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ABSTRACT

A codimension multifractal methodology was used to analyze and to model scalar concentration fluctuations
within sulfur hexafluoride tracer gas plumes from a line source in atmospheric surface-layer flows. Correspon-
dence was exhibited between the double trace moments parameters a and C1 of the codimension methodology
and the experimentally measured plume concentration characteristics of peak-to-mean ratio and concentration
fluctuation intensity. Data series were generated using an extremal Levy, stochastic multifractal model, with the
experimental a and C1 as inputs. Uncertainties in experimentally determined plume characteristic values over-
lapped the uncertainties in model-simulated values. The utility of the procedure includes 1) characterizing the
state of scalar turbulent mixing, 2) helping to evaluate and to model hazardous plume concentrations, and 3)
being able to estimate the probability of realizing extreme events at timescales of observation beyond or at
magnitudes in excess of those present in the actual observations.

1. Introduction

Turbulent mixing of a contaminant plume in the at-
mosphere produces an extremely complicated pattern of
contaminant concentration. Scalar (contaminant)-rich
eddies are stretched and distended by the action of tur-
bulent motions while scalar-poor fluid is entrained into
the plume along similarly deformed eddy structures. The
resulting concentration time/space field is highly irreg-
ular, reflecting the disparities in concentration between
juxtaposed eddies. For a time series at a fixed location,
the concentration record can exhibit extreme intermit-
tency, rapid changes, and the occurrence of relatively
rare but large events when peak concentrations are re-
corded.
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An understanding of plume behavior and scalar mix-
ing in varying conditions is necessary for developing
appropriate emergency response plans in the event of
the inadvertent airborne release of toxic or other haz-
ardous substances. The concentration time series ob-
served at a receptor site will depend on the magnitude
of the release as well as factors such as the size and
geometry of the source, the source-to-receptor (stream-
wise) distance, the location of the receptor with respect
to the centerline of the mean plume axis, topographic
effects, micrometeorological variables such as varia-
tions in wind speed and direction, and atmospheric sta-
bility.

The measurement and modeling of point-source
plume behavior and the natural stochastic variability
associated with it have been extensively studied (e.g.,
Ramsdell and Hinds 1971; Hanna 1984; Larsen and
Gryning 1986; Mikkelsen et al. 1987; Hanna and Insley
1989; Sawford and Stapountzis 1986; Stapountzis et al.
1986; Yee et al. 1993, 1994; Peterson and Lamb 1992,
1995; Peterson et al. 1990). Commonly used descrip-



230 VOLUME 40J O U R N A L O F A P P L I E D M E T E O R O L O G Y

tions of concentration exposure at a receptor site in the
atmosphere are the mean concentration c, the standard
deviation sc, the concentration fluctuation intensity ic

(ic 5 sc/c), the intermittency factor (the fraction of time
a receptor is within the plume), and the peak-to-mean
concentration ratio (P/M 5 cmax/c), where cmax is the
99th-percentile concentration.

Most traditional approaches for modeling and pre-
dicting plume behavior use some variant of a Gaussian
plume model with empirical parameterizations of the
wind field. Alternative methods for modeling plume
concentration fluctuations include the use of Lagrangian
models (Sawford 1985; Peterson et al. 1995) and large
eddy simulation (Shen and Leclerc 1994). Existing mod-
els commonly produce results that are within a factor
of 2 of measurements. The mean concentration and P/M
are the most essential variables for evaluating the max-
imum potential hazard stemming from an inadvertent
plume release. Knowledge of the mean concentration is
an indication of the total mass of hazardous material,
and P/M is important if short-term peak values are much
more dangerous than the mean concentration. Models
for internal plume concentration fluctuations can be use-
ful for evaluating hazards if they can be linked to a
model describing whether a receptor is in or out of a
plume (i.e., point-source plume meander). The purpose
of this paper is to describe an alternative multifractal
model for predicting scalar mixing, concentration fluc-
tuation, and P/M within atmospheric plumes, both with-
in better-mixed portions of the plume and in the poorly
mixed volume of the plume along the margins.

Because of the scale invariance of the underlying dy-
namical process, it is natural to apply scaling techniques
to the study of plume behavior and scalar mixing. These
processes have been studied by applying traditional
monofractal box-counting techniques to multifractal
fields (e.g., Sreenivasan et al. 1989; Sreenivasan 1991;
Constantin et al. 1991; Muzzio et al. 1992; Malinowski
and Leclerc 1994; Sykes et al. 1995; Praskovsky et al.
1996). Rather than approximate the concentration by a
geometrical set of points, the multifractal approach al-
lows for a hierarchy of different concentration events,
each with its own degree of sparseness. A basic de-
scription of multifractal theory and the distinctions be-
tween the traditional and codimension approaches is
found in the appendix.

The results presented here are based upon an exten-
sive set of sulfur hexafluoride (SF6) tracer gas mea-
surements downwind from a line source. The experi-
ment from which the data were obtained is described,
and some of the limitations on the use of the dataset
with respect to multifractal analysis are discussed. The
methodology used in the multifractal analysis is then
summarized. This summary includes a description of a
stochastic multifractal model. The results section de-
scribes the determination of a set of parameters from
the multifractal analysis of the experimentally measured
SF6 time series. These parameters were then utilized in

the stochastic multifractal model that was used to gen-
erate output for comparison with the measured exper-
imental data. The consequences and possible applica-
tions of this approach are then discussed.

2. Experimental summary

A field study, originally designed to evaluate flux
footprint models, was conducted during June 1992 on
the Hanford diffusion grid near Richland, Washington.
Details of this study can be found in Finn et al. (1996).
The site is located in a 40-km basin on gently sloping
terrain at an elevation of approximately 200 m above
sea level. An open canopy of sagebrush 1–1.5 m high
is the dominant vegetation, with a zero plane displace-
ment d of 0.75 m and roughness length z0 of 0.14 m.

A 400-m line source of SF6 passive scalar tracer gas
was deployed at canopy height (1.0 m) approximately
perpendicular to the prevailing wind direction. The line
source was approximated by point sources spaced 4 m
apart along the 400-m length. Four 10-m towers were
located at downwind distances x of 50, 100, 175, and
250 m along a line normal to the line source. Each tower
was equipped with a 3D sonic anemometer and a fast-
response SF6 analyzer (Benner and Lamb 1985) with a
30-ppt detection limit and 1/e response time of about 1
Hz. Manual calibrations were completed before and af-
ter each tracer release period. Zero and span checks were
conducted with an automated system at each instrument,
generally every 30 min.

Tracer was released continuously at a steady rate
when winds were across the line source and parallel to
the tower array. Releases and observations were made
over a wide range of atmospheric stabilities. Measure-
ments were made at a measurement height of zm 5 10
m during the first phase of the experiment and 5 m
during the second. Data were recorded continuously at
either 10 or 20 Hz from both the anemometers and tracer
analyzers.

An important point with regard to the experimental
configuration and the basis of the multifractal meth-
odology used in the analysis is that the theoretical basis
of the multifractal methodology assumes statistical
translational invariance of the field being measured. Al-
though this approximation may be good for atmospheric
turbulence, the SF6 scalar statistics depend strongly on
the measurement location with respect to the source.
The measured signal is not statistically translationally
invariant in space given the spatially localized nature
of the line source. The inhomogeneity in the SF6 tends
to become more exaggerated close to the line source
and decreases downwind with the increase in plume size
and mixing. When the SF6 sensor is fully embedded in
the plume, the field approaches a more homogeneous
condition. However, when the sensor is near the margin
of the plume with respect to the vertical plume center-
line, the field is highly inhomogeneous. In fact, the sen-
sor can lie either in or out of the plume.
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FIG. 1. SF6 Fourier power spectrum (thin solid line) for the 175-m tower on yeardays 173 to
174, 2300–0100 local time. The bold solid line represents a 25/3 slope; the bold dashed line is
the temperature spectrum for the 175-m tower.

Whether the sensor lies in or out of the plume depends
on the stability conditions in the atmosphere. In stable
conditions, vertical plume spread is inhibited, and the
plume sometimes fails to rise to the height of the sen-
sors, particularly at the 50- or 100-m towers. In unstable
conditions, the SF6 signal can be affected by strong
downdrafts of clean SF6-free air from aloft that will
have the effect of introducing zeros into the data record.
Increasing the time and/or distance available for plume
spread and mixing will increase the statistical homo-
geneity of the plume and reduce the chances for the
sensor encountering large parcels of SF6-free air. A sim-
ple model of this effect is that the measured signal rep-
resents a mixed monofractal (zeros, clean air) and mul-
tifractal turbulent (plume) process.

The key point is that the multifractal results are pri-
marily sensitive to the state of mixing in the plume,
which, in turn, depends upon the position of the receptor
within the plume, distance from the source, and tur-
bulence regime. Assuming power-law scaling exists for
the measurements, the multifractal technique can be
used to model plume mixing conditions with respect to
these factors.

3. Summary of methodology

a. Introduction

Because of the existence of stable (attractive) mul-
tifractal processes, it is natural to postulate that the basic
multifractal exponent functions are described by three
universal parameters, a, C1, and H (Schertzer et al.
1995; Schertzer and Lovejoy 1993, 1997). The multi-

fractal codimension methodology that will be used to
estimate the parameters a, C1, and H from an experi-
mental signal is the double trace moments (DTM) al-
gorithm (Schertzer and Lovejoy 1993; Tessier et al.
1994; Lavallee et al. 1993). Examples of its exploitation
and related multifractal studies can be found in Tessier
et al. (1994), Schmitt et al. (1992, 1993, 1995, 1996),
Chigirinskaya et al. (1994), Salvadori et al. (1994), Pan-
dey et al. (1998), and Schertzer and Lovejoy (1993).
The theoretical development of the codimension for-
malism has been described in Schertzer and Lovejoy
(1987, 1989, 1991, 1993), Wilson et al. (1991), and
Lavallee et al. (1993).

Successful application of the method depends on the
presence of power-law scaling. The first step in the pro-
cedure is to confirm the presence of power-law scaling
and identify the frequencies bounding the scaling range.
Optimum estimates of a and C1 are made using the
longest possible linear power-law scaling range of the
inertial subrange in a Fourier power spectrum (Fig. 1).
An inner, high-frequency scaling break f i and an outer,
low-frequency scaling break f o can be seen bounding a
power-law inertial subrange in the example SF6 power
spectra. The original data series is then block averaged,
replacing the original by a modified data series in which
the highest frequency present will equal f i. The indi-
vidual values in this modified, highest-available-reso-
lution data series are denoted r.

The inner scaling break is generally determined by
the resolution of the measurement system because the
inner scale of the phenomenon is the very small dis-
sipation scale. The scaling break f i is, therefore, de-
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pendent on the resolution of the SF6 measurement sys-
tem and the physical limitations of the instrumentation.
Attaching any physical significance to the scaling ob-
served in the SF6 spectra in Fig. 1 at frequencies greater
than 2 Hz is suspect, because those frequencies are be-
yond the resolution of the SF6 analyzers.

The data series r must then be transformed into a
‘‘conserved’’ signal before it can be processed in the
DTM algorithm. Conservation here refers to the scale-
by-scale conservation of the underlying multifractal
process. In the context of the current discussion of pas-
sive scalar concentrations in the atmosphere, the con-
served quantity being passed from larger to smaller ed-
dies in the cascade is the flux of scalar variance. From
the expression Drl 5 l21/3 (appendix), the observed,1/3f l

nonconserved concentration time series Drl,SF6 is related
to the conserved flux f L,SF6, all implicitly nondimen-
sional with normalization. The transformation is accom-
plished through the scaling factor of the form l2H. The
notation l represents the scale of resolution. The pa-
rameter H is one of three universal multifractal param-
eters and characterizes the degree of nonconservation.

In general, a measured signal r is not conserved (e.g.,
a concentration time series) and is dependent on the
scale of observation of a process (i.e., the resolution of
the measurements or averaging time of the measure-
ments). When H is known, a conserved data series can
be obtained from r by filtering in Fourier space by di-
viding by | f |H, where f is frequency. Values of H less
than 0 represent fractional differentiation, and H greater
than 0 represents fractional integration. A forward trans-
form is performed on the time series, the Fourier com-
ponents are divided by | f |H, the result is inverse trans-
formed back to real space, and the absolute values of
the result are taken. An alternative for a one-dimensional
time series, approximately equivalent to fractional dif-
ferentiation by order 1, is replacing the block-averaged
time series by the absolute differences between adjacent
data points r.

For a specific measured process, H is not necessarily
known ahead of time, and the alternative data transform
is used. It can be determined from experimental data
using

b 2 1 1 K(2, 1)
H 5 ;

2
aC (2 2 2)1K(2, 1) 5 , (1)

a 2 1

where b is the absolute value of the slope in the inertial
subrange of a power spectrum for an observed process
(e.g., b 5 5/3 for the energy flux «), and a and C1 are
determined using the DTM algorithm.

To illustrate better the procedure leading to the cal-
culation of the double trace moments and the use of l,
begin with Fig. 1. Observe the scaling range for SF6

extending from f i ø 0.5 Hz to f o ø 0.05 Hz. There are
36 000 points for a 0.5-h record sampled at 20 Hz. Re-

call that the highest resolvable frequency is 1/(2D),
where D is the sampling interval. Block averaging the
time series at 20 points per block results in a time series
rSF6 with 1800 points in which the highest resolvable
frequency is f i . A conserved time series fSF6 is then
obtained by taking the absolute differences between
adjacent block-averaged data points. The lowest fre-
quency obtainable from a given data series is given by
1/(ND), with N being the number of points. The con-
served time series is split into subrecords A of length
N such that the lowest frequency present in the sub-
records is approximately equal to f o . In the current
case, 20 points would give a frequency of 0.05 Hz.
The subrecord length A would thus be 16 or 32 points,
in powers of 2, yielding 112 or 56 subrecords, re-
spectively, per 0.5 h.

The parameter l is a scale ratio equal to the largest
scale of significance, for example, the length of the time/
space series or outer scale of the turbulence, divided by
the resolution of series. The largest scale ratio is denoted
L and equals 16 or 32 in the current example. The value
of l can be adjusted by varying the scale of resolution
between the highest resolution L (smallest scale) and
resolutions intermediate to the largest scale such that L
$ l $ 1.

The statistical moment scaling function K(q, h) is de-
fined from

[ ] ù lK(q,h) ,h q(f )L l (2)

where q and h are the orders of the statistical moments.
For conserved universal multifractals, H 5 0 and the
exponent K(q, h) is

 C1a ah (q 2 q) a ± 1
a 2 1K(q, h) 5 (3)

C hq log(q) a 5 1, 1

where the multifractal parameter a is the index for Levy
distributions, which describe stable, generally non-
Gaussian random cascade generators (Feller 1971; Wil-
son et al. 1991; Schertzer and Lovejoy 1991, 1993) and
can serve as a multifractal index. It is constrained by 0
# a # 2. The index a 5 2 describes a multifractal
process with an approximately lognormal probability
distribution. As the value of a decreases from 2, the
corresponding signal becomes increasingly intermittent,
with very large fluctuations and increasing P/M ratio.
From Eq. (3) and the general relation K(q, h) 5 K(qh, 1)
2 qK(h, 1), we obtain for a ± 1

K(q, h) 5 .ah K(q, 1) (4)

The third universal parameter, , is the codimensionC1

of the mean process or measured signal and character-
izes its inhomogeneity. Its value will increase in re-
sponse to sparse and intermittent or highly fluctuating
and variable signals and will decrease for a more uni-
form signal. A value of 5 0 implies that the meanC1
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FIG. 2. Normalized SF6 concentration time series (SF6/^SF6&) for the 50-, 100-, and 175-m
towers, respectively, from top to bottom on yeardays 173 to 174, 2300–0100 local time, averaged
to 0.1 Hz. Gaps in the records represent calibration periods.

is space filling (complete homogenization of the con-
served process).

b. Estimation of a, C1, and H from experimental data

For the purpose of illustration, the procedure is dem-
onstrated using example SF6 time series from the ex-
periment. Three concurrent 2-h time series at the 50-,
100-, and 175-m towers, in weakly to moderately stable
conditions, are shown in Fig. 2 (nondimensional scaling
parameter z/L 5 0.05, yeardays 173–174, 2300 to 0100
local time, where z 5 zm 2 d, and L is the Obukhov

length). These examples represent 20-Hz time series av-
eraged to 0.1 Hz. Note the distinctions in character be-
tween the time series. The 50-m time series exhibits
greater intermittency and relatively larger fluctuations
above its mean than do the 100- and 175-m time series.

Implementation of DTM begins with the highest-res-
olution data series f L. The double trace moments Tr
are defined as

q

h hq D K(q,h)2(q21)DTr (f ) 5 f d x } l , (5)Ol EL L7 1 2 8A Bl
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FIG. 3. Plot of the double trace moments logTr vs logl showing selected values of h for q 5
0.8 and record length of 25 for the 175-m tower, yeardays 173 to 174, 2300–0100 local time (l:
logh 5 21, M: logh 5 20.5, v: logh 5 0, n: logh 5 0.5). The slopes yield estimates of K(q, h).

where q and h are the orders of the statistical moments.
The D represents the dimension of the sampling, equal
to 1 for a time series. Individual data points in the con-
served time/space series f, at the inner, highest-resolved
scale L, are raised to the power h. The scale resolution
l is degraded in successive steps from the highest res-
olution l 5 L, equal in length to A, to l 5 1 for each
scaling subrecord A. This degradation is done using dis-
joint subsets B covering the subrecords A. These subsets
are usually some power of 2 in length and are given by
L/l. The result for each B is raised to the qth power.
The ^ & denotes ensemble averaging over the available
number of subrecords A at each l. The results reported
below are based on q 5 0.8 for reasons discussed later;
the values of h ranged from 0.1 to 10 in 0.1 log10 in-
crements (i.e., [21, 1]). Estimates of Tr can be obtained
by ignoring the D(q 2 1) factor in the exponent [i.e.,
Eq. (2)].

Plotting log(Tr) versus logl yields a set of slopes,
one for each value of h, that are used to obtain estimates
of K(q, h) (Fig. 3). The changes in slope between h can
be subtle and were determined by linear regression. An
estimate for the parameter a is then found from the slope
given by plotting log|K(q, h)| versus logh using Eq. (4)
(Fig. 4). The break in linearity for low values of h is
related to measurement noise and sensor resolution. The
break in linearity for high values of h is related to di-
vergence and/or sample size limitations, which are dis-
cussed below. Parameter C1 is obtained using Eq. (3)
and the fact that K(q, h) 5 K(q) for h 5 1. The linear
range should include h 5 1 for C1 to be estimated re-
liably. Last, H is obtained from Eq. (1).

To achieve as unambiguous an evaluation of the ap-
proach as possible for a certain set of plume mixing

conditions, 2-h data records were used during which the
flow field was judged to be quasi-stationary. Quasi-sta-
tionary conditions were commonly realized, primarily
due to drainage flows, but also during the passage of
some synoptic fronts. The 2-h record block was chosen
because it represented the approximate maximum length
for which quasi-stationary conditions could be realized
for any appreciable number of cases. Quasi-stationarity
was desirable to obtain multifractal parameter estimates
representative of certain scalar mixing conditions by
using the most reliable possible estimates of the scaling
range and b. In general, the 2-h data records were split
into four separate 0.5-h subrecords to eliminate spurious
spectral scaling from interruptions in the ambient signal
during span periods. The cases used included represen-
tatives from each of the four towers.

c. Stochastic modeling

The parameters a, C1, and H can be used as the inputs
into stochastic models that generate Levy variables and
multifractal fields. These models are useful for studying
in-plume mixing and improving the ability to estimate
the potential for hazardous extreme values that might
not be well represented in a limited experimental da-
taset. Numerical implementation of continuous (in
scale) multifractal processes are described in Wilson et
al. (1991), Pecknold (1993), and Tchiguirinskaia et al.
(2000).

Briefly, ‘‘extremal’’ Levy variables are generated
from a uniform U ; (0, 1) distribution using the ap-
propriate values of a and C1. Extremal Levy probability
distributions decay exponentially for positive values
[Pr(.y) ; exp(2|y|a9)] but only decay according to a
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FIG. 4. Plot of the DTM log|K(q, h)| vs logh for q 5 0.8 and record length of 25 for the 50-
(l), 100- (M), 175- (v), and 250-m (n) towers on yeardays 173 to 174, 2300–0100 local time.
The slopes in the scaling range yield estimates of a. Note the increase in slope as the distance
increases.

power law for negative values [Pr(.y) ; |y|2a] where
1/a 1 1/a9 5 1 and y are thresholds at which each
probability Pr is calculated. This Levy noise is nor-
malized using factors that contain a and C1 and is frac-
tionally integrated by Fourier filtering to yield a 1/ f
noise. The result is exponentiated and passed into a
Fourier filter where it is fractionally integrated by |k|2H,
where k is the wavenumber. The fractional integration
only affects the components with the modulus of the
wavevector |k| . 0; therefore, the mean must be frac-
tionally integrated in real space or frequent negative
values will result.

To adjust approximately the mean (|k| 5 0, the zero
Fourier component), all model values were adjusted up-
ward by the magnitude of the largest negative value
(i.e., a constant was added), returning a nonzero mean
and zero minimum. The resulting time series is a mod-
eled representation of the time series from which a, C1,
and H were determined. For a # 1, the stochastic results
are undefined. An example model data series represen-
tative of a well-mixed, homogeneous field is shown in
Fig. 5.

4. Results

a. Fourier analysis

The first step was to determine the power spectra,
scaling ranges, and b for each of the 2-h data records.
Using the maximum range possible, typically about one
decade, the determination of the experimental values of
b for SF6 ranged from 1.23 to 1.94 with a mean of 1.61.

Previous studies (Kaimal et al. 1972) have shown that

the low-frequency scaling break f o is a function of at-
mospheric stability and measurement height. For the SF6

plumes, however, f o is also considerably influenced by
the lack of statistical translational invariance discussed
in the experimental section. Thus the scaling range, the
difference between the two breaks, is limited by the lack
of homogeneity and sensor limitations. Most of the in-
dividual analyses used subrecord lengths A of 16 or 32
block-averaged data points.

An expression of the inhomogeneity in the SF6 plume
is illustrated in Fig. 1. The temperature spectrum, rep-
resenting a more truly homogeneous field, scales to low-
er frequencies than does SF6. For temperature, a more
complete range of eddy-motion sizes and frequencies
are involved with dispersion on the scale of the exper-
iment. In contrast, the low-frequency scaling break for
SF6 occurs at a higher frequency because the larger,
lower-frequency atmospheric motions are expressed in
the SF6 record as zeros with the consequence of loss of
power in the Fourier spectrum. For sufficiently ad-
vanced plume spread and mixing, the SF6 field would
become increasingly homogeneous and the scaling
range would increase.

b. Determination of a, C1, and H for SF6

experimental data

Equation (5) was applied to the maximum number of
available scaling subrecords for each 2-h data record as
dictated by the Fourier analysis of each test case. The
transformation to a conserved signal was accomplished
by replacing the block-averaged time series by the ab-
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FIG. 5. Model data series for a well-mixed, homogeneous field (a 5 1.7, C1 5 0.10, H 5 0.4;
see Table 1).

TABLE 1. Summary of a, C1, and H parameter values from different field studies. Asterisk (*) denotes results for more homogeneous
plume conditions. Here T denotes temperature.

Reference
Passive
scalar Type a C1 H

This paper
This paper
Pelletier 1995
This paper
Pelletier 1995
Wang 1995

SF6*
H2O
H2O
T
T
T

Time, atmosphere
Time, atmosphere
Time, atmosphere
Time, atmosphere
Time, atmosphere
Time, atmosphere

1.60–1.80
1.60
1.69
1.69
1.69
1.69

0.095–0.12
0.07
0.08
0.09
0.08
0.10

0.4
—
—

0.44
—

0.41
Schmitt et al. 1996
Seuront et al. 1999
Chigirinskaya et al. 1994
Lovejoy et al. 2000
Average

T
T
T
T
All

Time, atmosphere
Time, ocean
Space, atmosphere
Space, ocean
Time

1.45
1.70
1.25
1.81
1.7

0.07
0.04
0.04
0.03

0.08 6 0.02

0.38
0.42
0.33
0.31

0.41 6 0.02

solute value of its differences between adjacent data
points, that is, f L,SF6 5 |DrSF6|. For the example 2-h
case (Fig. 2) the (a, C1) were (0.75, 0.315), (1.20, 0.16),
and (1.42, 0.115) for the 50-, 100-, and 175-m towers,
respectively (Fig. 4). The sensitivity of the estimates of
a and C1 for each case was examined individually with
respect to moment order q and/or subrecord length with-
in the scaling subrange. The variability in the estimate
of C1 for each case, typically about 0.01–0.02, exhibited
greatest sensitivity to subrecord size A. The variability
in a for each case was commonly in the range 0.01–
0.03 and was sensitive to both moment order q and
subrecord size. The variability in both parameters tend-
ed to increase as a decreased and C1 increased.

The lowest values of a and largest values of C1 were
almost invariably associated with the 50-m tower. There
was a tendency for the estimated a to increase and C1

to decrease at towers farther downwind, especially at
the 175- and 250-m towers. In fact, the a and C1 values

for the scalar SF6 at 175 and 250 m approached values
typical of those for other scalar fields in which homo-
geneous conditions are closely approximated (temper-
ature and water vapor). Parameter values for SF6 and
other scalars from this study are compared with results
from other field studies in Table 1. A brief summary of
the meteorological conditions, relative position of the
sensor within the plume, and multifractal parameter val-
ues for each case is shown in Table 2.

These results are consistent with the mixed multifrac-
tal nature of the measurements stemming from the line-
source configuration of the experiment discussed above.
The presence of zero gradients (i.e., consecutive zeros
in the record) will affect the DTM analysis and estimates
of a, an effect that increases toward the source as the
number of zeros in the record increases. Measurements
close to the line source are much more likely to be
affected by the highly inhomogeneous margins of the
plume or clean air incursions than farther downwind
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TABLE 2. Summary of meteorological and corresponding estimates
of multifractal parameters. All column headings are described in text
except for u*, the friction velocity.

x u* z/L dz/z̄ a C1 H qD

50
50
50
50
50
50

0.11
0.20
0.25
0.27
0.39
0.36

0.95
0.43
0.21
0.15
0.10
0.09

5.17
3.46
3.02
0.93
2.30
2.36

0.71
0.50
0.70
1.13
0.71
0.61

0.350
0.430
0.335
0.145
0.330
0.330

0.49
1.35
1.94
1.78
1.11

50
50
50
50
50
50

0.36
0.45
0.46
0.68
0.37
0.63

0.08
0.06
0.05
0.01

20.08
20.12

2.30
2.25
2.19
0.37

20.06
1.31

1.42
0.94
0.75
1.57
1.16
1.35

0.370
0.315
0.315
0.112
0.140
0.225

0.50

0.32
0.37
0.39

1.23

50
50
50

100
100
100

0.33
0.44
0.39
0.11
0.20
0.25

20.13
20.40
20.49

0.95
0.43
0.21

20.14
0.28

20.18
3.40
2.07
1.64

1.27
1.12
1.18
0.98
1.43
1.16

0.143
0.205
0.230
0.210
0.177
0.160

0.47
0.48
0.50

0.43
0.42

1.78

1.61
100
100
100
100
100
100

0.27
0.39
0.36
0.36
0.45
0.46

0.15
0.10
0.09
0.08
0.06
0.05

0.33
1.15
1.15
1.06
1.03
0.99

1.34
1.30
1.24
1.28
1.28
1.20

0.120
0.150
0.145
0.165
0.160
0.160

0.50
0.51
0.37
0.44
0.58
0.44

1.16
1.44
1.58

1.30
100
100
100
100
100
175

0.68
0.37
0.63
0.33
0.39
0.11

0.01
20.08
20.11
20.12
20.49

0.95

20.16
20.51

0.20
20.59
20.68

2.36

1.60
1.43
1.13
1.39
1.06
1.05

0.109
0.110
0.155
0.102
0.128
0.165

0.40
0.41
0.37
0.29
0.35
0.43

1.41

175
175
175
175
175
175

0.20
0.25
0.27
0.39
0.36
0.36

0.43
0.21
0.15
0.10
0.09
0.08

1.30
0.93

20.01
0.49
0.49
0.45

1.53
1.36
1.35
1.45
1.52
1.65

0.120
0.124
0.123
0.110
0.114
0.110

0.44
0.38
0.48
0.42
0.39
0.44

1.32

2.13
2.97

175
175
175
175
175
175

0.45
0.46
0.68
0.37
0.33
0.63

0.06
0.05
0.01

20.08
20.12
20.12

0.45
0.36

20.44
20.74
20.79
20.33

1.66
1.42
1.73
1.40
1.71
1.32

0.115
0.115
0.125
0.120
0.097
0.110

0.42
0.46
0.43
0.41
0.36
0.34

1.88

175
175
250
250
250

0.44
0.39
0.11
0.20
0.25

20.40
20.49

0.95
0.43
0.21

20.74
20.87

1.89
0.91
0.59

1.16
1.20
1.45
1.73
1.46

0.145
0.127
0.140
0.113
0.110

0.57
0.43
0.24
0.34
0.33

2.03

1.35
250
250
250
250
250

0.27
0.39
0.36
0.36
0.45

0.15
0.10
0.09
0.08
0.06

20.19
0.20
0.21
0.14
0.11

1.80
1.59
1.55
1.68
1.64

0.125
0.110
0.119
0.110
0.110

0.46
0.39
0.53
0.33
0.46

1.85

250
250
250
250
250
250

0.46
0.68
0.37
0.33
0.63
0.39

0.05
0.01

20.08
20.12
20.12
20.49

0.08
20.57
20.83
20.87
20.55
20.92

1.54
1.78
1.80
1.59
1.58
1.74

0.113
0.095
0.115
0.097
0.115
0.150

0.30
0.32
0.38
0.39
0.40
0.40

where the effect of zeros diminishes. Low a and high
C1 are associated with the early, less-mature stages of
scalar mixing. Increasing plume homogenization and
spread of the plume by turbulent mixing for larger x

(i.e., as x → `, c → constant) is expressed by the shift
in a to those valves more representative of a homo-
geneous, universal multifractal field (a → $1.6).

c. Comparison of experimental and model results

The stochastic model was run for each case using the
SF6 experimental values of a, C1, and H for a greater
than 1. In general, any combination of decreasing H,
decreasing a, and/or increasing C1 will result in an in-
crease in P/M or fluctuation intensity ic for the stochastic
model. The plume statistics from these nondimensional
model time series were compared to the statistics for
the corresponding 2-h experimental time series after the
SF6 concentrations had been averaged to 1 and 15 s.
The former is close to the actual response characteristics
of the analyzer, represents a likely minimum possible
time span for any potential health consequences, and
offers a comparison between the resolution of the in-
ternal plume structure by model and experimental data
at high frequency. The latter tests the sensitivity of the
model to longer averaging periods for P/M evaluation
and is closer to a more probable duration for health
effects. The ratios of the averaging time for the peak to
the averaging time for the mean are about 1/7200 and
1/480 for 1 and 15 s, respectively.

The number of data points generated by the model
was some power of 2 and was chosen to be similar in
magnitude to the number of 1- or 15-s experimental
data points for each 2-h period (e.g., 4096 or 8192 for
1-s averaging). Because the model is stochastic in na-
ture, it was run 20 times for each (a, C1, H) set from
each case. The averages calculated from the 20 runs
were used in the comparison between model and ex-
perimental results. For the experimental data, 1-s av-
erage values that were less than 1% of the maximum
and varied by less than 1 ppt between adjacent points
(i.e., approximately 0.01% of the maximum) were set
equal to zero. This adjustment was done to minimize
the effects of instrument noise in the presence of SF6-
free air. In a similar way, model points with values less
than 1% of the maximum and fluctuations between ad-
jacent points of less than 0.01% of the maximum were
set equal to zero. For a less than 1.5, 11.6% and 20%
of the model and experimental values were set to zero,
respectively. For a greater than 1.5, 1.4% and 5.9% were
set to zero. For the purpose of comparing the dimen-
sional experimental quantities with the nondimensional
model values, all values were normalized by their re-
spective means. The stochastic model was run for each
case using the experimental values of a, C1, and HSF6

for a greater than 1.
The role of a as a key multifractal index and its ability

to characterize multifractal signals, in this case the state
of scalar mixing, suggests keying the analysis to a. A
comparison between the 1-s experimental and model
results for P/M as a function of a is shown on Fig. 6.
For higher values of a, there is a tendency for the ex-
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FIG. 6. Plot of 1-s average peak-to-mean ratios (P/M ) from experimental measurements (v)
and corresponding stochastic model results (V) vs a with uncertainty bars [measured (heavy lines),
model (light lines); bin mean P/M (m)]. The trend lines, for emphasis only, are power-law fits to
the P/M for experimental (solid) and model (dashed) points.

FIG. 7. Plot of a (v) and C1 (V) values determined by DTM from SF6 experimental data vs
corresponding experimental values of peak-to-mean ratio (P/M). The trend lines are power-law
fits, for emphasis only.

perimentally measured P/M to exceed the corresponding
model result. For a from 1.0 to about 1.2 the modeled
P/M ratios tend to be similar to or higher than the mea-
sured ratios. In all a bins (a . 1), however, the un-
certainty in the experimental value of P/M overlaps the
uncertainty about the model value. Given the logarith-

mic axis, the uncertainty in P/M tends to increase for
a # 1.2.

The estimated values of a and C1 as a function of the
corresponding experimentally measured values of P/M
and ic for each 2-h case are shown in Figs. 7 and 8,
respectively. Although a notable scatter exists, there is
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FIG. 8. Plot of a (v) and C1 (V) values determined by DTM from SF6 experimental data vs
corresponding experimental values of fluctuation intensity ic. The trend lines are power-law fits,
for emphasis only.

FIG. 9. Plot of a (v) and C1 (V) values determined by DTM from SF6 experimental data vs
corresponding experimental values of the normalized distance from the mean plume height z. The
trend lines are power-law fits, for emphasis only.

an obvious suggestion of a correlation between these
plume concentration characteristics and the correspond-
ing a and C1. This suggestion indicates that a and C1

parameterize the state of mixing and turbulent concen-
tration fluctuations. There is also a suggestion for a
dependence of a and C1 on the normalized distance from
the mean plume height z to the measurement height,
especially above zm (Fig. 9). This result would reflect

the influence of plume inhomogeneities near the mar-
gins. The value of the mean plume height z was found
from the numerical solution of (van Ulden 1978)

2dz k
5 (6)

dx [ln(pz/z ) 2 c(pz/L)]f (pz/L)0 c

at each tower distance x for the experimentally deter-
mined values of L, where c is a surface layer similarity
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FIG. 10. Plot of 15-s average results for peak-to-mean ratio (P/M ) (experimental v; model V)
and fluctuation intensity ic (experimental 3; model 1) vs a.

FIG. 11. Plot of the normalized mean-square error (v) and ratios of the mean model P/M:mean
measured P/M (V) and mean model ic:mean measured ic (n) vs a.

correction for stability (Businger 1973), k is the von
Kármán constant equal to approximately 0.40, and p is
approximately 1.55. The dependence of a and C1 on
distance from the center of the plume is consistent with
the inhomogeneous nature of the source and the pres-
ence of SF6-free air aloft as discussed above.

A summary of the experimental and model results for
the 15-s averaging time for P/M and ic is shown in Fig.
10. These results suggest that the model can be used
effectively at varying scales of resolution.

Figure 11 summarizes the comparison between ex-
periment and model for P/M and ic. The increase in the
normalized mean-square error for P/M as a decreases
can be explained in part by the much greater uncertainty
in both the experimental and model estimates of P/M
for small values of a.

The ability of the model to predict the probability of
realizing a full spectrum of peak strengths rather than
just P/M was then examined. The probability of the
stochastic model predicting values at different multiples
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FIG. 12. Plot of the probability of experimental (clear) and model (patterned) estimates
exceeding some multiple factor of their respective mean values.

of the mean value is compared with the observed prob-
ability of observing experimental values at different
multiples of the mean (Fig. 12) (i.e., ‘‘1’’ 5 mean, ‘‘2’’
5 2 times the mean). This comparison is for the ag-
gregate of all the experimental cases (a . 1) and the
corresponding model results using 1-s average values.
The model predictions for the probability of realizing
values at some multiple of the mean is generally less
than, but always within an order of magnitude of, the
observed experimental probabilities for all multiples of
the mean.

d. Divergence of statistical moments, choice of q, and
estimates of a and C1

The scale dependency of actual measurements is a
fundamental consequence of cascade processes concen-
trating conserved fluxes into smaller and smaller regions
of space. However, the small-scale limit of such pro-
cesses is singular, and a distinction must be made be-
tween ‘‘bare’’ and ‘‘dressed’’ cascade properties
(Schertzer and Lovejoy 1987, 1991, 1993; Lavallee et
al. 1993). A bare cascade is a theoretical cascade after
a finite number of cascade steps (L , `). A dressed
cascade, in contrast, is one that represents the spatially
averaged, fully developed cascade (L → `), integrated
at the experimentally accessible scale of resolution of
the measurement system.

Because the dressed cascade takes all the small-scale
structure and interactions into account, it is more var-
iable than the corresponding bare cascade. More pre-
cisely, the two will differ for all moments q greater than
qD when the dressed moments will diverge. This di-
vergence has consequences for the choice of q in the

estimation of a and C1. Empirical moments for dressed
(space/time block-averaged quantities) will diverge for
moment orders q greater than or equal to a critical mo-
ment order qD (Tr → ` for q . qD). The subscript D
indicates that qD is a function of the averaging space.
Estimates of qD can be obtained using the absolute value
of the slope for the power-law scaling given by Pr(DSF6

. y) } , where DSF6 are the differences between23qDy
adjacent data points, and y are thresholds. To obtain the
best statistics, data at the highest available resolution
are used (Chigirinskaya et al. 1994; Schmitt et al. 1994).

Examples of this analysis for SF6 are shown in Fig.
13 with results of selected cases reported in Table 2.
The mean qD,SF6 for the SF6 scalar is 1.58. This mean
value is less than the values for horizontal wind velocity
found in this study (qD,u ø 2.43). The low values for
qD,SF6 and its large variability are consistent with the
inhomogeneity of the SF6 fields. The choice of a low
value of q (q 5 0.8) for estimation of a and C1 was
made out of consideration for the low values of qD,SF6.

Theoretically K(q, h) is a convex function. However,
empirical datasets are finite, and sufficiently high-order
moments cannot be accurately estimated. In particular,
the scaling will become spurious [K(q, h) becomes lin-
ear], diverging for qh . qD or h . qD, and the use of
Eq. (3) breaks down. This breakdown will occur when-
ever max(q, qh) $ min(qs, qD) where qs is the maximum
moment that can be estimated using a finite number of
N independent samples and is given by qs 5 [(D 1 Ds)/
C1]1/a. The sampling dimension Ds equals logN/logl,
and D 5 1 for a one-dimensional time series (Schertzer
and Lovejoy 1989). The constraint by qs can be over-
come by increasing the sampling, whereas the constraint
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FIG. 13. Plot of Pr(DSF6 . y) ; y23qD for selected cases [(l) 100-m tower, yeardays 173 to
174, 2300–0100 local time, qD,SF6 5 1.30; (V) 100-m tower, yearday 168, 1100–1300 local time,
qD,SF6 5 1.41; (v) 175-m tower, yeardays 173 to 174, 2300–0100 local time, qD,SF6 5 1.81]. The
lines are slopes used for estimating qD.

by qD is a fundamental limitation related to averaging
to the highest available resolution, which may be much
larger than the actual inner scale of homogeneity (e.g.,
the physical limit of viscous dissipation).

5. Discussion

It is clear that the plume parameters P/M and ic are
sensitive to the values of a and C1 and that the deter-
mination of a and C1 is a function of the state of mixing
and the magnitude of the variability in the signal. The
a and C1 for SF6 from the line source approach values
representative of passive scalars from homogeneous
sources as the zeros disappear and plume homogeneity
increases downwind.

The indication of a relationship between (a, C1) and
P/M raises the prospect of using the codimension mul-
tifractal methodology for the analysis and prediction of
large-magnitude events that greatly exceed the mean.
The method is capable of describing the inherently large
variability in plume concentrations. Once the parameters
a, C1, and H have been established for a given situation,
it would be an easy matter to model the process at other
timescales of resolution. The greatest obstacles to its
use are the need to obtain suitable quality datasets for
parameter estimation with regard to the presence of scal-
ing, data size, measurement resolution and accuracy, and
the uncertainties associated with its use, especially for
small values of a or large values of C1. In this respect,
it is pointed out that the stochastic prediction of P/M
is sensitive to the selected record length. On the other
hand, one of the utilities of the stochastic model is the

ability to make estimates of the probability of realizing
extreme events at timescales of observation beyond or
at magnitudes in excess of those present in the actual
observations. This estimation can be accomplished by
using the model to generate arbitrarily long data series.
An alternate multifractal method of evaluating extreme
events is with use of the maximum sampling singularity
gs (e.g., Pandey et al. 1998).

The methodology has potential applications to a wide
variety of natural geophysical processes whose mea-
sured signals are commonly multifractal in character.
Among the possibilities implicated by this research is
application of the methodology to the modeling of point-
source plumes. Assuming it can be linked to a model
describing point-source plume meander, the multifractal
methodology can be used for analyzing concentration
fluctuations within plumes. Within the plume, scalar
time series from a line source can mimic those from a
point source. Plumes of any origin can exhibit sharp
variations in concentration above and about the mean
as measured by P/M and ic, respectively. The state of
mixing within line-source and point-source plumes will
be similar near the source, near the margins, or farther
downwind after extensive mixing. It is conjectured that
the multifractal results for line- and point-source plumes
would be similar with respect to these controls. It was
beyond the scope of this study, but it might be possible
to generate dimensional concentration data series by cal-
ibrating model results against the measured experimen-
tal data from which the multifractal parameters were
determined (e.g., set the mean of the model data series
equal to the mean of the experimental data series and
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scale the model data series accordingly). Alternately,
they might be calibrated against the mean concentrations
predicted by other kinds of models.

One of the constraints on this analysis was the limited
scaling ranges of the SF6 power spectra. This introduced
uncertainty into several aspects of the analysis. First, it
increased the uncertainty in the determination of b from
the slope of the spectra. Second, it led to some uncer-
tainty in the identification of the optimum scaling range
for use in determining the a and C1 parameters. A close-
ly related point is how the shortened scaling ranges
restricted the subrecord lengths that could be used for
finding the multifractal parameters. Ideally, the longest
possible subrecord A should be used to minimize the
uncertainties involved with the estimates of a and C1.
Provided a sufficient scaling range is present, however,
the DTM algorithm can be used.

6. Conclusions

The use of the DTM technique for the analysis and
description of the plume concentration characteristics
P/M and ic for a line source has been demonstrated. The
multifractal parameters a and C1 express the state of
mixing, and there is a definite correspondence between
a and C1 and the measured P/M and ic. Furthermore, it
is possible to use the results of experimental measure-
ments, the DTM technique, and a stochastic multifractal
model to analyze and to predict in-plume concentration
fluctuations and the state of scalar mixing. There are
significant uncertainties associated with use of the mul-
tifractal model, but the uncertainties in the model results
overlapped the uncertainties in the measurements in ev-
ery case. The large uncertainties are a direct reflection
of the large natural variability exhibited by plumes.
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APPENDIX

Summary of Multifractal Theory

The multifractal model of turbulence is a consequence
of the intermittency basis of the cascade theory for the
inertial subrange (Richardson 1922; Yaglom 1966; No-
vikov and Stewart 1964; Mandelbrot 1974; Sreenivasan
1991; Schertzer and Lovejoy 1987, 1989; Monin and
Yaglom 1975); this implies that power-law scaling is
present in the observed process. In brief, cascade theory

states that energy or other conserved flux will be con-
served, on average, but nonuniformly redistributed as
it passes from larger scales to smaller scales. This results
in the flux, on each realization, being concentrated into
smaller regions of space and the creation of steep gra-
dients, intermittency, and a multifractal field.

A fractal is a scale-invariant geometric set of points,
and a multifractal is a scale-invariant field; the set of
points exceeding any specified signal magnitude
(threshold) is a fractal set whose dimension depends on
the threshold used to define it. A (mono)fractal field is
distinguished from a multifractal field by the fact that
it is independent of any threshold, that is, the signal is
either ‘‘off’’ or ‘‘on.’’ A concentration field is multif-
ractal because a different set of points and filling of the
available geometric measurement space will be defined
as the threshold changes. As the threshold increases,
fewer and fewer points will be included in the fractal
set corresponding to each threshold.

Multifractal fields have traditionally been studied us-
ing monofractal box-counting techniques based on the
geometric dimension of the measurement space. This
‘‘functional box-counting’’ approach (Lovejoy et al.
1987) quantifies the filling of the embedding space by
a concentration measurement as a function of resolution.
The application of box-counting techniques to multi-
fractals is achieved by assuming the fractal dimensions
are dependent on scalar concentration and then system-
atically varying the concentration threshold. In this geo-
metric dimension approach, Df 1 Cf 5 D, where Df is
the fractal dimension and quantifies the filling of space,
Cf is the codimension, and D is the geometric dimension
of the embedding space of the time or space series mea-
surement. This geometric approach is constrained to the
analysis of signals where Df is less than D and Cf is
less than D. When Cf is greater than D, however, the
result is a negative fractal dimension and the ‘‘latent
paradox’’ (Mandelbrot 1989).

In contrast, the statistical codimension multifractal
formalism (Schertzer and Lovejoy 1987, 1989) avoids
this problem because the codimension is defined in an
infinite dimensional probability space and is indepen-
dent of the embedding dimension. In this approach, the
codimension quantifies the relative filling of the total
probability space and Cf can exceed D. An implemen-
tation of this approach is described in the main text.

The codimension function c(g) characterizing the sta-
tistics of the conserved multifractal measure density m
(nondimensionalized by the mean) is defined by

Pr(f l $ lg) ø l2c(g) , (A1)

where Pr is probability. The symbol l denotes the scale
of resolution of the measurement. The symbol g denotes
the singularity magnitude (ølogf l/logl). The ‘‘ø’’
sign denotes equality to within slowly varying factors.
The lg notation specifies a threshold level. The function
c(g), then, is the scaling exponent of the probability
distributions of the conserved measure density f at ar-
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bitrary resolutions l. The probability that the signal will
be observed will decrease as the threshold lg increases,
that is, fewer peaks will reach above the threshold.
Knowledge of the statistical moments, K(q, h), is gen-
erally equivalent to knowledge of the probability dis-
tributions and is convenient for statistical analysis.

A conserved signal refers to a time or space series
in which the mean is equivalent at all time/space scales
of observation. It is the direct result of a multiplicative
cascade process in which the quantity is conserved from
one scale to the next in the cascade. Therefore, it is
independent of the scale of resolution l. Recall that the
sum of the spectral power over all frequencies is the
variance. In classical theory of turbulence there are two
conserved fluxes from the large scale to the dissipation
scale, the energy flux « and the passive scalar variance
flux x, both which are proportional to variance. The
fluxes « and x are conserved by the nonlinear equations:
^«l& 5 constant and ^xl& 5 constant where ‘‘^ &’’ de-
notes the ensemble mean. By essentially dimensional
arguments, the observed velocity shears Dyl and scalar
concentration fluctuations Drl are related by Dyl 5

l21/3 and Drl 5 l21/3 (Corrsin 1951; Obukhov1/3 1/3« fl l

1949), where f l 5 . The scaling factor of the3/2 21/2x «l l

form l2H is necessary for satisfying the requirement that
f must be conserved from one scale to the next.

The quantity used in analyzing a multifractal cascade
process must be conserved from one scale to the next.
In general, however, an observed data series r is not
conserved and must be transformed into a conserved
signal, generically denoted f, using the scaling factor
of the form l2H. From the above, the measured time
series signal r is generically related to the conserved
signal f by some scale-changing operation involving
only the dimensionless scale of resolution l (Schertzer
and Lovejoy 1987, 1993; Lavallee et al. 1993; Schmitt
et al. 1992):

rl 5 f ll2H. (A2)

The parameter H is one of three universal multifractal
parameters and characterizes the degree of nonconser-
vation. A conserved flux can be obtained from a non-
conserved signal by fractional differentiation of r by an
order H (e.g., power-law filtering in Fourier space). This
represents the transformation of observations made at
some scale of resolution into a conserved quantity that
is proportional to variance. For conserved multifractals,
H is equal to 0 and is ⅓ for « and x in Eq. (A2).
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