y) have always a well-defined
statisticalcodimensionthey do not have always a well-definédnension. Frisch, 1995;
Parisi and Frisch, 1985] acknowledgedhat within their formalism they could getnly a
bounded range of singularities fact c(y) < D) for the so-called lognormahodel. This is a
generic limitation of theiformalism. Howeverthe consequences of thignitation were not
discussed, whereas wall seethat they are of prime importan¢8ect. 7). There is another
limitation, which is ratherelated to the type dimit that is considered fothe supports or the
events of a given singularity. In the stochastic framework, it is more than likely that when as
we add in more and more cascadeps, y will undergo randomwalks asA is increased.
Therefore the relevant notiofimit is the upperlimit (Eq. (6)) rather than themost stringent
lower limit (Eqg. (51)). For applications rmeans that he multifractal field r©onlocal and one
cannot track a given singularity value by locally refining d@nalysis ofthe field, e.g. with the

help of wavelet analysis. The latter could yield spurious results.
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Let us mention the relation between the codimension notationg(arddimension notations.

Due to the fact that in the latter case, the measure rather than its density is considered:

. P, dDX:pAA_D ~ A0 (52)
we have:
ap=D-vy; f(ap)=D-c(y) (53)

Let us emphasize thathis correspondence is valid onfgr deterministicsingularities,i.e.
satisfyingf(ap) =0 or c(y) < D (Sect. 2.2). We introduced the subscript™; which was not
used inthe original, to a, in order to underscore its dependencetlen dimensionD of the
system. Orthe otherhand, Halsey et al. 1986] used aartition function introduced by
[Hentscheland Procaccia1983], whosescaling exponentr(q) can be related to the scaling
moments functiorK(q) (Sect. 4.2), with the help of the Trabment(which is discussed in

Sect.7.3.2) in the following way:

15(9) =(a-1)D-K(q) = (9-1)(D - C(a)) (54)

5 Universality
5.1 The concept of universality

This issue of universality for multifractal processes had been the subject of a hot whbate,
main steps and conclusioree discussed aength by Bchertzerand Lovejoy 1997], who
emphasized that "due to the growing number of attempts at modeling and analyzing multifractals
in rain (and elsewhere) - it is becomiegntral for applications”. . Inthe following, we
summarize this discussion and highlight its conclusion.

Let us first emphasizthat there ionly a convexity constraint otme nonlineafunctionsK(q)
and c(y), thereforea priori, an infinity of parameters is required to determineatifractal
process. For obvioubeoreticaland empirical reasons physics abhonsfinity! This is the
reason why irmany different fields ophysicsthe theme ofuniversality appears: among the
infinity of parameters it may bpossiblethat only very few ofthem arerelevant. This is

especially true asoon as we considerot only ideal systems,but more realisticsystems
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subjected to perturbations or interactions with itséffdeed, such perturbations ioteractions

may washout many of the peculiarities of tiieeoreticaimodel,retaining only some essential
features. The system can be expected to converge tausiveesalattractors, in thesensethat

a whole class of models/processes, belonging to the same domain of attraction, will converge to

the same process defined by (far) fewer (relevant) parameters (see Fig. 3.6).

Although the term is natlwaysexplicitly used,the notion of universality is fairlwidespread

in physics. It corresponds tbe fact that among the many parameters of a theoretmdél,

very few will in fact be relevant. For instance, iaritical phenomena most ahe many
exponents describing phase transitions will depend onlyh@rdimensionality of theystem.
Loosely speaking, theoretician may imagine a modé¢pending on a very large number of
parameters for an isolategstem,but most naturasystemsareopen and it igshe existence of
these interactions which leads most of the details introduced by the fantasy of the theoretician to
be washed out, just leaving the (few) essentials. gEmeralidea, exploitedfor instance in the
RenormalizingGroup approach isthat repeated iterations of a givgmocess with itself,
converges towards a limit, and this limit will be reached starting with quite differecésses.
More precisely,all the processes belonging the “samebasin of attraction” will converge
toward the same limit or “attractor”, although they could be originally quite different, henceforth

the notion of universality: the larger the basin, the more universal the attractor.

5.2 Universality in multiplicative processes?
The study ofmultiplicative random processes has a long history (getlisonand Brown,
1957]), going back to deast McAlsister 1879], whoarguedthat multiplicative combinations
of elementanerrors wouldlead to lognormatlistributions. Kapteyn 1903] generalized this
somewhat and stated whaeme to b&known asthe “law of proportionaleffect”, which has

been frequently invokedince,particularly in biology and economics (see alkodez 1979]

6 Indeed, it wasthe realization thalow dimensional systemgsuch asnonlinear mappings ocoupled nonlinear
ordinary differential equationshad universal behavior(such as the famous Feigenbawwonstant) thatlead to an
explosion of interest in deterministic chaodJniversal multifractals may be considered asalogies withlarge
numbers of degrees of freedom.
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for this law inthe context ofain). Thislaw wasalmost invariablyused to justifythe use of
lognormal distributions.e. it wastacitly assumedhat the lognormalvas auniversalattractor
for multiplicative processes. Although [Kolmogoroy 1962] and Qbukhoy 1962] did not
explicitly give the law of proportional effect asotivation, it wasalmost certainly theeason
why they suggested a lognormal distributiéor the energy dissipation iturbulence. Since
then, culminating in the multifractaprocesses, wéave seerthat there have been many
proposals for explicit multiplicative cascademodels that would reproducethe strong
intermittency inturbulence. Unfortunately, ithe course ofdevelopment of these models the

basic issues of universality were obscured by various technical questions.

If we simply iterate the model step by step with a fixed ratio of Scalee indefinitely increase
the overall range of scale& — c posingalready anon trivial mathematicalproblem (weak
limit of randommeasuressee Kahane 1985]). In hispioneeringwork, [Yaglom 1966])
claimed that iterating the process to smaller scales may lead (oniliersal) lognormamodel.
The claim of universality of the lognormal model was first criticizeddngzag 1970] and then
by [Mandelbrot 1974]. Whereas the former was e groundsthat the (infinite) hierarchy of
integer order moments would not determine a lognormal process, the latter poirited euén
if the cascade process was lognormal at each Bteig that in the small scalémit, the spatial
averages of the cascade process woatthe lognormal Furthermoresince the particularities
of the discrete model®.g. the a - model) remain as a discrete cascgmeceeds to its small-
scale limit, theoppositeextreme claimhassince beemmade: that multiplicativeascades could
not admitany universal behavior. For instance, Mandelbrot statddrielbrot 1989]):“in the
strict sense, there is no universality whatsoever... this fact about multifractals is very significant
in their theory and must beecognized...” (seealso Mandelbrof 1991] for more
antiuniversality statements)More recently, Gupta and Waymire 1993] repeated the same

kind of claim. In both cases, their rejection of universality was based on a misunderstanding of

7 Indeed, we already noted that tparticularities of the discrete mode{s.g., the a-model) remain as the cascade
proceeds to its small scale limik ¢ o) and thisnon universalimit already poses aon trivial mathematicalproblem
(that of weak limits of random measures).
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the alternativesliscussed by Jchertzerand Lovejoy 1987a] and $chertzerand Lovejoy,

1991].

5.3 Universal Multifractals

On the contrarkeepinghe totalrange ofscalefixed and finite, mixing (by multiplying them)
independent processesthesame typg(preservingcertaincharacteristicse.g. variance of the
generator), anthenseeking thdimit A — oo: a totally different limiting problem i®btained!
For instance, thisnay correspond tadensifyingthe excitedscales by introducing more and
more intermediatscales (se€ig.11), and seeking thuthe limit of continuous scales of the
cascademodel. Alternatively, we mayalso considethe limit of multiplications of identically
independently distributed (i.i.d.) discrete cascades mdekading also to universahultifractal
processes.Jchertzerand Lovejoy 1997] established rigorous demonstrationgheffact that
the renormalized nonlinear mixirayer afinite range of scales afi.d. cascadeprocesses, as
well as renormalized scale densification of a given multifraptalcesses,converge to a

universal multifractal.

6 Continuous scale cascade
6.1 Limitations of discrete scale cascades

One important consequence of universality is the possibility to obtain a continuous scale process
from a discrete cascade model witle help of a scaldensification,i.e. introducing more and
more intermediatscales between the discretascade. Continuouscale processesre rather
indispensablethen discrete cascades have many limitatibndeed, it isalready questionable
to have a scale ratio of the elementary casetegfeA strictly larger than 1, in fact larger or
equal to 2, without any physical reasery. aquantificationrule. Furthermorghe hierarchical
splitting rule of structures into sub-structures introduces a notion of distance which is no longer
a metric, but an ultra-metridMore precisely itcorresponds tdhe A -adic ultrametric: the
distance between two structures at a giesel of a discrete cascageocess islefined by the
level of the cascadeherethere is theirfirst (and smaller) commoancestor, nothe usual

metric. This means for instance that the distance between the certigcs aaintiguouseddies

-24-



is notuniform. Thisfact hasmany drasticonsequencesinceall the statisticainterrelations

between different structures will depend on this ultra-metric, nothenusual metric. In
particular, there is no hope to obtain a (statistically) translation invec&stade, since a
translation is related to thmetric, not the ultra-metric. In otherords, discrete cascades have

been useful to grasp some fundamentals, but one has to take care of not being blocked by some
of their artifacts. Asfinal note on discrete scaleascadelet us emphasize that almost all
rigorous mathematicalresults oncascadeprocesseshave been derived in this restricted
framework; this is presumably due not only because it is rather convenient, biatr alsme

complex historicareasons,ncluding thequestion ofthe biased debate on universality (see
previous section). As a consequenites question of continuouscale cascadbasbeen not

discussed enough.

6.2 Continuous scale cascades and their generators
The general idea of continuossale cascadeSEhertzerand Lovejoy 1987a]) corresponds to
considering a stochastic one-parametaultiplicative group property forthe densitiese,
defined for arbitrary scale ratiosA instead of being defined only to (discretpdwers

(A",n=12...) of the elementary step scale ratigX
AN A2L g, =¢,O,(,,,) (55)

where¢', andeg,, are independently and identically distributed for anyThis meanghat not

only a multiplicative cascade from scalesto L/ A factors into the same given cascade from
LtoL/A andfromL/A to L/A, but thelatter corresponds to eascade of the same type

from L to LA /A rescaled withthe help of the contraction operatdy . The simplestase,

which will be considereduntil Sect. 8, corresponds to an isotropelf-similar cascade,

whereT, is the isotropic contractiorT, (X) = X/ A .

As for any one-parameter group, e interested by its infinitesimgenerator, whichwill be
stochastic in the presentise,and therefore, looselgpeaking, tacome back to an additive
group. Let us considerthe generator of the cascadeer a (non-infinitesimal) scale ratié

defined by:
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g, =exp(l,) (56)

And which should satisfy the corresponding additive group property:

DAL, =0 +T,(07,,) 57)

This gives a simple and very conveniemtaning to the moment scaling functié(q) (Eq.

(46)): it is nothing else than the (Laplasgcondcharacteristic function-or cumulant generating
function- of the generator and the latter should be logarithmically divergent (with the scale ratio)
in order to satisfy Eq(46). The latter property can be satisfied byonsidering'colored’
generators obtained by fraction integration of a white ngjsealled forratherobvious reason

the sub-generator. THegarithmic divergence is obtained by selecting the appropideer of

integration to be performed.

For aconcrete and generic examplet us considerthe case of universal multifractalsect.
5.3). As aconsequence of theimiversality,their generatorshould be (colored$table Lévy
noises (Hchertzerand Lovejoy 1987a]). The appropriateorder of fractional integration to

obtain the logarithmic divergence B/ a' for a stable white noise ofévy's stability index

O<a<2, wherea' is the conjugate af: (i+i' =1). In order toget some convergent
a a

moments, thistable white noisehould be furthermorextremely asymmetric §chertzer and
Lovejoy 1989]) for a <2, i.e. with a skewnes{3 = -1, whereas it is obviouslgymmetric

(B =0) for the gaussian case (ice=2).

7 The extremes

7.1 The singular limit of a cascade process
The small-scaldimit A — o of a cascadgrocess is very singulagince for any positive
singularity y, the densitys, = A” diverges.These divergences are statistically significant for
y>C, since we havée, ) =AY _ « forall q>1, due to thefact that K(q) > 0forq>1.
This singular behavior means that if a limit exists, it is not instrese of functions. Weally
have something similar to thBirac d-measure, whicltan be defined as a “generalized

function” as a limit of functions, without being itself a function and is indeed only meaningful if
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we integrateover it. It is rather obvious that the 3-model does correspond to a (random)
generalization of the Dirad-measure for nomsolated points belonging to faactal set of
codimensionc=D - D, >0. Converselythe Dirac 6-measure can benderstood as the
particular (deterministic) case corresponding to a codimersiof, i.e. A is aset of isolated
points.

As a consequence, one has to consitlee limit of the corresponding measures
M, (A - [1.(A) overcompactsets A of dimensionD, i.e. the D -dimensional integration

of the densitye, over A:

M(A)=lim (A =lim [ ¢, d°x (58)

In agreementvith turbulent denominationshe integrals[], can be calledluxes (of energy
throughthe scale/ =L/ A), wherease, can be calledlux density (of energy athe scale
¢=L/A). Therefore, weexpect a convergence fluxes, but not in densitiesDue to the
singularity of the limit, we may furthermore expéuat there will be convergender only a
limited range 0 <q<gq,) of momentorders ofthe flux, since higher moments are related to

higher singularities (see below for a detailed discussion) i.e.:

Oop > 0g=qp: <[].(A)*>= (59)
whereas:
OA <ot <[], (A)*> <o (60)

The sub-indexD of the criticalorder g, underscores itdependence on the dimension of the

integration which is performed. This dependeoae beused (Bchertzerand Lovejoy 1984])

in order to demonstrate that cascades processes are generically multifractals: increasmg order

of convergence defines a hierarchy of fractal sets having larger and larger fractal dinfiznsion

It is very important to note that the critical ordgy of divergence of statistical moments is also

the exponent of the power-law fall-off of the probability distribution:
Do, >1 m>>1 Pr([1.(A)>m=m® (61)

andthat thetwo equation€q. (59)andEq.(61) areequivalent.The latterhas many practical

implications that we will review below.
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7.2 Bare and dressed cascades
The singular limit of the cascade process underscores the necesb#iyniguishthe properties
of a cascade stopped at a finite resolutionfrom those corresponding the limit. [Schertzer
and Lovejoy 1987a] arguedhat in avery general manner this difference redated to the
importance of the interactionith finer scale activitywhich 'dresses'the former to yield the
latter, in similarity with whathappens irrenormalizationwhen higher and higher order of
interactions are taken into account. Therefore, it is rather appropriate to distinguish between the
“bare” cascade quantities obtained after the cadeaslproceededlown to afinite resolution
A, and thecorresponding “dressed” quantity obtainaftler integrating a completed cascade
over the same scalé € L /). See Fig.12 for an illustration for a finite resolutidn although
we are primarily interested b\ — . Due to thegroup property of anultiplicative cascade
(see Sect. 6.2), adressedcascade factors into its bare part and an hidoarn, which
corresponds to a flux of @ascade fromL to LA / A rescaled witithe help of the contraction
operatorT, . Bare andiressed propertiemesimilar, as far ashe latterflux remains &finite
prefactor withA - . A drastic change occurs as soon as this prefactor scale\wit since

it will diverge with A — 0.

7.3 Scale dependence and divergence of the flux:

7.3.1 Heuristics

Let usfirst consider some simple heuristicS¢hertzer et al.1993]), whosemain interest is
that they are model independent. They are based on the factDhalimensional integration of

a singularity y just corresponds to shithe latter by—-D, which corresponds tthe scaling
exponent of the elementary volumeinfegration. As a consequenad, singularities of order

y < D will be smoothed out. Thialready explainsvhy this question o$tatistical divergences
is beyondthe scope ofdeterministic-like multifractalformalisms (seeSect. 6.2). On the
contrary those corresponding 0= D will not be smoothed out and therefdlee scale of
observation is irrelevanthe flux will scale withthe inner scale of activity of the cascade and

therefore will diverge with A - «. However, this divergencemay remain statistically
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insignificant, due to its lovstatisticalweight. Nevertheles@ne may reach aritical y, =D

where the divergence becomes statisticaffignificant. Above this critical singularity, the

observed dressed codimension functp(y) does not correspond any longerd@): dressed
quantities will have much larger fluctuations than the lomr@ntities.c,(y) can be therefore
estimated @Gchertzer2001]) by consideringhat c,(y) shouldmaximize theoccurrences of
high singularities, respecting neverthelélss convexityconstraint. This meanthat c,(y)

should be the tangency ofy) in y,:
Y<Vo: G(¥)=c(Vo) ¥Y2Vp: C(y)=c(Vo) +a(y —Vp) (62)

The divergence of the statistical momentsdat q, - g, being thecritical order corresponding
to y, in the framework ofthe Legendre dualityresults fromthe fact that astraightline is

singular for the Legendre transform, therefore:

q<0, K;(@=K(a); q=q,: K,(q)=o (63)

7.3.2 Tracemoments

The previous heuristicare secured by introducingSghertzerand Lovejoy 1987a]) Trace
Moments of theflux which are simpler to handle than the statistical moments offlthe
Indeed, the latter are rather complex since alréadintegerorder g >1, theycorrespond to a

g-multiple D-dimensional integration:

([r.e00x]")= 1 e w6, xoee,) (64)

The *“trace moments” are obtained pgrforming the sameéntegration, but only over the

"diagonal” A(A") ={x, = X,...= X} of A%, the domain of integration of Eq. (64), i.e..
Tr, [(g,)" = L\<£Aq>qu X (65)

This quantity, which is defined aldor non-integer ordersg (including negativeorders), is
rather easy to handle since it corresponds to a sibplitmensional integration, and indeed, its

scaling behavior is readily obtained:

Tr, 1(e)1~ Z<5Aq>A_qD = z)\K(Q),\—qD ~ AK(@-(@-DD ©6)

A A
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and this yield a twin divergence rule for the trace moments (illustrated in Fig. 13):

0 for 1<g<q,
1= 67

which results fronthe fact thatlue to the convexity oK(q), the exponentK(q) — D(q-1)
(Eq. (66)) haonly two zeroes correspondingspectively toq=1 (due to K(1) =0, which
corresponds tthe conservation of the density £, >=1) and q=q, =1, whereq, will be
shown below to correspond the critical exponent of divergencdiscussed irSect. 7.3.1.
Indeed, wehave thefollowing inequalities between moments and trace-momeSth¢rtzer

and Lovejoy1987a]):

(M M)z Tr e, =1 (68)

(M A)<Tr e, GES) (69)

due to the convexity of the functiorfi(x) =|x|° for q=1 and its concavityfor q<1. We

therefore obtain with the help of Eq. (69):
(Traga'=4 0 (M.)== @za,) (70)

which confirmsthat g, is the criticalorder of divergence of moments as well asthef trace
moments, since it is rather straightforward to check that when a divergence of moooemss

its leading term corresponds to the trace-moment. On the other hand, Eq. (68) implies that:

{<I’Im(A)q>>(} 0 {TrAgooq=°°} (9= (71)

which meanghat thelow-order divergence ¢ =1) of the trace-moments is indispensable in
order to ensure that the multifractal process is non-degenerate, i.e. the bare process is too sparse

to be observed in the space D and converges almost surely to O.

7.4 Sample finite size effects
In practice we are ablenly to examine finite sizesamples, hencenstead of computing the

theoretical moments,

(X9) = rx9dPy (5)
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one only deals with estimateabe most usual onebeing an average ovére Ny independent

samples
1 &
{ Xq}s =N Xiq
& (6)

As long asthe law of largenumbers appliesthese estimates usually convergd, (- o)

towards the theoretical moments:

(x7) = lim {X%, @

One mayalso considespace/time averages and ergodiaisgumptions. In our case, wall

have to consider a combination sfatistical and space/timaveraging, inparticular when
estimating the trace momentSect. 7.3.2). Airst consequence dfnite Ng is thatonly a

limited range of momenbrders g 's can in fact besafely explored: as we withow show,
estimates of moments (or thcemoments) of higher order give meal information about the
process and may even lead to an erroneous understanding of the real statistics if this limitation is

not taken into accoufit

The finite samplindimitation can bebest understood witthe help of the sampling dimension

D, (Sect. 2.2.6). Indeed, consider a sample consistirig, ohdependent realizationsach of
dimensionD, each covering a range of scafes As we increasé\,, we gradually explore the
entire probability space encountering extreme but rare evestsvould almost surely be

missed on anyinite sample(Fig 3). This corresponds tthe fact that we are increasing the

dimension of observatiol® to an (overall) effective dimensiofy,, which may bequantified,
with the help of the sampling dimensi@q (Eq.(24), D, = 0 in case of a unique sample). The

latter help us to determine theghest order singularity ) we are likely toobserve onN,

realizations:

c(ys) =D+D, =4 (72)

8Indeed, various authors have speculated on the significance oftidimit on the basis of finite empiricsdamples
of turbulence data!
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The Legendrdransform of c(y) = c(y,) withy <y, leads to aspuriouslinear estimateK,

instead of the nonlineaK forq>q, where g, =c (y,) is the maximum moment that can

accurately be estimated:
gz Os: Ks(q) = ys(q -4y + K(qs)!q < Os: Ks(q) = K(q) (73)

In Sect.7.5.2, wavill show thatthis linear behaviolcorresponds tdhe analogue of ghase

transition and therefore is rather model -independent.

7.5 Multifractal phase transitions

7.5.1 Fluxdynamicsandthermodynamics

As discussed bdifferent authors {[el, 1988], [Schuster 1988], Bchertzer2001; Schertzer
and Lovejoy 1992]), there arestronganalogies between multifractekponents and standard
thermodynamic variables. Howevéngre are notable differencesviewpoints, depending on
the chosenmultifractal framework. Table 1displaysthe analogies, withinthe codimensional
multifractal formalism, between whaan be called (statisticdljluxdynamics", due tdahe fact
that the quantity of main interest isflax of energy,and the classicahermodynamics. We
believe that these are easier to be obtained in a codimeng@mmawork, since it originates
from the analogies between the exponents of probability density and of ndemssy, which
define respectively the codimensiofy) of a singularityy and theD — S(E) entropy of astate
energyE. The conjugate variable of the singularity and the enfngthe Legendrdéransform
correspondsespectively to the moment ofder q and the (reciprocal) temperatufe= T,
and the scaling moment functid€(q) is the analogue of a (Massieu) potential.
Discontinuities of the analogues of the free energy (the dual codimension fu@¢tiph and
the thermodynamic potentiaK(q)) can beunderstood as correspondingntiltifractal phase
transitions. Howeverthere is a large difference between fluxdynamics and thermodynamics,
the latter is related teystems inequilibrium and withoutdissipation, while the former
corresponds to a system outemjuilibrium andstrongly dissipative. Aractical consequence
related tothis distinction isthat a multifractaprocess iSundamentally a system requiring an
infinite hierarchy oftemperatures, not a uniqoee, in order talefine itsstatistics.Therefore

observinga multifractalprocess at given temperature yields only a vepgrtial information,
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and amultifractal phase transitiocorrespondsather to a qualitative change abservationof
the samesystem when one changt®e observation temperature, whereagharmodynamic
phase transition rathesorresponds to @ualitative change of thaystem behavior under

observation.

7.5.2 Secondorderphasdransition

Sample finite size effectéSect. 7.4)can benow understood as corresponding to a phase
transition of second order and fact a"frozen free energy" transition which havzen

discussed in various contexB3drida and Gardner, 1986], Mesard et al. 1987], Brax and

Pechanski1991]. Indeed, we saw that the almost sure highest order singuladitykich can

be observed o\, realizations, yields with the help of the Legendre transform a linear behavior
of the observedK, (Eq. (73)) fog>dq,, whereas it is nonlinear a&(q) for g<gd..
Therefore,K, has a discontinuity of second ordemgt On the othehand,this linear behavior
implies that theobservedanalogue of the free enerdy,(q) seems to be "frozen" for low

temperature —» ), since we have:

() _

G =" = v a M gl vg) (74)

Further tothe heuristics derivation we have preserttede, someexact mathematicakesults

have beerobtained, whichare however restricted to discrete cascades and furthermore to
Ds =0. On the contrary, the notion of second order phase transition is interesting, because it is
rather model-independent since basedtlmn analogies of the statisticakponents of the

cascade. Indeed, it shouddcur assoon asthere are ndounds onthe singularities or their

range exceeds the criticg].

7.5.3 Firstorderphasdransition

We can now revisit thguestion ofthe divergence of momengSect. 7.3)taking carenow of
the sample size finiteffects, inthe heuristic andrery general framework weiscussed in
Sect. 7.3.1. Weointed outthat above ecritical singularity y,, the dressedcodimension

c,(y) becomes linea(Eq. (62)). Due to thedefinition of the codimensiofEq. (41)), this
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corresponds to a power-law for the probability distribution, and by consequence to a divergence
of statisticalmoments. Howeverue to the finite size of theamples,one obviouslycannot
observe directly this divergence, butfatt afirst order transition, instead tfie second order

transition discussedabove (Sect.7.5.2). Indeedpllowing the argumentfor Eq. (72), the

maximum observable dressed singulamy, is the solution of:

Cd(yd,s) = As' (75)

By taking the Legendre transform of with the restrictiony, <y, ., we no longer obtain the

theoreticalK,(q) = « for q>q_, (Eq. (63)), but then obtain the finite sample dredsgdq):

q=0p:Ky6(0) = K(Q); 92050 Ky () = ¥44(a—0p) + K(p) (76)

As expected, Eq. (63) iecoveredor N, - o, due to thdact thaty,, - . For N, large

but finite, there will be a highq (low temperaturefirst order phase transition, whereas the
scale breaking mechanigonoposed for phase transitions in strardteactors ($zépfalusy et

al., 1987]; [Csordasand Szépfalusy1989]; Barkleyand Cumming 1990]) isfundamentally

limited to high and negative temperatures (small or negative g). This transition corresponds to a

jump in the first derivativeK' (q) of the potential analogue Sghertzer et a11993]):

A —c(yp)

AK'(0p) =K'y (Ap) =K' (dp) = Vg = Vo = q
D

(77)

On small samples/, = c(y,)), this transition will be missedhe free energy simply becomes

frozen and we obtainK,  (q) =(q—-1)D, which wasalreadydiscussed withhelp of some
experiments $chertzer and Lovejoy 1984]), whereasEq. (76) corresponds to an
improvement of earlieworks on "pseudacaling” (Schertzerand Lovejoy 1984;19874).

Note that the aboveelations,especiallyEq. (77) were testechumerically withthe help of

lognormal universal multifractalsSthertzer et gl1993; 1994)).

7.5.4 Thebig image:hardandsoft multifractalphases

Now, we can display the different multifractal phases in thg D) plane whereq is theorder

of the statistical moment arid the dimension of space, which is athe integration dimension
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yielding the dressed quantitteS he latter is rather the analogue of an external teldince it
has a smoothing role as for instance a magnetic field applied to an antiferromagnetatterthe
case, byincreasing the magnetic fieldne may succeed in preventitigis inflation of the
microscopicworld, maintaining a finiteborderline down to atransition temperature (the Néel
temperature) lower than the (zero-field) critidal Therefore, the transition linekelineating the
phases irthe (9, D) plane(Fig. 14)are quite similar to theT,h) transition lines of an
antiferromagnetoniglio and Stanleyl986], Nagamiya et a).1955].

The transition line ¢,™,D) corresponds tdhe first order transition(Sect. 7.5.3) which
separates the "soft' and "hard" phaddwesephasesare rather the respective analogues of the
disordered and ordereghhases. The soft phase corresponds tthe common sense
presupposition that the flux will converge without any sensitivity to the small scale actwity,
that cuttingoff hidden fluctuations/interactions involving scale ratio larger th&rdoes not
induce majorchanges, i.e.there is no significant difference between bare andssed
properties. This soft phase tise analogue of a classicdisordered phasesince eaclsub-
domain of integrationA of same scale ratid gives rather similar contributions.

But there is the possibility of a hard phase in whichtr@ncontrary small scakctivity cannot

be ignored: it becomes fundamental to distinguish betwleerbare (theoretical) ardressed
(observed) fields. The contribution to the flux by the sub-donw@insbe quitaineven,rather

in analogy to a classical orderptiase,some ofthem can yieldoverwhelming contributions
thereby creating dominant large-scateuctures. As we discussed it (Se¢t3.1), this
corresponds to the fact that the space/time integration is not able to impose its own scale ratio
and that the effective scale ratio is the (divergent) scale ratio of the procesA itseff.

The critical transition lineq, ™, D) ends athe criticalpoint (1,0) after asharpvertical bend at
the point (,C,). This bend ariselsecausavhen D is smaller than the codimensi@) of the
mean of the process, the mean of lv@imensional intersectiond = D — C,) has amapparent
negativedimension. Any D-dimensional observation will therefore almost surely have huge
fluctuations before collapsing to a npliocess. The very singular statistics corresponding to

this "degeneracyare the following: while thenean of thegrocess ikept constant and finite,

9Despite a slight complication in notations, it is rather straightforward to consider two distinct dimensions.
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simultaneously, all moments of ordgr 1 diverge to infinity while thosec 1 converge taero.

The analytical continuation of the transition lidel}) for D > C, corresponds tthe divergence

not of the moments of the flux (implied by the divergence of the trace moments), but only to the
divergence of the trace momeigs®e Sect7.3.2). Therefore the second continuatiorg', D
indicated inFig. 14 for g <1 remains the separation of the finite and infinfece moments
howeverthe latter nolonger imply divergence or convergence of fhexes. The empirical

evidence of these distinct phases is reviewedbihé¢rtzer2001].

8 Generalized Scale Invariance (GSI)
We now show that all the previous results can be extended in a rather straightforward manner to
strongly anisotropic processes, whereas the usual approach to scaling is first(gigtissi¢al)
isotropy and only then scaling, the two together yielding self-similarity. Indeed this approach is
so prevalent that the terms scalemgd self-similarity are oftensedinterchangeably!Perhaps
the best known example is Kolmogorov's hypothesis of "local isotropy" from whiderhved
the k™2 spectrum forthe wind fluctuations. The GSI approach is rather the conversdirit
posits scale invariancéscaling), andhen studieghe remaining non-triviabymmetries. For
instance, Fig. 15 gives a (scaling) anisotropic versigh@fisotropic cascade schelfiég. 4).
One mayeasily check thathis type of anisotropy—which reproduces itself fratale to
scale—does not introduce any characteristic scale. The straightfayersedalization of scaling
shown in fig. 4involving scaling anisotropy in fixed direction ¢slled“self-affinity”. As far
as we know thisnisotropic scheme Sthertzerand Lovejoy 1983; Schertzerand Lovejoy,
1985a]) seems to be the fiestplicit model of gohysical system involving a fundamental self-

affine fractal mechanism.

GSI corresponds to the fact that the contraction opef@toiwhich wasintroduced inSect.6.2
(Eq. (55)), is no longer an isotroptontraction: T, (x) = x/ A . LinearGSI corresponds to the

fact thatT, is a linear one-parameter group; i.e. it admits a linear genégattistinct from the

identity, which generates to isotropic contractions:

T,(X) = A° = exp[Log(A )C] (78)
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One cardefine a generalized notion of scaleSdfiertzerand Lovejoy 1984; 1985b; 1987b;

Schertzer et al.1997;1999]), associated to the one-parameter (linear) contracfionwhich

satisfies the following:

* nondegeneragy.e. :

IX|=0 = x=0 (79)
linearity with the contraction parametér A, i.e.:

[T, x| =[]/ A (80)

» Balls defined by this scale are strictly decreasirg

OAAOR:A2A'0 B, 0B, (81)

where the ballsB, defined by the contractiofi, satisfy:

B, ={x|[Ix| < L/A} (82)

It is important to note that the scaling of the volume of the bBls defines aneffective

dimensionD, , which has been called 'elliptical dimension' in reference to the shape of the balls

under GSI contraction. It is indeed an invariant merely definedthéthelp of the Jacobian of

the contraction:

det[T,]=A""e (83)
and due a well-known matrix identity, it corresponds to the trace of its generator:

D, =Tr(G) (84)

It is straightforward to check that the uskaiclideannorm |x| = (Z x2)"? of a metricspace is

the scale associated to the isotropic dilati@=1) and D, = D. On the othehand, whereas

the two first propertiesare rather identical tthose of a normthe last one is weaker than the

triangular inequality, which is required for a norm.
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The conditions of existence of a generalized scale should depend on the géharaitbe one-
parameter group of (linear) contractions. Indeed we have the following prof@aheifzer and
Lovejoy 1985b,Schertzer et a/.1999]):

» let the unit ball defined as an ellipsoid generated by a positive symmetric #atrix

B, ={x (x,A\)"* < L} (85)

. The contractiorgroup T, defines a generalizestale, if and onlyif: its generatorG
satisfies:

Spec(sym(AG) >0 (86)

where Spec(.) andsym(.) denote respectively the spectrum and the symmetric partireéaa
application. One canshow furthermorethat when the unit ball is an ellipsoid defined by a
positive symmetric matrixA, which belongs to a given neighborhood of a scéfaar

application, i.e. A= ul, uOR", the dilation groupl, defines a generalizestale, if and only

if its generatorG satisfies:

Spec(sym(G)) > 0 « Re(Spec(G)) >0 (87)

9 Conclusion

The codimensionmultifractal formalism that we introduced ithis course, wasinitially
developed, and discussed with respect to a scalar stoamastsure, e.gthe turbulentlux of

energy, which has fundamental property of conservati@n ensembleaverage). Wédimited

our introduction to this question, which already requires many theoretical developments.
However, in turbulence directly observable quantities are rather the (vector) velocity field or the
temperature field. Both of them are non-conservative, i.e. their ensemble averages have scaling
laws. Let us point out that a rather straightforward extension to (scalar) non-conservative fields
corresponds to Fractionally Integrated Flux models (BEhrtzer et al1997]). Onthe other

hand, webriefly mentioned that the scalar cascédenework is insufficient taleal with the

vector nature of turbulence, bcain be extended thie cascadesframework Bchertzer and

Lovejoy 1995].
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Let us finally mention the important question of multifractal space-time processes,ocahitie
approached [flarsan et al. 1996]) by combining the General Scale Invarianoetions
(Sect. 8, inorder totake into account thsetrongscaling anisotropy betwedime and space)
within the Fractionally IntegrateBlux models, bytaking care of the causalityith the help of

causal Green functions.
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Appendix A

A.1) A General Framework
One considers a sequensfeeventsA, (A, UF, whereF is ao-field of events of a probability
space Q, F,P) with probability P), wherethe parameted - oo, will in fact correspond to
the (finer and finer) resolution of a stochastic process. The resolution is related a netale of
defined on the embedding (topological) €etwherethe stochastiprocessX,(w) is valued,
and to its Boreliaw-field B(E). In the simples cases is a bounded subset &' and X, (w)
corresponds to a geometric subset of points (e. g. a (random) fractal set at reddlubanhin
the most interesting caseg is a functional space and,(w) is a random field or random

measure (e. g. the energy flux at resolutign The resolutiomis in general related to a scale
(= }\L( L being the outer scale) of homogeneity, either of observéian fluctuations are not

estimatedbelow this scale) or in simulations (the fluctuaticare not computedbelow this
scale).
It is rather convenient to use the notatiBrfor probability on anyspace either on the original

o-field F (i.e. P) or its image on the Borelianfield B(E). (i.e.P,).
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In the simplest case, the sequeoteventsA, is defined by a discreierative process (e.g. a
discrete cascade process), andAtgefollow a power law:

A=A,=A""n0ON, A= Const> 1 (A.1)
In general,F is in fact defined by diltration, i.e. it contains theo-field generated by an

increasing family ob-fields F,:

ol JR)OF (A2)

and A, OF, is defined by a proces$, (w) adapted to this filtration.

The asymptotic behavior indicated by Eq. 6 is more precisely defined by:

im 109P(A) _

A oo |OgA (A3)

if this limit exists.For heuristic reasong, corresponds to a notion ¢dtatistical)codimension.

Indeed, loosely speaking a probability corresponds to the frequency of events:

#(A))
#(A, and A,°)

Pr(A,) = (A.4)

andeachnumber (denoted by #) of events scdiles a power of a dimensiortherefore the
probability scalesike a power of adifference ofdimension, i.e. aodimension (this will be

more discussed in Sect. ??)

A.2) Existence of a codimension

The limit cin Eq.A3 exists wherhe upper and lower limits, whiclare always defined on
[0, ]

limsu M:l ”mwpwz_g

Ao logA A-=asn logA (AS5)
liminf M:T lim infwz_g

Ao logA A-w A22 ogA\ (A6)

are equal, whereagjenerally c>c. ¢, ¢ can be called respectively thgper and lower

codimensions of the sequence of eveit .
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However, more generaresultscan be obtained bgonsideringthe following monotonous

sequence of even{%} {A} (respectively the upper and lower sequence%ﬁg}f) andtheir

corresponding limitsA, A:
A= OA: AL ImA;

A=A

(A7)

N A=t limA
Az/\A/\ - T)\—'ooiA

(A8)

A A correspondespectively to theipperlimit of the A,'s, i.e. the infinitely often A, and

their lower limit, the set of eventually a, (i.e. for large enougid).

Propositioni.:
We have thdollowing sufficient conditions of existence of a codimensfon a (discrete)
sequence of evem{sAA} , A 's being a discrete increasing sequenceRdr{generally defined
by Eq. (A.1):
@ if{AA} is a non increasing sequence of events, then it has a well defined codin@nsion
(b) the upper sequen{:&} ; generated b{AA} with the help ofEq.(A7), has avell defined

codimension c({ﬁ,\} ) which is a lower bound dhe lower codimension (aswell of the

codimensionc , if the latter exists),
(c) the lower sequende\;} ; generated b{AA} with the help ofEq.(A8), has avell defined

upper codimensiorg({A,\} ) which is an upper bound of the upper codimensitaswell

of the codimensior , if the latter exists),

(d) if {AA} has a well defined set limA, then it has a well defined codimension : ,

c=c{A})=c({A}) (A9)
(e) if c exists and is positive arttie A's follow a power law(Eq.Al), C({N}) is also

(strictly) positive.
Proof:

Proposition (1,a) resultsom the monotone convergenpeoperty ofthe probabilitymeasure.

Indeed, the sequenc®s(A, )and LogPr(A,)/ LogA are both monotonously non increasing and

therefore the following two limits are always defined (respectivelfOdth and on[0, ]):
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Pr(A) = lim 1 Pr(A,) (A10)

c=— 4 lim 9P (A) (A1)
A== JogA
Due to the fact that the sequer{d®} , as defined byEq. (A7), is non increasing, Proposition

(1.a) implies that the following codimension is always defmﬁo, oo]:
m logPr(A,)

c{A})=- ¢ lim og (A12)
We will demonstrate that:

czc{A}) (A13)
Indeed, we have also:

Pr(Ax) = ili/\p Pr(A,) (A14)
as well as:

LogPr(Ax) > sup LogPr(A,) (A15)

LogA Azr LOgA
Therefore:
l Iimma Iimwpwz Iimsupm (A16)

A~ LogA A-=ps2 LOgA A~ LOGA

which corresponds tahe announced inequalitfEq.A13) and therefore demonstrates
Proposition (1.b).
The monotone convergence propertythad probability measure still imply that tlsequences

Pr(A,)and sequencéogPr(A,) are monotone non decreasing and:

Pr(A)=1 limPr(A;) (A17)

However, it doesiot imply that thesequencelLogPr(A,)/ LogAis monotone non-decreasing.

Nevertheless, the following codimension is always defined:

inf LOg Pr(A/\ )

cl{al)=-limint = (A18)
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and we have (note the difference with Eq. A14):

Pr(An) < Pr(A)) (A19)
as well as:
inf Pr(An) <inf Pr(A) (A20)

A>A Log/\ AzA Log/\

Therefore:

m inf FO9PAY) o iming A jimine P (A21)
Ao A'2A Log/\ A S0 A2A Log/\ JA=) Log/\

and by consequence:

c<c({A}) (A22)
This demonstrates Proposition (1.c). Finally, Proposition (1.d) results(frdopand(1.c), as
well as the fact that if the limit set lima is defined, then:

A=A=A (A23)

One may note that (1a) is in fact a particular case of (1.d).

Proposition (1.e) is a straightforward consequence of the first Borel Cantelli lemma, since:

Y Pr(Ay,) = zn/\l'° <wO Pr(AF @ c{A})>0 (A24)

A.3) Consequences

A.3.1 Somerathergenerakonsequences:

Propositions (1.a) or (1.dhreuseful forthe simplesicases, forinstancefor geometrical set
defined recursively, in particular when it corresponds to a repeated truncation, since Proposition
1.ais then relevant. This is in particular the case for the Cantor set discussed in the main text.

On the contrary, the slightly more involved Proposition (1.b) is always relevampliis that,

given a sequen({e\,\} (in general, this sequence is chosen for some physical reasorigyeve

in general to consider itgpper sequent{e?\,\} . Indeed,the latterhas always avell defined

codimension, whereas it is not always the case for the original sequencethendashdime it
is in general physically relevant, sincelitsits corresponds tthe event of infinitely often the

original events.
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A.3.2 Intersectiongndcoverswith balls

In generalthe notion of scale defined on the embedding sawith the help of ballsB, of

size/ :}\L (e.g. the non-classical notion efale will be defined iBect.8),which generate its

topology and are in general translatiomariant. It is therefore rather importantdealuate the
statistics of intersection of these bdlid finer and finer resolution) with a given (measurable)

subseG of the embedding s€E. Indeed in ofSect.2.2.2, wepropose to consider i@ther

generic way (Eg. 8) to defining a sequence of ev{%}}s (belonging tathe o-field (S(E))) as

the intersection of a sequence[ B)f} of balls of decreasing sizé:}\L (e. g. A's constitute a

power law sequence, as in Eq. Al):
A =BinG (A25)
andwhosecentersx_, are identicallyand independently distributed according to the uniform

distribution (or tothe Poisson distribution, ifE is not bounded) with respect tiee Lebesgue
measure of the embedding spaée Furthermore, if Gis random, its distribution is
independent of the center distribution. As a rather straightforward example, let (3 tké,

i.e. a given single point, therefore of zero dimensiondrddim E (geometrical) codimension:

Pr({x} n Ba(x.,)) = Pr({x.,} n Ba(X))= APr({®n Bi(X.1)) (A26)

where B, (x) is deterministic, contrary t8, (x, ,) Therefore the statistical codimension is equal

to the geometrical codimension. One obtains a similar agreewleen, onthe contraryGis d-

dimensional and has a zero codimension. Indeed;

Pr(Gn B,)= Pr({x,}) O [dx (A27)

Note that similar results hold for a Poissodistribution of ball centerswhen considering
elementaryvolumes, i.e.the asymptotidimit A — . In respect to the heuristic arguments
discussed in Sect. 2.2.5, let us point that morerigor can be obtained by refining the above
arguments(Eq. A27) and by consideringhe small-scalgpower-law of the d-dimensional

Hausdorff measure of G, wheis no longer d- dimensional.

A.3.3 Coverswith balls
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The upper sequenc{aB} generated by the sequen{tBA} corresponds to gartial) random

cover of the embeddingpace. In turn, byntersection with a givesubsetG, they generate a

sequence of (partial) random CO\{@} of the setG:

A=BinG, A=BnG (A28)

we alreadydiscussed in Sect. A.3.3 dhne physical andnathematicainterest to consider the

upper sequen({&T\A} instead of the original on{eBA N G} . In the presentase, weare shifting
our interest from random intersection to random cover. It is importattitnatehow dense or

sparse is this cover. This obviously dependshenrate of decrease of the size of bals

Indeed, due to Proposition 1, we have in general:

od{B})=c{B})=d (A29)

wherethe righthand side equalitgorresponds to Eq. A26. Ghe otherhand, due to the

independence of these balls, both Borel Cantelli lemma apply:

S A <oO Pr(By @ c{Bx})>0 (A30)

Zn)\n“’ =00 Pr(Bf T c{B})=0 (A31)

In case of gower lawdiscretization of theA's (Eq.Al), {E} corresponds to a sparsever

(Eq.A30). Neverthelessinteresting problems arisezhen one densifieshe process,i.e.

considers the limiz; - 1, (see Sect. 5.3).

Appendix B

B.1) Numerical implementation of Universal Multifractal
This numerical implementatiohasbeendiscussed with someetailsby [Wilson et al.1991,
Pecknold et al.1995, Tchiguirinskaia et al.2000]. However, itturn out that is rather
indispensible to have an adequate lasgere- number cut-off irthe Fourier space . In this
appendix, we will focus on this question. Indeed, one neepsrform, inthe physicakpace,
a convolution of a Lévy white noisg(x)(the subgenerator) of Lévy stability index by a

power-law Green function:
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G(x) Ofx ' (B1)

both being taken with a given (finte) resolutton This corresponds ithe Fourier space to a

multiplication of a Lévynoise y(k)(the hat denotes Bourier transformand k is the wave

vector) by the dual power law:
G(k) O k™ (B2)

.11 . . , . , .
with =+ = =1 . The mainquestion is how talefine theresolution,since asharp cut-off in
a o

the Fourier space -i.e. multiplication by the characteristic function of thgphere
S, ={k 1<|k| < A}- will generate convolutions witBessel fucntions ithe physicaspace. A
role of thumb is to introduce an exponentat-off. It turnoutthat there is a rather convenient
way to do itthe physicawith the help of"Cauchy wavelet", which is a misnomer since the
physical space function is nlaicalized as a wavelshould be.Let usconsider forsimplicity
the 1D case, due to fact that a translation in the physical spa&sponds to phase shift in the

Fourier space:

G,(x) = G(x+a) 0 G,(K) = e G(Kk) (B3)

it suffices to take a pure complex number, @.g.ié, and consider theeal part of thenverse

Fourier transform to obtain the desired exponential cut-off in the Fourier space.

B.2) A Mathematica package for 2D Universal Multifractals simulation:
In order toillustrate how easy it is tamplement an algorithm for generating Universel

Multifractals, we display the few lines contained in a corresponding Mathematica package:

<< Statistics ContinuousDistributions’

<< Statistics DescriptiveStatistics

<< Graphics Graphics’

Needs['Graphics Animation™]
Needs['Graphics ImplicitPlot™]

Below are the statistical distribution definitions.

nuni = UniformDistribution[-Pi/2, Pi/2]
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\\(UniformDistribution[\(-\(\[Pi]V2\)\), \[Pi]V2]\)
this gives a uniform between -Pi/2 and +Pi/2
ndist[lam_] := ExponentialDistribution[lam]
RanE[lam_] := Random[ndist[lam]]

RanE gives an exponential random deviate lam is mean

Levy[\[Alpha]_] :=
Module[{\[Phi], \[Phi]0}, {\[Phi] =
Random[nuni], \[Phi]0 = -(Pi/2) (1 - Abs[1 - \[Alpha]])A[Alphal}:;
Sign[\[Alpha] -
1] Sin[\[Alpha] (\[Phi] - \
\[Phi]0)] Cos[\[Phi]]*-(LA[Alpha])(Cos[\[Phi] - \[Alpha] (\[Phi] - \
\[Phi]0)]/RanE[1])((1 - \[Alpha])A[Alpha])]
This gives a unit Levy r.v.
epsmodule[lam_, \[Alpha] ,C1 ,H_]:=
Module[{sin, kalpha, kH, gen, sgen,
ep}, {sin =
Table[(1 - | ({X, y}.{x, Y}), {X, (-lam/2 + 1),
lam/2}, {y, (-lam/2 + 1), lam/2}],
kalpha = Re[sin”*-(1/\[Alpha])], kH = Re[sin™-((2 - H)/2)],
sgen = ((C1 Log|
lam]/(( Abs[\[Alpha] - 1]) lam”2 Mean|
Flatten[kalpha™[Alpha]]])))(1/\[Alpha]) Table[
Levy[\[Alpha]], {lam}, {lam}],
gen = ListConvolvelkalpha, sgen, 1], ep = E*gen};
ListConvolve[kH, ep, 1]/Mean[Flatten[ep]] ]

epsmodule calculates the fractionally integrated multifractal, of order lise#microcanonical
normalization.

topotest2 = epsmodule[2”'6, 1.9, 0.12, 0.5];
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ListPlot3D[topotest2, PlotRange -> All]

\[SkeletonIndicator]SurfaceGraphics

11 Tables

Flux Dynamics Thermodynamics

probability space phase space

moment order (reciprocal) temperatured = T

singularity order:y (negative) energy:E

generator (negative) Hamiltonian

singularity codimensionc(y) codimension of entropy:

D-SE)

scaling moment  function(negative) Massieu potential:

K(ag) = m;ch(qy —c(y)) ~2(B) = ~min(BE - S(E))

dual  codimension  functiop(negative)free

_K(a)
Cla) = q-1 energy
~F(B)=-2B)/B
dimension of integrationD external field:h
ratio of scalesA correlation length¢

Table 1 Correspondence between fluxdynamics and thermodynamics (skdtingotation
simplicity ks =1 for the Boltzman'sconstantk;): Z(8) being the Massieu potentiéé.g.
[Balian, 1987]) F(B) the Helmhotz free energy.(frorB¢hertzer and Lovejp2001])
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12 Figures

Cantor set example (1882):

I 1N =
lb=1N,=1

I I

H = H = b=l N =2

1 ni i nl

e i ly=Y3 N, =2

fn:KO/An /\>1

Ny =N(l) ~f:° N=20 A =3

y
_ LogN, .~ _ Log2
D=h LogA here: D = Log3
f
D = LOI(No/Ny,) Ny —»5

LogA “~ N,

Fig. 1 Summary of Cantor set. (FroBchertzer and Lovejoy993]).
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19606

Fig. 2: Rainfall datafrom Dedougou for a period of 4fears. Each line is a differenyear,

each point a rainy day (FrorHlfibert and Carbonnell989]).
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Probability
Space
Physical
space
D
/ NS~ )\ S
>
Physical :_\r:delpen_dent
space ealizations

Fig. 3 lllustration showing how in random procesteseffective dimension of space (D) can
be augmented by considering many independent realizatioys As Ns - «, the entire

(infinite dimensional) probability space is explored. (Fr&@uohertzer and Lovejp$993]).
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ISOTROPIC
= self similarity

D10
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Qe

=1n3 =, -
QIAC[C| [n2

QSIS Gle
Glelele P ] [G]C
EMEE Qe S

4 |sotropic Cascade. The left hand ssttews amon-intermittent (“homogeneoustpscade,
the righthand sideshows howintermittency can be modeled @assumingthat not all sub-
eddies are “alive”. This is animplementation of the'B-mode". (From [Bchertzer and

Lovejoy 1993)).
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CUMULS NOYENS DES PRECIPITATIONS EN MM SUR N JOURS
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Fig. 5 Rain rate aNimes (France) for years 1978 to 1988 awdraged ovetime scale

varying from (top to bottom): 1, 4.6, 64, 256, 1024nd 4096days. (From l[adoy et al.

1993])
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'CASCADE
LEVELS =

€
J—y
0-- — /‘,O
— multiplication by 4
1]

independent random
(multiplicative)
increments

multiplication by 16
independent random
(multiplicative)
increments

Fig. 6: Aschematic diagrarahowing few steps of discrete multiplicative cascageocess,

here the'a - model" with two pure orders of singularity_ (> -«) andy, (corresponding to the

two valuestaken by the independent randamecrements,\Y-<1 and )\Y->1) leading to the

appearance of mixed orders of singulasity_<y<y,). (From [Schertzer and Lovejpy989]).
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rare A
events C V)
Cl
- Y
Cl [——
extreme

events
Figure 7. Aschematic illustration of @onservedmultifractal c(y), showingthe relations
¢(Cy) =C1 andc'(cy =1, wherec; is the singularity of the mean.(Frorf8dhertzerand Lovejoy,

1993)).

rare ‘
events T Ns ~ )\ S C(g

=Y
D Y
S -
extreme
events

Figure 8: Schematic illustration of sampling dimension and how it imposes a maximum order of

singularitiesy,. (From [Schertzer and Lovejo}993]).
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K(@) K(a)

slope Y

ay”

Figure 9—K(q) versus g showirthe tangent line'(a,) =y with the corresponding chorg,

(From [Schertzer and Lovejpy993]).

fre. ?!B
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N‘Ez\\\t(\
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AN
N

.2

FigurelO The universal limits of drunkards walkssaen aghe distance between lamposts
¢ tends to zero, the details of the precise rule of choice left/righacht lamppost becombsss
and less relevant to the walk which converges either to the usual Brawoigm (a =2) or to

a Lévy flight” (0<a <2, IaxF », gz a). (From [Schertzer and Lovejpy993)).
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Fig. 11— Scheme of densification of scales.(Fr@thlertzer and Lovejoy997]).

bare cascade

-1 -1 -1
L A
A — ——
- A —
— P — = NI\ —_—
- A T — /

dressed cascade

hidden cascade

Figure 12—A schematic diagram showing a cascade constructed down to scale dssed
(averaged) up to ratio.. This is equivalent to a bare cascade constructed over xatio

multiplied by a hidden factor obtained by reducing by faatowith the help of the operator
T,, a cascade constructed from 1nox . (From [Schertzer2001]).

-57-



Figure 13—Twin divergences of trace moments. (Fr8ohgrtzer and Lovejoi987a]).

A 4
S(JFT .
PHASE (finite fluxes)
D Finite trace moments Divergent trace moments
HARD
PHASE |
Divergent trace moments —
and moments Finite trace moments
>
1 1/q

Fig. 14: Hard and soft multifractal phases. The bold line represents the tralisition, ™, D)

for fluxes and trace-moments, whereasaitalytical continuationd;", D) (light line) concerns
only the trace-momentOne maynote thatfor any given D, we have thewin divergence of
the trace moments rulgeeFig. 13andSect. 7.3.2)trace moments areonvergent only for

intermediate values af. (From [Schertzer2001]).
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ANISOTROPIC

= COMPRESSION AND
REDUCTION
Ly i
N(L) & L el Q N(L) &L s
/ L \
LX/4 Lx/4
B — <_>
OO e <SEE
LRRRR RRRIR IR R Dszzhﬁﬁ =129 hlr ] AR BR
1003333838 ANARAR At AR AR
1111111f1f1f1f1f<1h.~\ [ hvh RRR[ BP
o (e[ e[t PP T P T T T T [ T [t BB Rk
D= P =15

Figure 15—Anisotropic cascade scheme: compare with Fig. 4 (Boheftzer2001]).
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