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SUMMARY

In Paper I, we showed how anisotropic scaling spectral (second-order) models of the
magnetization (M) were realistic at both high- and intermediate-wavenumber regimes
of the surface magnetic field (B). However, in order to produce full stochastic M and
surface B models, we need assumptions about statistical moments other than second
order. The usual approach is to assume quasi-Gaussian statistics so that all the statistical
moments are scaling according to a single exponent. The corresponding fields are mono-
fractal. All structures—both weak and strong—have the same unique fractal dimension,
there are no strong anomalies and there are no intermittent transitions from one strata
or region to another; such assumptions are quite unrealistic. Using seven surface B

surveys, we show that the data are, on the contrary, multifractal, and we characterize
their multifractal parameters in both the high- and intermediate-wavenumber regimes
with the help of universal multifractal exponents. Using anisotropic (stratified) multi-
fractal models, we deduce the M statistics and produce M and surface B simulations
with all statistical exponents quite near to those of the observed surface B field; they are
also visually realistic, showing anomalies at all scales. Finally, we analyse the horizontal
anisotropy of the surface B fields and use this to infer the M statistics. This enables us to
produce anisotropic 3-D M, B models with more realistic texture and morphology of
structures. We conclude that both multifractality and scaling anisotropy are indispensable
for realistic geophysical models.
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1 I N T R O D U C T I O N

In Paper I of this series, we argued that scaling models of

geophysical fields were necessary in order to account for the

ubiquity of fractal structures spanning wide ranges of scale.

However, to be realistic we saw that at the very least the vertical

stratification had to be accounted for, that is, that the scaling

must be anisotropic. In particular, while anisotropic scaling

models of the magnetization (M) generically lead to scaling, ‘red

noise’ intermediate-range surface magnetic (B) fields; isotropic

(self-similar) models, on the other hand, imply no intermediate

range and virtually no variability at horizontal wavenumbers

less than the Curie wavenumber [inverse Curie depth (10 km)x1

to (100 kmx1)]. Although scaling stratification is enough to make

realistic second-order (spectral) models of M and surface B, by

itself the spectrum is generally not enough to define a complete

stochastic model. The main exception—which is all too often

invoked—is when the statistics are assumed to be quasi-

Gaussian, in which case all the statistics are defined from the

spectrum. However, there are several strong arguments against

quasi-Gaussian statistics. At a purely qualitative level, they

involve small fluctuations, hence quasi-Gaussian processes

would not produce very interesting structures (such as strong

magnetic or other ‘anomalies’), there would be no sudden

‘intermittent’ transitions from one strata to another or from

one geological province to another, and the spectral exponents

estimated from single realizations (e.g. single boreholes) would

all have nearly the same values. In short, a quasi-Gaussian

process would not be acceptable on basic qualitative empirical

grounds. In addition to these qualitative arguments, many studies

of marginal probability distributions of geophysical quantities

(starting with de Wijs 1951; see Pilkington & Todoeschuk 1993

for susceptibilities) have produced a log-normal phenomenology

of geophysical fluctuations, that is, they have found statistics

close to long-tailed log-normal distributions, proving that

rare large events/gradients/values are far more common than

quasi-Gaussian statistics would allow. Although it is now

known that strict log-normality is incompatible with scaling,
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quasi-log-normality is on the contrary an attractive, stable

(‘universal’) multifractal behaviour, hence it is indeed prima

facie evidence for multifractality. This incompatibility is due to

the singular small-scale limit in multifractals, which gives rise

to the divergence of high-order statistical moments, hence log-

normality breaks down for the extremes (it will underestimate

them) (see Schertzer & Lovejoy 1987, 1992, 1994).

Scaling quasi-Gaussian processes are the generalizations of

Brownian motions called fractional Brownian motion (fBM) and

are obtained by fractionally integrating (power-law convolving,

power-law filtering) Gaussian white noise. Since convolutions

are linear operations, such processes are ‘additive’. They are

also ‘monofractal’ since—taking the example of an fBM topo-

graphy (as originally proposed by Mandelbrot 1977)—all the

various topographic level sets (constant altitude sets) have

identical fractal dimensions. Other (additive) generalizations of

Brownian motion can be obtained by fractionally integrating

various Levy noises, but these are still essentially monofractal,

and have such strong intermittency that their variances diverge

(their standard spectra are therefore not defined).

Although due to its apparent simplicity it is tempting to reduce

the properties of a scaling process to a unique exponent—hence

to a unique fractal dimension—developments in non-linear

physics throughout the 1980s (particularly in turbulence theory)

have shown that this is simplistic and that scaling processes are

generally multifractal involving an infinite number of fractal

sets, each with different fractal dimensions. Indeed, since

scale-invariant fields generally define an infinite number of scale-

invariant (fractal) sets—for example, one for each threshold

level—it would be a miracle if all the infinite number of fractal

sets each had exactly the same fractal dimension. In turbulence,

multifractality is now so well established both theoretically

(cascade processes) and empirically (high Reynold’s number

experiments) that the debate is no longer about multifractals

per se, but rather about the exact form of the scaling exponent

function (see Schertzer et al. 1995 and Schertzer & Lovejoy

1997 for more details on the debate). In solid earth geophysics,

probably the most convincing empirical evidence for multi-

fractality is that of the topography (Lovejoy & Schertzer 1990;

Lavallée et al. 1993, Weissel & Pratson 1994), although Marsan

& Bean (1999) have shown that gamma emission and seismic

velocity are also multifractal and Lovejoy et al. (2001a) show

that surface gravity is also multifractal over various ranges.

The objectives of this paper are therefore first to show that

the surface B field is indeed multifractal, and to characterize the

infinite hierarchy of exponents by three universal multifractal

parameters. We then use this information—with the help of

stochastic (stratified, anisotropic) multifractal M models to

deduce the M statistics and show how to make realistic M, B

models that include scaling horizontal anisotropy. These

models fit all the available statistical observations of surface

B and volume M at all ranges of scales and all levels of intensity

(e.g. all moments, not just second order).

2 M U L T I F R A C T A L S A N D U N I V E R S A L
M U L T I F R A C T A L S

Multifractal fields have scaling properties characterized by a

scaling exponent function. Thus, if we consider the probability

of finding a field value el exceeding a given scale-dependent

threshold lc, where l is the scale ratio, we find that this

probability, Pr(el>lc), can be related to the order of singularity c

that characterizes this threshold by

Prðej > jcÞ&j�cðcÞ , (1)

c ¼ log ej= log j ,

where the co-dimension function, c(c), describes the sparseness

of the field intensities (Schertzer & Lovejoy 1987). When c(c) is

less than the dimension of space (d) it can be given a geometric

interpretation since D(c)=dxc(c) is the fractal dimension of

the set of points where el exceeds lc.

An equivalent statistical description of the multifractal el

may be made in terms of the moment scaling function, K(q)

(not to be confused with the horizontal wavenumber), which is

defined as

Seq
jT&jKðqÞ : (2)

This gives the scaling behaviour of each moment q of

the field. In real systems this multiscaling behaviour [which

implies a non-linear convex K(q)] holds only over some finite

range of scales. These, however, can be quite large; in the case

of the atmosphere, noted above, the ratio of largest to smallest

scale may be of the order of 109–1010 (from planetary scale

to viscous dissipation scale; see e.g. Sachs et al. 2001; Lovejoy

et al. 2001a).

These scaling exponent functions allow a complete charac-

terization of the statistics of the field. They are nevertheless

difficult to handle since they represent an infinite hierarchy of

parameters—K(q) can be an arbitrary convex function. We

wish to find an expression for one or both of these functions

that will enable us to describe the scaling in a fairly simple

form with a small number of parameters. In order to do this, we

note that many geophysical systems involve turbulence, which

has long been regarded as arising from cascade processes

(Richardson 1922). Many explicit cascade models have been

developed where a quantity such as energy flux (for atmospheric

turbulence) is injected at large scales and is cascaded to smaller

and smaller scales via multiplicative modulations.

At first sight, the infinity of multifractal exponents makes

them apparently unmanageable: theoretically a model would

require an infinite number of parameters, and empirically we

would also need estimates of an infinite number. Fortunately,

stable, attractive universality classes exist for multifractal pro-

cesses. This means that independently of many of the dynamical

details, physically relevant multifractal processes are likely

to depend on just three fundamental parameters (Schertzer &

Lovejoy 1987, 1991). For the recent debate about strong versus

weak universality, see Schertzer et al. (1995) and Schertzer &

Lovejoy (1997). This means that under quite general conditions

involving scaling non-linear cascade-like dynamics (that is, even

in the absence of true turbulence), the generic result is believed

to be ‘universal’ multifractals (Schertzer & Lovejoy 1987), where

the K(q) function is given by

KðqÞ ¼ C1

a � 1
ðqa � qÞ , a=1 ,

KðqÞ ¼ C1q log q , a ¼ 1 ,

(3)

where 0<aj2. The parameter C1 is the co-dimension of

the mean of the field, characterizing the sparseness of the set

of points that make the dominant contribution to the mean of

the field. The Lévy index a characterizes the degree of multi-

fractality (Schertzer & Lovejoy 1987). As ap0, K(q) becomes
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linear and we obtain the monofractal b-model (Novikov &

Stewart 1964; Yaglom 1966; Mandelbrot 1974; Frisch et al.

1978), where the field may be described by a single fractal

dimension; the maximum value a=2 corresponds to the well-

known case of the log-normal multifractal (this is actually

a misnomer—due to divergence of high-order moments, the

distribution will only be approximately log-normal).

Although some of the technical details are non-trivial and

have led to debate about multifractal universality (see e.g.

Schertzer & Lovejoy 1997), the basic theoretical arguments are

straightforward. First, Schertzer & Lovejoy (1987) have shown

that multifractal cascades are generic multifractal processes (i.e.

they generally obey eq. 1). This implies that log el (the cascade

‘generator’) is an additive process, hence the (generalized)

central limit theorem implies that the logs tend to a normal or

Levy distribution and hence that the process el tends to a log-

normal or log-Levy process. These universal multifractals have

now been shown to describe a large number of geophysical and

other systems [see Lovejoy & Schertzer (1995) for a recent

review and Lovejoy & Schertzer (1998, 1999) for a discussion of

the theoretical framework of ‘stochastic chaos’].

The description of el in terms of statistical moments and the

description in terms of probabilities are linked since the latter

are related by a Mellin transformation. For their exponents

[K(q) and c(c)], the Mellin transformation reduces to a Legendre

transformation (Parisi & Frisch 1985),

cðcÞ ¼ maxq=ðqc � KðqÞÞ ,

KðqÞ ¼ maxcðqc � cðcÞÞ : (4a)

This Legendre transformation shows that there is a one-to-one

relation between the field values (the singularities) and moments:

q=ck(c), c=Kk(q). Applying eq. (4a) to the K(q) in eq. (3) yields

the corresponding co-dimension function c(c),

cðcÞ ¼ C1
c

C1a0
þ 1

a

� �a0

, (4b)

where ak is defined by (1/a)+(1/ak)=1. The precise meaning of

the above interpretation of C1 as the co-dimension of the set

giving the dominant contribution to the mean is that c=Kk(1) is

the corresponding singularity and c(Kk(1))=C1. It turns out

that for conservative multifractals, K(1)=0, so that we also

have from eq. (4a) C1=Kk(1), hence c(C1)=C1 is a fixed point.

Unfortunately, we can rarely, if ever, directly observe the

scale-by-scale conserved (el) fields that are the direct outcome

of the cascade process. Most observable fields ( fl) are instead

related to the fluxes via scaling relations involving a third

exponent H of the following type:

j* fjj&ejj�H , (5)

whereas most multifractal analysis techniques require the

analysis of fluxes (e). In the fractionally integrated flux (FIF)

models, the lxH (linear) scaling term is modelled by a fractional

integration (power-law filter) of el to obtain fl. Hence, to obtain

the conservative process, we invert this by differentiating/

integrating by the same order [Fourier space filtering by |k|G—

see the next section and see Schertzer et al. (1997) for more on

this FIF model].

3 E S T I M A T I N G T H E M U L T I F R A C T A L
P A R A M E T E R S

In order to estimate the universal multifractal parameters a, C1, H

of a multifractal field, we will employ a ‘bootstrap’ technique

in which we first obtain a nearly conservative field that allows

us to obtain rough estimates of the parameters. We then use

the H estimate to obtain a more accurate conservative field,

and hence refined estimates. In order to see how this works,

consider the estimation of a and C1 from a conservative field.

The most powerful technique is the double trace moment,

or DTM, technique (Lavallée et al. 1992, 1993) in which the

field e at the finest resolution is first raised to the power g and

then integrated (or degraded in resolution or ‘dressed’) up to a

scale l. This renormalized field will then be described by its own

moment scaling function, K(q, g). The relation between K(q, g)

and the usual statistical scaling exponent K(q) is (Lavallée

et al. 1992)

Kðq, gÞ ¼ KðqgÞ � qKðgÞ : (6)

For the case where the process is a universal multifractal we

have (applying eq. 6 to eq. 3)

Kðq, gÞ ¼ gaKðqÞ ¼ ga C1

a � 1
ðqa � qÞ , a=1 : (7)

The scaling exponent in this case has two factors; one depends

only on the universal parameter a. By fixing q and varying g, we

can determine the value of the parameter a directly and then

deduce C1 from K(q). By plotting K(q, g) versus g on a double

logarithmic plot, we can determine the value of a from the slope

of the line. Using this estimate of a and the value of q, we

can deduce the value of C1 (for example, from the intercept

of the line with g=1). The only complication is that eqs (3)

and (7) will break down for sufficiently high-order moments

when the statistics are dominated by a single extreme value (this

corresponds to multifractal phase transitions; these can be of

either first or second order; see details in Schertzer & Lovejoy

1994). It will also generally break down for extreme low values

of qg due either to the presence of noise in the data or to

discretization effects (the true number of very low gradients of

the field is often not easy to estimate accurately).

The first step in the bootstrap is to obtain a conservative field

by taking the modulus of the finite difference gradient vector;

this is a numerical approximation of an (isotropic) differentiation

of order 1. As long as H<1, the double trace moment tech-

nique applied to the resulting field will give reasonable estimates

of a, C1 [see Lavallée et al. (1993) for details, numerical

simulations and tests; see also Schertzer et al. (1997) for more

discussion]. The main drawback is that the scaling is somewhat

broken by the finite difference approximation to the gradient,

as well as when the absolute value of the latter is taken.

[Veneziano & Iacobellis (1999) has complained that—as pointed

out in Lavallée et al. (1993)—this operation can break the

scaling over a range of factor 2–4 or so in scale at the extreme

smaller scales. However, if the scaling is over a wide enough

range, this problem is not too important since the larger scales

can be used to obtain accurate exponent estimates without

directly using the extreme small scales.] This method (applied

to both the higher- and lower-wavenumber regimes) yielded

a#1.9 and C1#0.1. To obtain the refined estimates we use these

values to estimate H, which can then be used to differentiate

the field fractionally. This is done by comparing the observed
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spectral exponents (b) with those of the conserved process

given by (Monin & Yaglom 1975),

bcon ¼ 1 � Kð2Þ : (8)

This relation for the spectral exponent of a conservative

multifractal cascade can be understood from the fact that the

power spectrum is the Fourier transform of the autocorrelation

function, which is a second-order moment. The value of H is

then estimated from

H ¼ b � bcon

2
(9)

(the factor of 2 comes from the fact that the energy density is

the integral of the square of the Fourier modulus).

Our revised analyses of the high- and low-wavenumber parts

of the data give a=1.92t0.03 for the higher- and a=2.0t0.1

for lower-wavenumber parts of the data. Since the DTM is

mostly sensitive to the behaviour of the moments near q=0, a

value a=2 directly implies no more than the analyticity of K(q)

at the origin, that is, a Taylor series expansion of K(q) about

q=0 may have higher-order terms. Indeed, it is only in the case

of the universal ‘log-normal’ multifractal that there are only

quadratic terms. Note that the lower-wavenumber region of

the data corresponds to the ‘intermediate’ range discussed in

Paper I [that is, between the Curie wavenumber and approxi-

mately (2000 km)x1]. The values obtained for C1 differed for

the higher- and lower-wavenumber ends of the spectrum. The

estimate for the high-wavenumber regime for C1 is 0.14t0.01;

the estimate for the intermediate- (lower-) wavenumber regime

is C1 (see Table 1 for a full intercomparison of parameter

estimates). Since the DTM (Figs 2a and b) is mostly sensitive to

the low-q behaviour, the fall-off in the ratio of high- and low-

wavenumber K(q) (Fig. 3) shows that either a is substantially

different for the two regimes or more likely that universal

multifractals are only low-q approximations to the statistics;

see discussion below and the simulation (universal multifractals

may, however, still be a good model for M). We also note that

values obtained from the K(q) (Fig. 3) graph for the multi-

fractal parameters are for the most part in good agreement with

those obtained from the DTM; however, as the K(q) fit is non-

linear and the range of scales over each wavenumber end is

limited, we use the values obtained from the DTM.

Fig. 1 shows the scaling of various moments of the high-

wavenumber part of the data. Figs 2 (a) and (b) show the fits

of the DTM. We note that these estimates are performed

over a limited range of scales and are thus not as precise as

those taken over a larger scaling range. Note that the value

of a (corresponding to an order of non-analyticity at q=0) is

somewhat smaller than, but close to, the value 2 [correspond-

ing to analytic K(q) and—at least approximately—log-normal

statistics].

Strictly speaking, the scaling exponents are determined from

an ensemble average. It is necessary to have a large number of

independent measurements of the field because of intermittency

and the extreme variability of multifractal fields. Certain orders

of singularity, corresponding to very high field values, may

in fact have a co-dimension larger than the dimension of space

and will almost certainly not appear in any given realization/

example of the field. Nevertheless, these values will appear in a

sufficiently large number of realizations and can be statistically

important, dominating the statistical moments of high enough

order. They will in general cause a divergence of the high-

order moments of the field (Schertzer & Lovejoy 1985, 1987),

associated with a non-classical form of self-organized criticality

(Schertzer & Lovejoy 1994), for magnetism; this will be discussed

elsewhere.

4 D E D U C I N G T H E q T H - O R D E R M
S T A T I S T I C S F R O M T H E S U R F A C E B
S U R V E Y S

In Paper I we showed how to relate the surface B to the volume

distribution of M. Since scaling non-linear geophysical pro-

cesses are expected to be multifractal, a priori we will assume

that M is multifractal. In addition, since the surface B field is

linearly related to the source M field, if the latter is multifractal,

then we expect that—at least over certain ranges—the former

will also be multifractal. Unfortunately, the multifractal problem

of how to relate the statistics of the two fields to all orders is

much more difficult than the relatively straightforward second-

order problem; we will rely on explicit multifractal models. For

several reasons, the best place to begin modelling is with the M

rather than surface B field. This is likely to be simpler since

we have seen that due to anisotropy and Curie depth effects,

we may expect there to exist several regimes for the B field,

even if there is only one for the M field. In addition, while the

inverse problem (determining the 3-D M given the surface B)

is not uniquely determined, the determination of B from M is

unique. Finally, the non-linear processes responsible for the

magnetization distribution are plausibly universal multifractals,

whereas the surface B field is linearly derived from M (and

therefore is unlikely to be universal).

Table 1. Intercomparison of the conservative multifractal parameters C1, a for surface B field and simulated M. The terms ‘high’ and ‘intermediate’

refer to the wavenumber regime immediately above and below the Curie wavenumber, respectively. The ‘non-linear’ estimates were for the entire

K(q) function for q<3, whereas the DTM is more sensitive to the range q near 0. No errors are quoted for the simulated M since these were the

input parameters used in the model. The vertical value of C1 is the horizontal value divided by Hz=1.7 for the simulation. The H-values were not

given because they depend almost entirely on b since C1 is small (see eqs 8 and 9). Using the values bh=2, bi=bhx1=1 from Paper I, we obtain

HBh=0.61, HBi=HBhx0.5=0.11; HM=0.2 (see text). For comparison, the quasi-Gaussian monofractal has C1=0, whereas the ‘b model’

monofractal has a=0, H=0.

Empirical B

DTM

(high regime)

non-linear

(high)

DTM

(intermediate)

non-linear

(intermediate)

Simulated B

DTM

(high)

DTM

(intermediate)

Simulated M

horizontal

vertical

C1 0.14t0.01 0.14t0.01 0.08t0.01 0.09t0.01 0.16t0.06 0.09t0.02 0.08 0.047

a 1.92t0.03 1.87t0.05 2.0t0.10 2.2t0.2 1.8t0.10 2.05t0.09 1.98 1.98
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To infer the statistics of M, we start with the observation

(Appendix A, Paper I) that for the relevant spectral (second-

order) exponents, the surface B spectral densities are the same

as the power-law filtered vertical integral of the M spectral

density. Since this filter only changes the values of the fractional

integration H, this predicts that Kh(2)#Ki(2)=KM(2) (where

the subscripts h and i refer to the high- and intermediate-regime

wavenumber surface B statistics), which is approximately

empirically verified (Fig. 3). [The term ‘intermediate’ refers to

the regime kic<K<kc with kic#(2000 km)x1; see Paper I.

Of course, for the data sets here whose lowest wavenumbers

are (200 km)x1, the intermediate regime corresponds to the

lowest empirically accessible wavenumbers.] However, we have

seen empirically that in the low-q limit (as characterized by

the DTM, which is mostly sensitive to q<1 statistics), the

ratio Kh(0)/Ki(0)#2, which is roughly the same value as that of

Hz obtained by fitting the empirical and theoretical spectra

(Paper I). Numerical simulations (described below) confirm this

connection. In addition, the relation Kh(0)/Ki(0)=Hz would

result if for weak intensity fluctuations (corresponding to low-

order singularities c, or equivalently low-order moments q#0)

the horizontal anomaly wavenumber K and the vertical mag-

netization structures at wavenumber kz are roughly related in a

one-to-one way as follows:

K&kHz
z : (10)

Using this relation between K, kz, we can see that a given

factor of l in scale in the vertical corresponds to an equivalent

horizontal factor li in the intermediate-wavenumber regime,

whereas it corresponds to lh
Hz in the high-wavenumber regime,

that is, for low enough q we would have

ji ¼ jHz

h : (11)

If we now assume that this relation holds for low enough order

statistics using nel
qm#lK(q), we have

Khð0Þ
Kið0Þ

¼ Hz , (12)

as observed in Fig. 2. As a first approximation, it is there-

fore possible to use large q statistics of B [i.e. where Kh(q)

and Ki(q) are roughly equal] as a proxy for a conservative

cascade contribution to the M statistics. The numerics show

that we can in fact do a little better than this since they show

that for the low-wavenumber B regime, we have Ki(q)#KM(q)

for all q; we therefore use Ki(q) to deduce the KM(q), i.e. we take

C1=0.08, a=1.98. The only remaining parameter to deter-

mine is HM, the non-conservation parameter for the horizontal

magnetization multifractal. HM can be determined using the

fact that s=bh+2=bx,M+Hz+1 and bx,M=1xKM(2)+2HM

(see eqs 8 and 9). We thus obtain the estimate

HM ¼ 1

2
ðbh þ KMð2Þ � HzÞ : (13)

Using the values s=4 (hence bh=2), KM(2)=Ki(2)#0.16 (from

Fig. 3) and Hz=1.7, we find HM=0.2 (note that these values

are all approximate). In this way, the observed B field gives

us the statistical information necessary to make a multifractal

simulation of the M field, and hence to model the B field. The

various assumptions are thus checked by numerical simulation.

We turn to this in the next section.

5 A N I S O T R O P I C S I M U L A T I O N S O F B
A N D M

We have seen that although we were able to obtain an exact

spectral relation between M and B, the relationship between

the full statistics of B and M was not so easy to calculate

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

q=0.14
q=0.56
q=0.98
q=1.40
q=1.82
q=2.24
q=2.66

log
10

(λ)

Figure 1. Scaling of the moments of the high-wavenumber end of the fields (l=1 corresponds to 812.8r24#12 km).
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theoretically. In the previous section we saw that a kind of

a ‘bootstrap’ can be used in which, with the help of the data

and some theoretical arguments, an intelligent guess of the M

statistics is made; the latter is then used to simulate M and

hence B. Let us quickly review this in a little more detail and

describe the multifractal numerical simulation procedure. As a

first step in determining the statistics of M we have used the fact

that it should respect the anisotropic scaling symmetry. Such an

anisotropic field of M (assumed throughout to be parallel to the

z-axis) respects the following:

j*Mjj ¼ jMðxþ Tj*x1Þ �MðxÞj ¼ ðTjs1Þj�H ¼ sjj
�H , (14)

where Dx1 is a unit separation vector (i.e. it lies on the unit ball),

x is the conserved flux of the cascade producing the mag-

netization, x1 is the flux averaged over a unit ball and Tlx1=xl

is the flux averaged over a ball Bl=TlB1, where Tl=lxG. For

reference, note that if xl is replaced by a Gaussian white noise,

KM(q)=0 and M will be a (monofractal) fractional Brownian

motion, and that the quite different monofractal ‘b model’ has

a=0, C1>0, H=0.

The conserved flux is required to satisfy

Ssq
jT ¼ jKMðqÞ , (15a)

with scale-by-scale conservation implying nxlm= constant

(independent of scale) so that KM(1)=0. Note that taking

ensemble averages of qth powers of eq. (14) coupled with

eq. (15a) yields the structure function

Sj*MjqjT ¼ j�mMðqÞ (15b)

with exponent

mMðqÞ ¼ qHM � KMðqÞ : (15c)

The use of the generator

G ¼

1 0 0

0 1 0

0 0 Hz

0
BBB@

1
CCCA

implies that the 1-D horizontal (x) and vertical (z) statistics are

the same if the scale ratio l is replaced by lHz. Hence, writing

Kx,M(q) for the 1-D horizontal exponent, Kz,M(q) for the 1-D

vertical exponent, we find that the two are related to the full

anisotropic scaling exponent KM(q) as follows:

KMðqÞ ¼ Kx,MðqÞ ¼ HzKz,MðqÞ : (16a)

Similarly, from eq. (14),

HM ¼ Hx,M ¼ HzHz,M : (16b)

Hence, for structure functions we obtain

mMðqÞ ¼ mx,MðqÞ ¼ Hzmz,MðqÞ : (16c)

These relations ensure that the magnetization spectral exponents

respect the relation (bxx1)=Hz(bzx1).
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Figure 2. (a) The exponent K(q, g) as a function of g for q=1.5

obtained as slopes of curves such as those in Fig. 1 (high-wavenumber

end of the data sets). The fit gives the values a=1.92t0.03 and

C1=0.14t0.01. (b) The exponent K(q, g) as a function of g for q=1.5

obtained as slopes of curves such as those in Fig. 1 for the low-

wavenumber end of the data sets, corresponding to the intermediate

range discussed in Paper I. The fit gives the values a=1.98t0.10 and

C1=0.08t0.01.
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Figure 3. Exponent K(q) from the trace moments of the higher- and

lower-wavenumber parts of the data sets. The fit to the moment scaling

function, K(q), gives the values a=1.87t0.05 and C1=0.14t0.01 (for

the higher end circles) and a=2.2t0.2 and C1=0.09t0.01 (for the

lower end triangles). These values are within the uncertainty of the

values found from the DTM, with the exception of a for the low-

wavenumber part, which is marginally outside. The graph also shows

the ratio between high- and low-wavenumber K(q), indicating that it

has some q dependence and a value of y1.0–2.0 (squares).
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(a)

(b)

Figure 4. (a) Numerical multifractal simulation of the M field with a=1.98, C1=0.08, HM=0.2, Hz=1.7 (implying s=4) on a 128r128r64 pixel

grid with the spheroscale=128 pixels. Because of the large dynamical range variability, the colour scale is chosen on a log M scale here and in all the

displays below. Notice that structures are flatter and flatter at smaller scales. This is not a realistic model for M because the thickness of this simulation

(half the spheroscale) is far larger than the Curie depth cut-off. The direction of M is assumed here and below to be fixed in the z-direction.

(b) Numerical multifractal simulation of the M field with a=1.98, C1=0.08, HM=0.2, Hz=1.7 (implying s=4) on a 128r128r64 pixel grid with the

spheroscale=1 pixels. Notice that structures are more and more vertically oriented at larger scales and roughly spherical at small scales. Although

the M spheroscale is apparently empirically of the order of the size of the earth, so that these very large scales are not realistic for M, this simulation

could be a qualitatively correct simulation for mantle rock density where the spheroscale is plausibly of the order of 100 km. In that case, the vertically

aligned structures would correspond to convective cells and ‘hotspots’. The direction of M is assumed here and below to be fixed in the z-direction.

Figs 4, 5, 7, 10, 11, 12 and 13 may be viewed in colour in the online version of the journal (http://www.blackwell-synergy.com).
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(a)

(b)

(c)

Figure 5. (a) Simulated M field for horizontally isotropic crustal magnetization. The vertical anisotropy has Hz=1.7, and s=4, H=0.2, a=1.98,

C1=0.08. The spheroscale was taken to be only y2500 km; the simulation is a region 32r32r16 km; the resolution is 0.25 km. This is a reasonably

realistic crustal section, although the spheroscale was taken to be a bit too small in order that strata may be easily visible. (b) Simulated M field for

horizontally isotropic crustal magnetization; same parameters as (a). The simulation is 128r128r32 km; the resolution is 1 km and only the portion

above the Curie depth of 10 km is shown. (c) Simulated M field for horizontally isotropic crustal magnetization; same parameters as (a). The

simulation is 512r512r16 km; the resolution is 4 km. (d) Simulated M field for horizontally isotropic crustal magnetization. The vertical anisotropy

has Hz=1.7, with a spheroscale of y2500 km (also s=4, H=0.2, a=1.98, C1=0.08). The simulation is 4r4r16 km; the resolution is 62.5 m. The

cut-out shows the stratification and the presence of anomalies at all depths.
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The final step is to use the approximation discussed in the

previous subsection viz. that the intermediate wavenumber B

statistics should be the same as the horizontal M statistics:

Ki(q)#Kx,M(q)=KM(q). The multifractal parameters used to

simulate the magnetization were therefore a=1.98, C1=0.08;

in addition, using s=4, Hz=1.7, we obtained HM=0.2.

The numerical details of the multifractal simulation procedure

for M are given in Pecknold et al. (1993) (see also Wilson et al.

1991 and Marsan et al. 1996 for extensions to space–time

modelling). In brief, the process starts with a subgenerator,

cg, which is an uncorrelated Gaussian or Levy noise (with the

desired Levy parameter a; the amplitude of the Levy fluctuations

of the subgenerator determines C1). This subgenerator is then

fractionally integrated (power-law filtered) to yield an exactly

1/f generator Cl; the latter is exponentiated to yield the con-

servative multifractal xl=eCl. Finally, xl is power-law filtered

(exponent HM) to yield M. For a self-similar process, all the

fractional integrals are isotropic, whereas in the anisotropic

version, all isotropic fractional integrals are replaced by the

corresponding anisotropic ones. This means, for example, that

the fractional integral order H, which in the self-similar version

is a power-law filter (Fourier space multiplication) of |k|xH

(i.e. with the usual vector modulus), is replaced in the aniso-

tropic versions by the scale function (defined by G; see Paper I,

Section 3) so that the filter involves Fourier space multiplication

by ||k||xH. Note that the simulations below were generally

performed on a total of 220 gridpoints on a personal computer.

(d)

Figure 5. (Continued.)
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Figure 6. (a) 1-D Power spectra E(kz) for borehole M for simulated

fields 128r128r32 pixels, each pixel=1 km; same parameters as

Fig. 5(b) but with spheroscale=5000 km. Due to the Nyquist

wavenumber the vertical spectrum can only be calculated over a

range of factor 16 in scale. The straight line shows the theoretical

slope bz=1.17. (b) Horizontal power spectra E(K) for M for seven

simulated fields, same parameters as Fig. 6(a). The straight line shows

the theoretical slope bx=1.3.
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Before considering more realistic stratification parameters, let

us first consider the effect of variable spheroscale in the vertical

plane. Figs 4(a) and (b) visually display the way the typical

structure shapes change with scale. Fig. 4(a) shows the effect

of stratification decreasing at larger and larger scales, while

Fig. 4(b) shows how it can reverse and yield vertically aligned

structures at scales even larger than the spheroscale. Although

in Paper I we found that the data suggest that the M sphero-

scale is too large for this scale range to be physically realized for

the planetary M field, since the spheroscale for rock density

is much smaller [apparently of the order of 100 km, although

with comparable Hz values; see Lovejoy et al. (2001b)],

Fig. 4(b) may therefore represent a section of the mantle

several thousand kilometres across with the vertically aligned

structures corresponding to ‘convective cells’. Fig. 5 shows a

fairly realistic set of parameters at varying scales with respect to

the Curie depth and varying model resolutions. All structures/

anomalies are random singularities of various orders, and are

produced naturally by the multifractal process; they do not

need to be introduced by hand. Note that the same basic

(a) (b)

(c) (d)

Figure 7. (a) Surface B field from simulation shown in Fig. 5(a), i.e. with 128r128r64 pixels, each pixel=0.25 km (the entire simulation represents

a region 32 km across). The Curie depth=16 km so that nearly the entire field shown is in the smooth, high-wavenumber regime bh=2. (b) The surface

B field resulting from the simulated crustal M field in Fig. 5(b). Since the entire region simulated is 128 km across and the Curie depth is 10 km, the

transition from high- to intermediate-wavenumber regime is in the middle of the range shown; the high-wavenumber structures are noticeably

smoother than the lower ones. (c) Surface B field from simulation Fig. 5(c) with 128r128r4 pixels, each pixel=4 km (the entire simulation

represents a region 512 km across). The Curie depth=16 km so that most of the field shown with the exception of the very highest wavenumbers is in

the (rough) intermediate-wavenumber regime with bi=1. (d) Surface B field from the simulation in Fig. 5(d), 64r64r256 pixels, each pixel=62.5 m

(the entire simulation represents a region 4 km across). The Curie depth=16 km so that the entire field shown is in the smooth high-wavenumber

regime with bi=2.
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geometries of structures will occur if ks, Hz are fixed but

a, C1, HM are varied. Of the latter, increasing (decreasing)

HM will make all structures more and more smooth (rough),

whereas increasing (decreasing) C1 will cause the simulation to

be increasingly (decreasingly) dominated by one or two very

violent anomalies. A high value of a will make this change

happen more quickly for a given change in C1.

Before comparing the statistics of the simulated surface B

field with those of the data, we checked the numerical accuracy

of the M simulation by calculating the ensemble average

spectrum of seven simulations (the same number as the number

of B surveys) in both the horizontal and vertical directions

(Figs 6a and b). The theoretical lines (slopes calculated from

eqs 20a and b in Paper I) are shown for reference; the agree-

ment was judged reasonable, although there seemed to be a

slight underestimate at the very lowest (factor of two) hori-

zontal wavenumbers, and also the highest factor of two. Such

‘finite size’ numerical effects near the extreme ends of the range

of the model were difficult to avoid and are common in this

type of simulation. The vertical spectrum was quite close to the

theoretical slope, although again with a slight underestimate

of the variability at the lowest factor of two in wavenumber.

Note that the realization-to-realization variability about the

theoretical power laws is quite large; this is because in multi-

fractals the spectral exponents on individual realizations are

random variables with large variability (see Lovejoy et al. 2001c

for the related problem of conditional spectra). This explains

why the empirical susceptibility data (magnetization surrogates)

analysed in Paper I gave such poor estimates of the exponents.

Note that in order to show the scaling of the simulation over

more than one order of magnitude, the borehole spectrum is

over the entire size of the field and neglects the presence of the

Curie depth. Also note that the values for E(K), E(kz) appear to

be roughly compatible with a very large spheroscale.

We can now calculate the horizontal B fields correspond-

ing to the M fields in Figs 5(a)–(d); this was done using

eq. (6) of Paper I (Figs 7a–d). The corresponding spectrum of

the simulation that best straddles the transition region (Fig. 5b)

is shown in Fig. 8. In order to obtain the same overall

variability as the seven empirical data sets, a total of seven such

simulations were performed. Except for the extreme low-

wavenumber factor of 2–3 (presumably inherited from the finite

size effects of the M simulation), this reproduces the theoretical

spectrum as expected. Fig. 8 shows that the simulated aero-

magnetic field spectrum shows roughly the same spectral

scaling behaviour as the empirical fields (including the break,

shown for comparison) and indicates good correspondence

of the model with the data. The weakest agreement is in the

transition zone (near K#kc); this is likely to be the result of

the unrealistic treatment of the Curie depth as being simply

an abrupt spectral cut-off, whereas in fact it is presumably a

spatially irregular (fractal) real-space cut-off.

Fig. 9(a) shows the simulated field moment scaling

function K(q) for both high and low wavenumbers and fits

to these, along with the ratio of Kh(q) to Ki(q) (again for seven

realizations). In order to improve the estimates we have per-

formed separate simulations for the high- and low-wavenumber

regimes, that is, we changed pixel size so that the largest and

then the smallest horizontal scales, respectively, corresponded

to the Curie depth (Figs 7b and c show the typical B field

realizations used here). This gave us the maximum possible

range of scales (factors of 128) with which to estimate the scaling

exponents. Perhaps the most important point is that although

the error bars are not as small as we would like, the ratio of

Kh(q) to Ki(q) does decrease from a value of #Hz (=1.7 in the

simulations) to #1 as we go from q#0 to q>1 (the variation is

much the same as in the data, cf. Figs 3 and 9b and c); this

provides a posteriori justification for the use of the multifractal
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Figure 8. Power spectrum of simulated aeromagnetic fields (triangles) superimposed on the power spectrum for the data (circles). The theory and

data each involve averaging over seven realizations. The straight lines are the high- and intermediate-wavenumber theoretical slopes, bh=2, bi=1. The

vertical scales are arbitrary and the two curves are somewhat offset for clarity.
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parameters determined from the low-wavenumber regime of B.

Figs 9(b) and (c) compare the moment scaling functions of the

simulated fields to those of the data. We note that both Kh(q)

and Ki(q) for the simulation are very close to those from the

data, thus at all scales (K, l) and at all intensities (c, q) our

model is in good agreement with those of the data; Table 1

shows a detailed intercomparison. Note that for moments

greater than q#3, all the K(q) functions become roughly linear;

this is a multifractal phase transition and indicates that the

sample size is too small to estimate the corresponding moments

and K(q) accurately; the values are dominated by single large

gradients and the data/simulation comparisons are no longer

expected to be very good (Schertzer & Lovejoy 1992, 1994).

Overall, this good agreement gives excellent vindication of

the ‘bootstrap’ method used to deduce the M statistics from the

surface B statistics.

6 A N A L Y S I S A N D S I M U L A T I O N O F
H O R I Z O N T A L S C A L I N G A N I S O T R O P I E S

6.1 GSI analysis of the fields

Up until now, we have concentrated our attention on

the vertical/horizontal anisotropy/stratification, assuming—

for simplicity—horizontal isotropy/self-similarity. However,

shears and tectonic and other (presumably scale-invariant) pro-

cesses lead to horizontal stretching rotation and more general

transformations of structures with scale; in this section we charac-

terize the resulting horizontal anisotropy and show how to model

it. Although unsurprisingly the overall magnitudes of the hori-

zontal anisotropies turn out to be much smaller than those of the

vertical, they nevertheless characterize the morphology/texture of

the M and B fields. A fully realistic treatment of the anisotropy

would recognize that the anisotropy is not only scale-dependent

but also position-dependent; it would require the use of a non-

linear generalized scale invariant with a stochastic generator.

Practical ways of handling such general scale changes are still

in the experimental stage (see Addor et al. 2000); we therefore

approximated the anisotropy using a linear GSI approximation

in which the generator is a matrix.
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Figure 9. (a) Exponents Kh(q), Ki(q) determined from the trace

moments of the high- and intermediate-wavenumber parts of the

simulated B field with parameters Hz=1.7, s=4, H=0.2 the same as in

Figs 5 and 7 (implying bxM=1.3, bzM=1.17, bl=1, bh=2). The fit to

the moment scaling function, K(q), gives the values a=1.8t0.1 and

C1=0.16t0.06 for the high end and a=2.05t0.09 and C1=0.09t0.02

for the intermediate end. Note that the scale ratio over which these

exponents were estimated is quite small due to numerical constraints

and the attempt to simulate both scaling ranges. The graph also shows

the ratio between high-and low-wavenumber K(q), indicating that it has

a slight q dependence, dropping from 1.7 (=Hz) to approximately 1,

roughly similarly to the data. (b) Kh(q) (circles) estimated from trace

moments are simulations; triangles are data from the high-wavenumber

regime. The simulations were with parameters a=1.98, C1=0.08,

HM=0.2, Hz=1.7, the data for scales <10 km. We see that there is

excellent agreement between the data and the simulations. The linear

asymptote for q greater than about 3 is due to a multifractal phase

transition (see text). (c) Ki(q) (circles) estimated from trace moments are

simulations; triangles are data from the intermediate-wavenumber

regime. The simulations were with parameters a=1.98, C1=0.08,

HM=0.2, Hz=1.7, the data for scales >10 km. We see that there is

excellent agreement between the data and the simulations. The linear

asymptote for q greater than about 3 is due to a multifractal phase

transition (see text).
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Since we consider only 2-D (horizontal) fields, we will seek

estimates of the exponents e, f, c in the horizontal generator

Gh ¼
1 þ c f � e

f þ e 1 � c

 !
:

Note that Trace(Gh)=del for the horizontal space has been set

at a value of 2; this is equivalent to using the square root of

areas of structures as the definition of scale (see the discussion

in Paper I). The parameters were estimated using the scale-

invariant generator technique (SIG; Lewis 1993; Lewis et al.

1999; for applications see Pecknold et al. 1997), which was used

to determine the GSI parameters for the seven magnetic fields

of data set #1. This technique is a least-squares regression

method that is used to fit the generator of the anisotropy, Gh, to

the spectral density P(kx, ky). The basic technique is to minimize

an error function E2=b [P(lxGhk)xlxsPGh
(k)]2dk, where the

minimization is with respect to both Gh parameters and spectral

slope s. Since it uses the spectral slope as a parameter, this

technique must first be altered so as to account for the break in

scaling of the magnetic field power spectrum. One way to do

this is to perform a minimization on areas of spectral density

on either side of the break. Equivalently, the data sets can be

‘enhanced’ by filtering to eliminate the break. This technique

consists of estimating the intermediate- and high-wavenumber

spectral slopes and performing a fractional differentiation with

differing order on each regime of the field, with the difference in

order given by (bixbh)/2 (since theoretically bi=sx3, bh=sx2,

this difference=1/2). One advantage of performing this is that it

provides an enhancement of the higher-wavenumber structures

of the field. This could be useful in the discovery of otherwise

hidden magnetic anomalies. Fig. 10(a) shows an example of one

of the data sets used, along with the 2-D power spectrum, with

GSI balls given by the measured parameters (see Table 1) super-

imposed on it. The break in the spectrum in Fig. 10(b) has

been compensated for by analysing the GSI parameters on the

high- and low-wavenumber regimes.

The GSI parameters found for the data sets are listed

in Table 2. If an isotropic scale exists (a true spheroscale;

a circle in two dimensions), the size is given. In certain cases,

no spheroscale appears to exist; the simplest quadratic family

(ellipses) does a poor job in this case. These systems can

nevertheless be reasonably well described by a family of fourth-

order polynomial balls, as described in Pecknold et al. (1996);

in Table 2 these are the surveys marked ‘quartic’.

Note that in the majority of cases, we find a2<0, hence

the texture/morphology is rotation-dominant. In some extreme

cases (e.g. the data set labelled ‘west’ in Table 2), a#0.4i,

implying a complete rotation of structures every factor of

e2p /|a|#107 in scale.

6.2 Horizontally anisotropic simulations

We now use the values obtained in the previous sections to

perform simulations that include full horizontal anisotropy as

well as the horizontal–vertical anisotropy. In the cases examined

here, we assumed that there was no rotation of structures in the

vertical plane; we expected (and found numerically) that the

horizontal generator (Gh) is the same for both M and B, hence

the parameters c, e, f measured from the horizontal B can be

used directly in the M simulation. Although these assumptions

about M do lead to correct simulated surface B statistics, it

is not obvious that completely neglecting rotations in the

vertical plane is realistic. This question can only be answered

by extensive empirical analysis of M data.

As in the pure stratified cases, the multifractal parameters of

the magnetization were a=1.98, C1=0.08 and H=0.2. The

generator used was

G ¼

d þ c f � e 0

f þ e d � c 0

0 0 Hz

0
BBB@

1
CCCA ,

with Hz=1.7, a spheroscale of 5000 km and a Curie depth of

16 km. GSI parameters used were similar to those of data set

nn141 (Table 2). Figs 11(a), 12(a) and 13(a) show simulated

crustal magnetization for various horizontal anisotropies

(Gh), while Figs 11(b), 12(b) and 13(b) show the derived aero-

magnetic fields. The basic morphological features—which are

particularly visible in the B fields—are various ‘textures’, some

(a) (b)

Figure 10. (a) Aeromagnetic field nn141 (left). The 2-D power spectrum PBkx, ky with isolines fitted from calculated parameters: c=x0.01,

f=x0.05, e=0.20, horizontal spheroscale=16.8 km.
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of which resemble certain regions of the survey shown in

Fig. 10(a). This is a basic limitation of linear GSI: it is only an

approximation to the more general non-linear GSI presumably

characteristic of the data. The full characterization and modelling

of M, B fields with non-linear GSI is an important subject for

future research.

7 C O N C L U S I O N S

In Paper I, we argued that in order to account for the

intermediate ‘red noise’ regime of the surface B field (roughly

100 to 2000 km in scale) it was sufficient that models of M and

surface B be scaling but anisotropic rather than self-similar.

While this was sufficient for the spectral modelling presented in

Paper I, it is only in the special case where the fields are quasi-

Gaussian that the spectrum gives a full statistical character-

ization of the process and its statistics. On the other hand,

scaling fields (such as M—or over various ranges—the surface

B field) define an infinite number of fractal sets, and hence

they will generally require an infinite number of exponents

(e.g. fractal dimensions) for their specification. Qualitatively,

this multifractality corresponds to the various levels of activity/

intensity, each having a different degree of sparseness (quantified

by a fractal co-dimension). It allows for the existence of rare,

violent (far from Gaussian) extreme events/anomalies (generally

including non-classical algebraic probability tails; self-organized

critical fluctuations). Finally, since stable, attractive universality

classes exist for multifractal processes, most of the non-linear

dynamical details generating the M distribution are expected

to be unimportant and the latter will generally be characterized

(a)

(b)

Figure 11. (a) Horizontally anisotropic M field. The vertical anisotropy gives Hz=1.7, s=4, with a spheroscale in the vertical plane of 2500 km, a

spheroscale in the horizontal plane of 64 km and a Curie depth of 16 km. The horizontal anisotropy is c=0.07, f=x0.04, e=0.20, d=1. The

simulation is 64r64r16 km at 0.5 km resolution. (b) Magnetic field resulting from simulated crustal magnetization of (a).
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by three universal multifractal parameters. These universal

behaviours includes the widespread geophysical log-normal

phenomenology. Indeed, quasi-log-normality is prima facie

evidence for universal multifractal statistics.

In Paper II, our goal was therefore to demonstrate and

quantify the multifractality, and to use this information to pro-

duce multifractal models that—over as wide a range of scale

and at each scale over the full range of intensities/statistical

moments—would be as close to the observed M and surface B

statistics as possible. Over the high and intermediate range

of scales (i.e. out to about 2000 km), the dominant source

of B fluctuations was taken to be the M in the crust. The

main approximation was the assumption that B and M were

parallel; in this range B was therefore assumed to be primarily

determined by the variations in susceptibility. M is therefore

fundamental while the surface B is a (linearly) derived quantity.

Table 2. Comparison of the generalized scale-invariant parameters for

the surveys in data set #1. The parameters are believed to be accurate to

roughly t0.05 (see Lewis 1993; Lewis et al. 1999). Note that in self-

similar multifractals, all exponents would be zero. ‘Quartic’ refers to the

fact that in some cases fourth-order polynomials were found to provide

significantly better fits that the quadratics; in these cases no exactly

isotropic scale exists.

Data set c f e a Spheroscale

east 0.05 0.10 0.22 0.19i quartic

west 0.20 x0.14 x0.50 0.44i quartic

meg3 0.05 x0.10 0.10 0.05 100 m

nm151 x0.10 x0.30 x0.20 0.24 125 m

nn151 0.15 0.0 0.0 0.15 70 m

nn141 0.01 x0.05 0.20 0.19i 16.8 km

no141 0.03 0.05 0.10 0.08i quartic

(a)

(b)

Figure 12. (a) Horizontally anisotropic M field. The vertical anisotropy is given by Hz=1.7 with s=4, with a spheroscale in the vertical plane of

2500 km (but only 64 km in the horizontal plane) and a Curie depth of 16 km. The horizontal anisotropy is determined by c=0.1, f=x0.05, e=0.15,

d=1. The simulation is 64r64r16 km at 0.5 km resolution. (b) B field resulting from simulated crustal M of (a) (i.e. a region 64 km across). Note the

preferred direction: the smaller-scale structures are elongated NW/SE, although since the horizontal spheroscale is 64 km, the effect is less pronounced

at larger scales.
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The starting point for the multifractal model was thus a model

of M. However, the M statistics are very poorly known; the

best available evidence was from limited (surrogate) horizontal

and vertical susceptibility spectra. The multifractal parameters

were therefore estimated by a type of ‘bootstrap’ procedure,

whereby the much better-quality surface B data were used to

deduce the M statistics, and the multifractal model was used

to check the overall procedure. The key was the fact that for the

intermediate-range surface B, the model showed that the basic

multifractal exponents C1, a were nearly the same as for the

corresponding horizontal M parameters. This, coupled with

estimates of the stratification from Paper I [and also from the

ratio of high- and intermediate-wavenumber surface B exponents

Kh(0)/Ki(0)], provided the following estimate of the universal

multifractal M parameters: C1M=0.08, a=1.98 and HM=0.2.

Since the value a=2 corresponds to Gaussian generators and

(near) log-normal statistics, this result is roughly compatible

with the log-normal fits of Pilkington & Todoeschuk (1993). The

resulting magnetization spectra in the horizontal and vertical

were very close to the susceptibility spectra, whereas the high-

and intermediate-wavenumber surface B statistics of all orders

(i.e. including those of second order, the spectra) were found to

be very close to those observed. In addition, the simulations

had plausible visual appearances, including stratification and

anomalies.

Since there is no reason to expect horizontal isotropy we also

investigated the anisotropic nature of the surface B field using

the scale-invariant generator technique to estimate the best linear

approximation to the generator of the scale-changing operator.

The parameters of the horizontal anisotropy are associated with

different morphologies and textures and enabled us to simu-

late B fields numerically; their values—typically of the order of

(a)

(b)

Figure 13. (a) Horizontally anisotropic M field. The vertical anisotropy is given by Hz=1.7 with s=4, with a spheroscale in the vertical plane of

2500 km (but only 64 km in the horizontal plane) and a Curie depth of 16 km. The horizontal anisotropy is determined by c=0.05, f=0, e=0.2, d=1.

The simulation is 64r64r16 km at 0.5 km resolution. (b) B field resulting from simulated crustal M of (a) (i.e. a region 64 km across). Note that

although the differential rotation is stronger than in Figs 11(a) and (b) as quantified by the parameter e, the stratification parameters c, f are very small

so that although the ‘texture’ has changed with respect to a comparable horizontally isotropic field, e.g. Figs 7(a) and (b), there are no ‘striations’ such

as those in Fig. 12(b).
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0.2–0.3t0.05—are sufficiently far from the isotropic value 0 to

exclude horizontal self-similarity. In the case examined here,

we assumed that there was no rotation of structures in the

vertical plane, hence the horizontal generator (Gh) is the same

for both M and B. This, together with the parameters provided

by the multifractal analysis and the 3-D anisotropy of the

magnetization, provided the information necessary to perform

quite realistic simulations of magnetization and aeromagnetic

anomaly fields. These simulations reinforced our model of

multifractal anisotropic magnetization: in addition to realistic

‘textures’, the derived fields exhibited scaling and multifractal

characteristics very similar to those found in the data.

Although scaling ideas have penetrated many solid earth

geophysics subfields (see e.g. the early reviews in Turcotte 1992;

Korvin 1992), they have unfortunately generally been in the

simplistic form of self-similar fractal geometry. In this two-

part series of papers, we have argued that geophysics is both

multiscaling and anisotropic, so that realistic applications will

require the kind of anisotropic multifractal framework used

here. Although we have shown how such models can be used

in finding new approaches to solving potential problems, we

anticipate that they will become indispensable tools in other

geophysical inversion problems where realistic statistical con-

straints are theoretically necessary. Similarly, by providing new

data analysis tools (such as trace moments)—going well beyond

spectral analysis—a clearer characterization of the scale-by-

scale and intensity-by-intensity variability of geophysical fields

will gradually be achieved.
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