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MULTIFRACTAL ANALYSIS OF RESOLUTION DEPENDENCE IN SATELLITE IMAGERY
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Abstract. Augmenting a satellite's resolution reveals
increasingly detailed structures that are found to occupy a
decreasing fraction of the image, while simultaneously
brightening to compensate. By systematically degrading the
resolution of visible and infra red satellite cloud and surface
data as well as radar rain data we define resolution-independent
co-dimension functions that describe the spatial distribution
of image features as well as the resolution dependence of the
intensities themselves. The scale invariant functions so
obtained fit into theoretically predicted universality classes.
These multifractal techniques have implications for our ability
to meaningfully estimate cloud brightness fraction, total
cloud amount, as well as other remotely sensed quantities. A
preliminary account of this work can be found in Gabriel et
al,, (1988a). See also Gabriel (1988).

Introduction

The problem of resolution dependence of satellite (and other)
remote geophysical measurements arises because the relevant
emitting and reflecting radiance fields have structures
typically down to millimetric scales or less which are
considerably below the resolving power of current
instruments. With the advent of high resolution civilian
satellites such as the Satellite Probatoire d'Observation
Terrestre- (SPOT) which has a resolution of 10 meters and
with the attendant development of quantitative algorithms for
exploiting data, the problem of resolution dependence
becomes crucial. For example, the International Satellite
Cloud Climatology Project calls for measuring monthly cloud
cover from satellite radiances, with accuracies of a few
percent. Other studies require the radiation budget of the
atmosphere over various spatial scales. Cloud classification
algorithms are also known to be strongly resolution
dependent (e.g. Hughes (1983)). Shih et al. (1988) show that
cloud fractions can frequently vary by factors of two with
changes in resolution by a factor of ten. As we will see
below, this implies a dimension of 2-log2/log10=1.7 which
is not uncommon.

In spite of the growing recognition of the problem, the only
systematic studies of resolution dependence have been in the
perimeters of brightness regions rather that of the regions
themselves (Lovejoy (1982), Rhys and Waldvogel (1986),
Yano and Takeuchi (1988), Welch et al. (1988)).
Furthermore, attention has been confined to the determination
of geometric properties of the perimeters, particularly their
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characterisation by a single fractal dimension. Below, we
extend these studies in two directions. First, using a
technique called "functional box-counting" (Lovejoy et al.
1987), we directly investigate the resolution dependence of
the bright regions themselves as a function of brightness
thresholds, not just their perimeters. Second, we evaluate the
codimension function characterising the generator of the
multifractal radiance fields, showing that the latter fits into
theoretically predicted, two parameter universality classes.
Elsewhere (Lovejoy and Schertzer 1988) some of these early
studies are re-examined in light of the above. The two main
conclusions are that a) the multifractal nature of the
brightness regions leads to systematic and large corrections
to previous estimates of the fractal dimensions of the
perimeters, and b) neglect of the multifractal nature of the
fields can lead to spurious breaks in the scaling.

Outline of Multifractal Framework

Consider a satellite with resolution scale L and denote by 1
the smallest scale of the inhomogeneities of the radiation
field with R being its average scale over L (a single image
element), Rg over the entire image and T'=R/R, is the relative
radiance which may exceed unity. We may then define the
brightness fraction exceeding a given threshold T by:

Number of resolution elements T'>T
Total image elements

Fi= 0]

and, provided that L<m, Fp will be independent of L.
However, clouds are turbulent fields which interact with the
radiation field down to scales of the order of millimeters-
hence, even for SPOT, L>>m. More precisely, the
inhomogeneities of the various atmospheric fields introduce
specific types of strong scale dependencies ("scaling") which
are associated with scale invariant quantities (such as fractal
dimensions, or spectral slopes...) which typically appear as
exponents in power laws of scale ratios. Since the complex
radiative transfer processes involve only the dimensionless
optical thickness (i.e. these processes do not in themselves
break the scaling by introducing a characteristic length) and,
the underlying terrain also involves very small scale
inhomogeneities, we may also expect the radiance field to
have scaling, fractal structures over wide ranges.
Alternatively, if considered from the perspective of the
photon path length, we expect it to be a random quantity
fluctuating: down to similar scales. Some relevant power law
spectral analyses of cloud liquid water and radiance
measurements may be found in King et al. (1981) and
Campbell et al. (1988).

We now seek to express FT in resolution independent terms.
Recall that fields with multiple fractal dimensions
"multifractals” can be mathematically interpreted (Frisch and
Parisi (1985)) as a superposition of singularities of different
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orders (y) with dimensions D(y). This is somewhat analogous
to the decomposition of functions into sums of sinusoids by
Fourier analysis, except that the superposition cannot be
interpreted as a sum. By a singularity of order y, we mean that
in the neighbourhood of the singularity, the field diverges as
'V where I is the distance from the singularity.

Indeed, in Schertzer and Lovejoy (1987) it is shown that in
multiplicative cascade processes, singularities develop
directly as the cascade proceeds to smaller scales. Physically,
the cascade concentrates matter, energy and possibly radiation
fluxes into smaller and smaller regions of space. Gabriel et
al. (1986, 1988a,b) show that radiative transfer in fractal
clouds gives rise to multifractal radiation fields. Schertzer
and Lovejoy (1987) and Wilson et al. (1988) discuss
numerical methods for modelling the passive scalar clouds
associated with the different cascade universality classes.
When such a field is averaged by a sensor over scales L, it
will therefore measure a radiance proportional to LY where Y
is the dominant singularity in the footprint. Introducing the
dimensionless ratio A=L/Lg (<1) where L; is the image scale,
we obtain T=A"", or:

log T
log A

We then use (2) to express T, in terms of vy, obtaining FY
whose scale dependence is in turn described by a simple
power law:

Y=- €5

-D(y
7‘ e

F’YO" 3)
where we have introduced the completely (scale invariant)
codimension function c(y)=2-D(y), where D(y) is the fractal
dimension of the (sparse) regions where T exceeds A~ '. Note
that as the resolution is increased (A—0), Fy(A)—0 for all
c(y)>0, while, T—>eo. This superposition of singularities of
different orders is exactly the type of behaviour expected from
a multiplicative cascade type process. Study of such
processes shows Schertzer and Lovejoy (1987) that c(y) falls
into the the following universality classes:
c(p=c(0)(1+D° @
Yo
where 022, or 0<0 with the value a=2 corresponding to the
case of gaussian cascade generator, and ¢(0) and Yo are
parameters characterising respectively the intermittency and
smoothness of the process. This result is the multiplicative
analogue of the standard central limit theorem for the addition
of random variables. In the latter case, the universality
classes comprise both the familiar gaussian as well as the
less fam1lxar Stable-Levy distributions of parameter o' where
(a) + (OL) =1. Since O<a's2 for stable Levy distributions,
we obtain the restriction 022 or 0<0 (see Schertzer and
Lovejoy 1988). The case 0a<0 involves generators with
infinite means, and is not relevant here.

Results

To show empirically that eq. (3) holds, define for a given T
(or equivalently 7), a series of lower resolution images (size
L) by covering the high resolution image, by disjoint
"boxes" (squares here), of size L. This is the "functional box
counting” described in Lovejoy et al. (1987) which directly
estimates Fy(A) from the number of boxes Np(L) of size L
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Fig. 1a: A plot of F(L) v.s. L for 6 radiance thresholds with
L (in km) varying from 8 to 512 km at visible wavelengths.
The different symbols, top to bottom, indicate thresholds
increasing by intervals of 6 satellite counts (these are
proportional to the square root of themeasured radiance). The
minimum goes channel count is 24 (ground) and the maximum
52 (bright cloud). Corresponding to these counts, the
relative brightness ratio is 4.7. The straight lines indicate
that over this range, the scaling is accurately followed. This
image was from the Montreal region, summer, and was largely
cloud covered.
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Fig. 1b: The same as la, except for the corresponding infra
red image. The straight lines are for satellite channel counts
of 80, 95, 110, 125 and 160, (top to bottom respectively)
corresponding to a black body temperature of roughly 17, 9,
2, -5 and -23 degrees C. Here the lowest radiances
(proportional to the fourth power of the temperature) comes
from the sparsest (highest) cloud tops.

needed to cover the regions exceeding T (F.{k) NY(L)/L 2)

From (3), we obtain: c(y) = - log F A)log

Fig. 1a,b shows the results when the resolution of GOES
(geostationary satellite) visible and infra red images are
degraded from 8 to 512km on 1024X1024 km image section.
The straightness of the lines shows that the scaling is very
accurately followed over this range of scales. As indicated in
figures 2a,b as T (or y) increases, the absolute slopes c(Y)
monotonically increase: the most intense regions are the
most sparse, hence yield the lowest dimensions and highest
codimensions. The only exceptions to this fairly accurate
scaling were in cases of high thresholds with only small
amounts of cloud present in the scene. This is not surprising
since theoretically we only expect scaling to hold in the
limit of either a very large range of scales or an ensemble of
systems each with a limited range of scales.

Since many empirical algorithms designed to exploit
remotely sensed data relate radiances above fixed thresholds
with specific physical features (such as clouds), it is of some
interest to establish whether any such regions can be defined
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Fig. 2a: The functions c(y) for the 10 visible cases analysed
in the text.
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Fig. 2b: Same as 2a, but for the 4 infra red cases.

independently of the satellite resolution (i.e. are there values
of ¥ for which c(Y)=0 and hence F(A)~ constant?). If any of
the radiances used by such an algorithm have c(})>0 then the
algorithm will contain hidden resolution dependencies.
Accordingly, xz tests were used to test the hypothesis that
Fy(l)=AY where is the resolution-independent brightness
fraction sought. In each of the cases we examined (10 in the
visible, 4 in the infra red, spanning nearly cloud free to
nearly completely cloud covered situations over Montreal),
such a hypothesis could be rejected at very high levels of
confidence for all except the very lowest T values (see figure
3 for examples). The results were similar at both

wavelengths. For virtually all features of the radiance fields,
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Fig. 3: Results of 2 tests calculated on the same satellite

derived cloud scenes at visible (unfilled triangles) and infra
red (filled triangles) wavelengths with 6 degrees of freedom.
The %2 statistics provides a means of testing the hypothesis
that is resolution independent. Since in general F_ is
proportional to *M), this is equivalent to testing whetIler
c(7)=0. Note that the abscissa corresponds to f=1-F,, or the
fraction of those points which are below a given threshold.
The dashed lines correspond to the 0.01 level of significance
for 6 degrees of freedom.
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We now show that the empirical c(y) functions fit into the
universality classes (4). This is important theoretically
because it confirms the predictions of cascade theories
(Schertzer and Lovejoy 1985a,b ,1987), and is important
practically, because it permits determination of the
fundamental parameters characterising c(y). If there is no
universality, then we are left in the unattractive situation in
which an infinite number of geometrical parameters (the
dimension function) is required to specify the statistical
properties of the field. Empirically, the existence of
universality classes allows us to determine this entire
function by only using only two parameters. Theoretically,
universality classes are directly related to the dynamical
multiplicative cascade processes themselves.

For the satellite data used here, the empirically accessible
range of ¥ 's is quite small (the maximum is =~0.4). This
makes it difficult to accurately estimate o since the latter
measures the concavity of c(y) which is only pronounced for
large v. The situation is only marginally better for the radar
rain reflectivities we examined (using the same data discussed
in Lovejoy et al. (1987)), in which a range of Y nearly four
times this size was found to be largely compensated by
correspondingly larger values of y,. To obtain well-defined
parameter estimates, we therefore made the plausible
assumption that generators were in the gaussian domain of
attraction (i.e. a=2). Except for the most extreme
fluctuations, the case o=2 is the most consistent with the
widespread log-normal phenomenology of cloud statistics.
Furthermore, for each satellite (and radar) image, we
empirically estimated the parameter Yo via a least squares
regression usingthe formula c(y)=c(y)/c(0). The standard
errors were: *0.037, +0.063, £0.062 for visible, infra red,
and radar data respectively. These are all comparable to the
errors in estimating (y) from functional box-counting which
is typically of the order +0.05.

¢(0) is the empirically determined co-dimension of the field
at image averaged brightness (since R=R=>T=1, y=0). We
then plot the curves <c(y),> v.s. <(1+y/y,))"> fig. 4abc,
where the angle brackets indicate ensemble averaging (here
over all available cases). As predicted, the curves all closely
follow the line x=y (shown for reference). This shows that
the main difference between the primarily cloudy, and cloud
free cases were in the values of the parameters, which for the
visible images were on average 0.21+£.07 and 0.41+.16,
respectively for 7y, whereas c(0) was nearly constant
(0.21+.04 and 0.27+.04, respectively).
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Fig. 4a: The mean normalised codimension, <c(y),> for the
10 visible cases.
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Fig. 4b: Same as 4a, but for the 4 infra red cases.
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Fig. 4c: Same as 4a, but for 10 radar rain reflectivity fields
discussed in detail in Lovejoy et al. (1987).

Conclusions

We have shown clear evidence for the scaling nature of the

resolution dependence of cloud, rain and surface features over
a wide range of scales, radiance intensities, and at several
different wavelengths. These resolution dependencies were
quantitatively characterised by the resolution independent co-
dimension function c¢(y). Unlike the radiance fields,
physically significant quantities (such as cloud fraction) are
resolution independent. Our results therefore underline the
necessity of developing resolution independent approaches
and algorithms (based on c(y)) for exploiting remotely sensed
data. Such resolution independent methods will also be
important in calibrating remote measurements by sparse in
situ networks (Lovejoy et al. 1986a,b). Since we also show
that the empirical c(y) functions fit into theoretically
predicted universality classes, the number of significant
parameters involved may be quite modest.

Due to the complex non-linear interactions between the
remotely sensed radiances and the fields of interest, resolution
independent approaches must involve the development of
continuous multifractal models such as those described in
Schertzer and Lovejoy (1987)) and Wilson et al. (1988). This
will allow us to explicitely model the associated radiation
fields over wide ranges of wavelengths and scales (e.g. as
described in Gabriel el al. 1988a,b). Such models will also
be important in developing optimal sampling, averaging and
calibration procedures. We believe that the results of this
paper give a new impetus to the development of multifractal
methods for analysing and modelling remotely sensed fields.
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