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Abstract : For hydrologists, scaling is some kind of Philosopher's stone. There exists in 

the literature a lot of empirical works about extreme rains and floods, their mutual rela-

tionship and their dependence upon observation time-step and/or catchment size. Mul-

tifractal approaches, originating from turbulence studies and which are based upon the 

Navier and Stokes equation symmetries, have allowed to put such studies in a new per-

spective and would give them a rational ground. They permit to give prominence to 

spatial and temporal scale invariance of hydrometeorological processes and so to put in 

the same conceptual framework normal and extreme events. Furthermore, multifractal 

approaches suggest that extreme events, both rainfall and discharge ones, would be 
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ruled by algebraic statistical laws, rather than by exponential ones as it has been gener-

ally postulated up to now. The theoretical and practical consequences of such conjec-

tures are highly significant, especially when taking into account hydrological risk for 

land use planning or water structure design, as they lead to assign to the so-called ex-

ceptional events a return period much more short than classical approaches. 

I. INTRODUCTION 

Even if men have experienced for a long time weather caprices and river overflowings, 

observation and measurement device developments and a greater vulnerability to hydro-

logical risk as well as a willingness to tame it, have enabled mankind to get a better un-

derstanding of this variability. It appeared that this variability is a function of the obser-

vation scale and we would like to give two examples stemming from precipitation stud-

ies. 

The first one concerns the 1986 rainfall pattern over Burkina Faso territory (figure 1). 

From the 113 precipitation stations of the national network it has been possible to draw 

by hand the national hyetograph of figure 1. Meanwhile, an experimental network 

(EPSAT86) with 120 precipitation stations has been set up in the square degree (about 

100 km x 100 km) around the city of Ouagadougou, including a dozen of stations from 

the national network (Hubert et Carbonnel, 1988). This last set of data made it possible 

to draw a new map at the square degree scale which exhibits at this finer scale a non 

expected variability. The spatial variability of precipitations that one would have 

thought to subside, especially at the annual time scale, still goes on vividly at the kilo-

metric scale. Does that mean that it is impossible to master this variability, even 

mathematically ? The following example about the maximum observed precipitations 

for different time scales (figure 2) should give us some reasons to keep hope ! This last 
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figure has been published in numerous hydrological books and papers (Raudkivi, 1979 ; 

Réméniéras et Hubert, 1990). It shows that the recorded maximums depend upon the 

observation duration, which is not surprising, but that this dependence is not linear, 

which prove that rainfall is not homogeneous along time. It is noticeable that a real or-

ganisation of the data appears on a log-log diagram and that there exists a quantitative 

link between the empirical statistic and the corresponding time scale which is an em-

pirical evidence of scale invariance.  

II. SOME THEORY 

When Mandelbrot created the Fractal Geometry (Mandelbrot, 1977) he recognized the 

fractal (non-integer) dimension as the link able to connect a measure and a measurement 

gauge for various geometrical objects. Some hydrological applications have been at-

tempted, to describe hydrographical networks and to characterize the rainfall temporal 

domain (Hubert et Carbonnel, 1989 ; Lovejoy et al, 1987). Such applications should not 

make us forget that precipitation and runoff, cannot be summarized only by presence or 

absence and that it is necessary to take into account their intensity at the different time 

scales. Following Schertzer and Lovejoy (1984), it had been noticed (Hubert et al, 

1995) that the fractal dimension of rainfall occurrence is a decreasing function of this 

threshold defining occurrence. This leads for such studies to overstep the fractal object 

concept in favor of that of multifractal field. 

The objective of the multifractal approach is to link scale and intensity for cascade 

processes where matter and/or energy concentrate over thinner and thinner space-time 

domains (Schertzer and Lovejoy; 1986, 1987). At each step of a multiplicative cascade, 

each eddy subdivides into sub-eddies, redistributing all or part of his matter or energy, 

according to a random factor. For a given observation scale λ (λ is the ratio of the ex-
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ternal scale to the observation scale) the probability that ελ exceeds a given threshold λγ 

is as (Schertzer and Lovejoy, 1991) : 
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where γ is a singularity order and C(γ) a codimension function characterizing the prob-

ability of occurrence of singularity of order greater than γ. Aλ is a cofactor slowly vary-

ing with λ. The most valuable results about multifractals concern the behavior of large 

order statistical moments. It can be derived (Schertzer and Lovejoy, 1991) that may 

exist a critical value qD of the moment order q, such as the statistical moments diverge 

as son as q > qD. Then, for large enough values of the singularity order γ, the probability 

distribution can be written as : 
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The consequences of such an algebraic behavior are extensive because algebraic laws 

decrease infinitely more slowly than exponential laws usually used to estimate the mag-

nitude of events of given return time. This magnitude would then be considerably un-

derestimated 

III. APPLICATIONS TO HYDROMETEOROLOGICAL SERIES AND FIELDS 

III.1 Applications to precipitations 

A lot of multifractal applications have been devoted to studies and modeling of rainfall 

time series and fields (Olson, 1996 ; Ladoy et al, 1993). We will quote especially our 

study of the long rainfall time series gathered within the FRIEND-AMHY project 

(Bendjoudi et Hubert, 1998). This study was devoted to annual rainfall accumulations 

and we tried to see how convenient the previous formalism was to explain the behavior 

of extreme values. 87 annual rainfall series with a mean length of 116 years have been 
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processed. We have plotted on a log-log diagram the empirical probabilities of exceed-

ing a threshold against the corresponding thresholds. The curve resulting from the best 

fitting to a Gaussian law has been superposed on the same diagram. It is obvious that 

the points corresponding to large values depart notably from the Gaussian fitting and the 

fitting of a straight line to those points the probability of exceedance was letter than 

0.05 seems suitable. This result encourages the hypothesis of an algebraic rather than 

exponential behavior of the statistical distribution of large annual rainfalls. Figure 3 

exhibits four examples of such curves for the longuest series available in our data base : 

Padova, Marseilles, Rome and Gibraltar whose duration is greater than two centuries. 

The practical consequences of these results are considerable. For example, about annual 

rainfall accumulations, what was the one thousand year event according to the Gauss 

law is roughly no more than the one hundred year event according to an algebraic law. 

The qD values found are in good agreement with those found by others authors, slightly 

greater than 3, which would suggest that it is an intrinsic rainfall feature. Practically that 

means that, from a rainfall series, it would be vain to estimate the kurtosis coefficient 

(4th moment) and that the estimate of the third order moment (skewness) should be quite 

poor. 

 III.2 Applications to runoff time series 

The applications of scale invariance concepts to river discharges are more recent and 

consequently more limited. Turcotte and Greene (1993) studied the flood frequencies of 

10 American rivers and characterized the scale invariance they had found by the ratio of 

the 100 years return period flood to the 10 years return period flood. The value of this 

ratio ranges from 2 to 8 and the authors attribute these differences to the various clima-

tological conditions. Tessier et al (1996) studied rainfall and runoff series of 30 French 
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catchments. They have pointed out a scale invariance for durations ranging from 1 day 

to 30 years. The critical divergence moment estimated from the whole set of data is 

about 3.2 for time scales greater than 30 days and close to 2.7 for time scales less than 

16 days. A more recent study by Pandey et al (1998) is devoted to 19 American catch-

ments the area of which ranges from 5 to 2 millions km2 with a total of 700 year-

stations. Their conclusion is that the behavior is multifractal for time scales ranging 

from 23 to 216 days. Their estimates of the multifractal parameters, and especially those 

of qD which is about 3.1 are close to those of Tessier et al (1996), but unlike Turcotte 

and Greene (1993) they attribute to chance the differences found for the different basins. 

IV. CONCLUSIONS AND PERSPECTIVES  

After this brief presentation of some applications of the multifractal approach in hy-

drometeorology we would like to set some perspectives. Starting from a phenomenol-

ogical model of multiplicative cascade designed in turbulence studies which is likely to 

hold in hydrology and then to give to the multifractal approach some kind of physical 

basis. The applications attempted up to now are encouraging. A scale invariant behavior 

for time scale ranging roughly from one day to one century has been evidenced. In the 

future, this scale invariance should enable to overcome local and/or fragmented ap-

proaches, which are difficult or even impossible to generalize. Such approaches are still 

the rule today and we are facing, especially in the field of flood probability estimations, 

an unmanageable mushrooming of ad-hoc statistical laws. The most crucial point raised 

by multifractal studies is that the decrease of statistical laws ruling the floods would be 

algebraic rather than exponential. We do want to underline once more the practical sig-

nificance of this point, as the discharge corresponding to a given return period estimated 

from an algebraic hypothesis will be much more large than that estimated from an ex-
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ponential one. In front of theoretical and practical stakes it is necessary to carry on with 

multifractal studies of rainfalls and discharges, to strengthen their theoretical basis and 

to validate their relevance conclusively. 
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Figure captions 

Figure 1 1986 Hyetograph of  Burkina Faso at the national scale (113 stations) and at the 
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Ouagadougou square degree (120 stations including a dozen of the national network). 

Figure 2 : Maximum recorded precipitations for different time durations.. 

Figure 3. Empirical probabilities and Gaussian fitting of Padova, Marseilles, Rome and Gi-

braltar time series. Empirical values are represented by dots and the best Gaussian fitting by a 

solid curve. The linear fitting of the distribution tails is represented by a dotted line.. 

Figure 1 

 Fig2 
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           Figure 3 


