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a b s t r a c t

Rainfall data contains numerous zero values, either real or spurious, especially at high resolution. This
paper investigates how a truncation of a multifractal field affects the scaling analysis. Synthetic multifrac-
tal fields are used. The main result, which is theoretically expected and empirically observed, is that the
truncated fields exhibit a multifractal phase transition for small moments. This implies an under-estima-
tion of the multifractality index, and consequently of the extremes. This framework enables one to
retrieve most of the features observed on radar data corresponding to a heavy rainfall event that occurred
in September 2005 in the South of France. Finally a new technique is proposed to improve the estimation
of characteristic multifractal parameters. It yields imperfect but encouraging results.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Rain is extremely variable over a wide range of scales in space
and time. Because of this feature the rainfall intensity is complex
not only to analyze and to model, but furthermore to measure. A
common way of representing such variability is to use stochastic
multifractals [1–5] that basically rely on the concept of multiplica-
tive cascades [6,7]. In the specific framework of universal multi-
fractals (UM) that has been extensively used [1,8–16] the scaling
variability of the rainfall is quantified with the help of only three
scale independent parameters.

Authors have often pointed out deviations from the UM model
when the rainfall field possesses numerous zeroes (i.e. numerous
time steps or spatial pixels with no rain detected). Indeed, low or-
der statistical moments are found to reflect measurement effects,
such as a threshold of detection, rather than real properties of rain-
fall fields [11,12]. Tessier et al. [17] also mentioned that the stan-
dard technique used to estimates UM parameters might be quite
sensitive to the weak events. Some authors even suggest that the
threshold effect might lead to a spurious break in the scaling
behavior [18,19]. In spite of the concerns that measurement effects
may distort natural behavior and properties of rainfall fields, these
effects remain often ignored and are rarely quantified.

In reality, these deviations from the established multifractal
behavior are quite disturbing, and should therefore be addressed
in depth. Although, the zero values do not influence the values of
the extremes. They nevertheless influence the statistical estimates
of the parameters that are used to estimate the extremes, and this
can have drastic consequences. Moreover, the nature of the zeros is

also usually unknown, as they can be either true zeros in a non-
rainy area, or spurious ones simply related to a threshold of detec-
tion of the rainfall measurement devices. For instance, for most
common tipping bucket rain gauges, three problems are well
known that strongly affect the recording of light rainfall: (a) the
need to wet the surface of the funnel and the two buckets after a
dry period, (b) evaporation losses due to the fact that exposed
water surface is usually large in relation to its volume, and (c)
the discontinuous nature of the measurement [20]. Concerning
radar measurements, the relation between the measured quantity
(reflectivity) and desirable quantity (rain rate) is less precise for
smaller rain rates (although in a logarithmic scale). The radar
rainfall data is often considered to have a limit of detection of
0.2 mm/h. This detection limit was not much improved by recent
dual polarization radar, since algorithms used to estimate rain rate
from vertical and horizontal reflectivity do not work for rain rates
below around 1.5 mm/h [21]. It is worth mentioning that the
effects of zero values becomes more evident with higher space–
time resolution of available data, when zero values become much
more numerous compared to lower resolutions.

For multifractals defined as the small scale limit of the multipli-
cative cascade processes, the difference between infinitesimally
small and zero values generally remain crucial with respect to
many practical applications. Therefore, in this paper we investigate
the threshold effect on simulated multifractal fields, mainly in
terms of their influence on the scaling behavior and estimates of
the UM parameters. No assumption on the nature of the threshold
(i.e. associated with either a physical limit or a detection limit) is
made. The universal multifractals framework is shortly presented
in Section 2, and theoretical predictions concerning the influence
of truncations are made in Section 3. The multifractal properties
of the radar rainfall data corresponding to a heavy rainfall event
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that occurred in the south of France on September 5th, 2005 are
discussed in Section 4. This shows the relevance of studying the
threshold effect. The theoretical predictions are then confirmed
with the help of simulated UM fields with known properties (Sec-
tion 5). At last a new modified method to estimate UM parameters
is suggested and tested (Section 6).

2. Multifractal cascades and methodology

We intend to discuss the fundamental difference between the
multifractal fields having a full hierarchy of scales that results in
some infinitesimally small values at small scales and the truncated
multifractal fields with zero values below a threshold. We will de-
note by Rk the field under investigation (i.e. either radar rainfall
data or simulated multifractal fields) at the resolution k = L/l, which
is defined as the ratio between the outer scale L of the studied phe-
nomenon and the observation scale l. The simulation of multifrac-
tal fields is generally achieved by building a random multiplicative
cascade. For the pedagogical purposes we will use in this paper
only its discrete case: while being easier to manipulate it remains
sufficient to investigate the phenomena associated with the trun-
cation of small values.

Within a discrete multiplicative cascade, each time step (in 1D)
or each pixel (in 2D) is divided into k0 steps or k2

0 pixels respec-
tively. We will use the scale ratio k0 ¼ 2, which is rather usual
although not mandatory. Furthermore, we will limit the explana-
tions to the simplest 1D case. At each step of the cascade process,
the value affected to the new time step is the one of the ‘‘parent’’
time step multiplied by a random factor. As a consequence, after
n steps (the resolution of the cascade is k ¼ kn

0) the value of a given
time step is the product of the random factors of each n previous
steps of the cascade. Because multiplicative cascade processes con-
verge under rather general conditions to Universal Multifractals
(UM) [1,2,8], we use a UM cascade. In the multifractal framework,
universal multifractals correspond to a broad generalization of the
central limit theorem. Their two main parameters C1 and a statis-
tically characterize the mean intermittency and multifractality of a
field. More precisely, the co-dimension C1 characterizing the mean
intermittency; it is the codimension of the singularity of the aver-
age field i.e. C1 = d � D1, where d is the embedding dimension of
the field and D1 is the fractal dimension of the support of this
singularity, hence C1 = 0 for a homogeneous field. The multifractal-
ity index a (0 6 a 6 2) measures how fast the intermittency
varies when considering singularities slightly different from
the average field singularity. A multiplicative random factor of a
UM cascade is indeed fully defined by C1 and a as being

exp C1 lnðk0Þ
ja�1j

� �1=a
LðaÞ

� ��
k

C1
a�1
0 with L(a) being an extremal Lévy-stable

random variable of index a (i.e. hexpðqLðaÞÞi ¼ expðqaÞ) that can be
generated with the help of the procedure given by Chambers et al.
[22].

These two parameters will also be sufficient to simulate a field
exhibiting a change in its scaling behavior by changing the values
of a and/or C1 after a pre-determined number of cascade steps. It is
important to mention that the result of discrete multiplicative cas-
cades is a conservative field, i.e. with the fixed parameter value
H = 0. In the more general case of geophysical fields, the degree
of non-conservation H measures the scale dependency of the aver-
age field. More details on the procedure for building multiplicative
cascades, including continuous cascades and anisotropic space–
time cascades, can be found in [23–25].

3. Expected multifractal behavior and phase transitions

The rainfall support corresponds to the geometric set of time
and/or space with a non-zero rainfall value. Let’s consider the field

at resolution k(=L/l where L is the outer scale of the phenomenon
and l the observation scale), and regular time steps (in 1D) or boxes
(in 2D) of size l. The ‘‘box counting’’ method [26–28] is based on
the idea that the number of boxes needed (Nk) to cover the rainfall
support at resolution k scales as:

Nk / kd�cmin ð1Þ

where cmin is the fractal codimension of the support and d the
dimension of the embedding space.

In a more general way, it is possible to analyze the probability of
exceeding not only zero but a scale-dependant threshold (kc) de-
fined with the help of the scale invariant notion of singularity
(c). If the field is multifractal, then these probabilities scale with
the resolution [2] as:

PrðRk P kcÞ � k�cðcÞ ð2Þ

this defines the statistical codimension function c(c). This function
is necessarily increasing and convex When c(c) < d, c(c) can be
interpreted as the fractal co-dimension of the support of the field
where it exceeds kc [2]. It can be shown [1] that this is equivalent
to the scaling of statistical moments of arbitrary qth power:

hRq
ki � kKðqÞ ð3Þ

which defines the scaling moment function K(q). This function is
convex. The functions K(q) and c(c) are linked by the Legendre
transform generalizing the relation found for geometric multifrac-
tals [29].

Let’s consider a truncation of a multifractal field at a given res-
olution K with a threshold T ¼ Kcmin (where cmin is the singularity
associated with the threshold). All the values below T are artifi-
cially set to zero which corresponds to setting singularities
c 6 cmin to �1. The codimension function becomes bounded by a
minimum value cmin > 0, defined by c(cmin) = cmin, at least at the
resolution K. In the framework of universal multifractals [1,2,8],
the codimension function c(c) is given by

cðcÞ ¼ C1

a� 1
c

C1a0
þ 1

a

� �a0

ð4Þ

(C1 and a are defined in the previous section and a0 satisfies 1/a0

+ 1/a = 1) while the scaling moment function K(q) corresponds to:

KðqÞ ¼ C1

a� 1
ðqa � qÞ ð5Þ

Eq. (4) yields:

cmin ¼
C1a
a� 1

cmin

C1

� �a�1
a

� C1

a� 1
ð6Þ

Because of the Legendre transform, there is a corresponding critical
order of statistical moments:

qmin ¼ c0ðcminÞ ¼
cmin

C1

� �1
a

ð6bÞ

below which the scaling moment function K(q) is linear:

KðqÞ ¼ qcmin � cmin ð7Þ

As a consequence a linear regression of K(q) for small q yields esti-
mates of cmin and cmin. As pointed out by a few authors [12,30,31],
this behavior of truncated multifractal fields is typical of a multi-
fractal phase transition [8,32]. More precisely, it corresponds to a
second order multifractal phase transition and is analogous to that
of the probable maximum order of singularity due to finite sample
size [14,33–35]. Indeed with a limited number of samples, the sin-
gularities greater than cs (maximum observable singularity) will not
be observed and the statistical moments for q greater than qs (the
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corresponding maximum observable moment) will not be reliable.
More quantitatively this ‘‘sampling effect’’ yields to c(c) = +1 for
c > cs, with c(cs) = d + ds (ds is the sample dimension, Kds being equal
to the number of samples). As a consequence, for q > qs ¼ c0ðcsÞ:

KðqÞ ¼ qcs � cðcsÞ ð7bÞ

The linearity of K(q) for small and large moments has a striking con-
sequence for the Double Trace Moment (DTM) technique that is
used to estimate the parameters C1 and a [36]. This technique is
based on the fact that for multifractal fields, the scaling moment
function K(q,g) of the field RðgÞk , obtained by upscaling the gth power
of the maximum resolution field:

ðRðgÞk Þ
q

D E
� kKðq;gÞ ð8Þ

is related in a simple manner to K(q,1) = K(q):

Kðq;gÞ ¼ KðgqÞ � qKðgÞ ð8aÞ

which yields for universal multifractals (Eq. (5)):

Kðq;gÞ ¼ gaKðqÞ ð8bÞ

Therefore the multifractality index a corresponds to the slope so-
called DTM curve, which is the log–log plot of K(q,g) vs. g for fixed
q. With the help of Eq. (8a), the linear expressions of K(q) in
Eqs. (7–7b) yield the respective values of the two plateaus of
K(q,g) for small g(g 6 g�(q)) and large g(g P g+(q)):

�Kðq;gÞ ¼ ðq� 1Þcmin; for g � g�ðqÞ ¼ ðcmin=C1Þ1=a ð8cÞ

�Kðq;gÞ ¼ ðq� 1Þðdþ dSÞ; for g P gþðqÞ ¼ ððdþ dSÞ=C1Þ1=a

ð8dÞ

Thus the greater the fractal co-dimension of the rainfall support
cmin, the greater the plateau of K(q,g) corresponding to small
g(g 6 g�(q)), and the narrower the range of available g
(g�(q) 6 g 6 g+(q)) over which it is legitimate to estimate a (linear
portion of the DTM curve). As a consequence, these two plateaus
can lead to large underestimation of a, especially given that they
are associated with transitory curvatures narrowing furthermore
the range of available g.

We now have a theoretical framework for directly analyzing the
effects on the multifractal analysis of fields truncated at a given
resolution K, as it is the case with rainfall. The only limitations
are with respect to resolutions k < K due to the fact that the corre-
sponding fields are obtained by aggregation of the initial field at
resolution K, hence having singularities �1 6 c < cmin. Numerical
simulations are therefore helpful to check that these singularities
are statistically irrelevant.

4. Multifractal analysis of rainfall fields

To perform simulations of multifractal fields we first need to
determine an appropriate range of multifractal parameters that
would allow a comparison of the simulated fields with real rainfall
fields. The rainfall data analyzed in this paper corresponds to a
heavy rainfall event that occurred in the south-east of France on
September 5th, 2005, over an area well-known for frequent occur-
rences of heavy flash floods. The size of the area studied is
512 � 512 km2. Sixteen hours of the event are analyzed. The data
were obtained as radar mosaics from Météo-France [37]; i.e. com-
posite maps of the reflectivities obtained – in regions of overlap-
ping radar ranges – by interpolation. As suggested by Meteo-
France, the rain rate (R) is estimated from the reflectivity (Z) with
the help of the classical Marshall–Palmer relation Z = aRb [38], with
a = 200 and b = 1.6 (for Z in mm6 m�3 and R in mm h�1). The spatial
resolution of the data is 1 km in space and the temporal sampling

resolution is 15 min (much larger than the temporal measurement
resolution of the radar which is of the order of ls). A more precise
description of the data can be found in [31]. Fig. 1 displays the total
rainfall depth during the analyzed event. Spatial 2D analysis was
performed on average on the whole event (i.e. each time step is
seen as a realization of the same phenomenon and the average in
Eqs. (3) and (8) is performed on the 64 samples).

The degree of non-conservation H is estimated with the help of
a spectral analysis. Indeed for fields exhibiting a scaling behavior,
the spectra possess a constant spectral slope over a large range
of frequencies (E(f) / f�b). H and b are linked by the relation
b = 1 + 2H � K(2) [17,39], which allows evaluating H.

The main results of the multifractal analysis of the radar data
are shown on Fig. 2. It appears that there is not a unique scaling
behavior over the whole range of studied scales, and a break occurs
at around 20 km (Fig. 2(a)). Such breaks are commonly reported
[12,17,40]. Therefore, in the following small scale (1–20 km) and
large scale (20–500 km) regimes have been distinguished. For in-
stance, a is greater and C1 smaller for small scale than for large
scale (Fig. 2(c)). The aim of this paper is not to analyze the cause
behind this break, but only to focus on the role of the zeroes. It
is important to note that the estimates of cmin found using either
the linear behavior of K(q) near zero (Fig. 2(b)), or box counting
(Fig. 2(d)) are in excellent agreement.

We should start from the question of relations between the
zeros of an observed data set and the main properties of UM. Let
us first emphasize that with a > 1, UM fields contain already extre-
mely small values (especially for large resolutions k’s), which be-
come much more numerous and smaller with a < 1. These small
values can be often considered as zero values, at least numerically.
In the literature there are mainly two models to introduce extra
zeros if needed within a simulated UM field M with a – 0: (i) thres-
holding M [18,19,41], (ii) multiplying M in various contexts [42,43]
by an independent field S supported by a fractal set, such as the b-
model which is a UM field with a = 0 and therefore with a unique
remaining parameter c = C1 < 2, the fractal co-dimension of the
support. Because the dimension of the support is 2 � c < 2, its area
is zero for an infinite resolution and converges to this value for lar-
ger and larger resolutions. In the following, both models are tested
with the help of numerical simulations consisting of 64 fields of
size 512 � 512 pixels, with different sets of the UM parameters
and fractal co-dimension c.

Fig. 1. Total rainfall depth (mm) during the analysed event. The coordinates (in �,
Réseau géodésique français 1993 system) of the four corners are 46.3–1.3, 41.5–1.3,
46.2–8.1 et 41.4–7.5.
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The first step to test the b-model hypothesis (i.e. to fit such a
model) consists in retrieving the parameters of the underlying
UM field [43]. In that context the rainrate field is assumed to be
the product of a UM field (M) and a fully independent support
(S): R = MS. Under the hypothesis of statistical independence of R
and S, the scaling moment function of the rainfall R = MS is equal
to the sum of the scaling moment functions of M KM(q) (given by
Eq. (5)) and S KS(q) = c(q � 1), i.e. KR(q) = KM(q) + KS(q). Eq. (8) then
yields:

KRðq;gÞ ¼ gaKðqÞ þ cðq� 1Þ ð9Þ

where c is the fractal co-dimension of the rainfall support. Once it
has been estimated with the help of the box counting technique
(Eq. (1)), the contribution c(q-1) can be removed from the observed
KR(q,g) before estimating the UM parameters. Applying this method
on the radar data, we found a = 1.09 and C1 = 0.34 for the large
scales. Concerning the small scales, it appears that the correction
creates a sharp decrease on the linear part of the DTM-curve

Fig. 2. Multifractal analysis of the radar data. (a) Scaling curve, i.e. Eq. (3) in a log–log plot. Large and small scales correspond respectively to the left and right part of the
graph. (b) Scaling moment function K(q) for 0 6 q 6 1. (c) DTM curve. (d) Illustration of the box counting method (Eq. (1)).

Fig. 3. DTM curves for the observed radar data, for a simulated UM field multiplied by the b-model 1 or the b-model 2 (which correspond to two b-models with different
values of codimensions of the non-zero support), and a thresholded UM field. Small scales are on the left and large scales are on the right.

16 A. Gires et al. / Advances in Water Resources 45 (2012) 13–25
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indicating an a value higher than its theoretical maximum of 2, and
C1 value biased low. This is the first indication that the b-model
does not fit the radar data. a and C1 are therefore fixed to respec-
tively 2 and 0.1 for small scale. Then 64 fields of size 512 � 512
are simulated with these estimated parameters for the underlying
UM field. With the DTM technique applied to these simulated fields
the designed UM parameters are well retrieved (we find a = 1.99
and C1 = 0.09 for small scales and a = 1.09 and C1 = 0.34 for large
scales).

Concerning the c parameter of the b-model, two sets of values
were tested. The first set has c = 0.27 for small scales and c = 0.11

for large scales (this option is called b-model 1 in the following),
which corresponds to the estimated box counting dimensions for
the radar data. This leads to 69% of zeros, which is similar to the
68% of the radar data. It is important to note here the same range
of scales was used for the simulated fields as for the observed ones,
indeed in the very small scale limit the percentage of zero would
tend toward 0. Fig. 3 displays the resulting DTM curves. They are
quite different from those of the radar rainfall, and lead to
a = 1.08 and C1 = 0.29 for small scales and a = 0.94 and C1 = 0.42
for large scales. The discrepancies for small scales indicate that this
b-model does not fit the data. It should be mentioned that the

Fig. 4. Effects of the truncation (cases 1 to 5 are tested, corresponding respectively to thresholds of 0, 10�5, 0.001, 0.01 and 0.1) on a simulated field with a = 1.8 and C1 = 0.5.
(a) Scaling curve, i.e. Eq. (3) in a log–log plot for q > 1. (b) Same as in (a) for q < 1. (c) Scaling moment function K(q) for 0 6 q 6 3. (d) Scaling moment function K(q) for
0 6 q 6 1. (e) DTM curve. (f) Illustration of the box counting method (Eq. (1)), the determination coefficients of the curves are all above 0.995.

A. Gires et al. / Advances in Water Resources 45 (2012) 13–25 17
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implementation of the correction suggested by Eq. (9) enables one
to retrieve the correct UM parameters. To improve the fit of the
DTM curves, a second set with c = 0.05 for both small and large
scales (this option is called b-model 2 in the following) was tested.
It leads to 28% of zeros. The DTM curves (Fig. 3) are closer to the
observed ones and lead to more realistic UM parameter estimates
(i.e. a = 1.37 and C1 = 0.17 for small scales and a = 0.85 and
C1 = 0.48 for large scales). However the co-dimension of the rainfall
support and the percentage of zeros do not fit the rainfall data.
Hence it appears that the two b-models tested do not fit the rainfall
data set, especially for small scales where the underestimation of a
and overestimation of C1 generated by different values of c is
unrealistic.

The other model for introducing zeros in a UM field, consists in
thresholding it. To test it we simulated a multifractal field with the
UM parameters estimated on the radar data. A threshold of 0.25 is
then implemented on the normalized field (with regards to the
studied rainfall field, it would corresponds to a threshold of
0.06 mm/hr which is quite close from the actual non-zero mini-
mum value of 0.075 mm/hr) which yields 69% of zeros. The co-
dimension of the support is then 0.18 for small scale and 0.20 for
large scale. The DTM curves are displayed on Fig. 3. The patterns
of these curves are very similar to the ones of the radar data. In-
deed for both truncated simulated and observed fields the curve
is constant for small and great g, and moreover there is the same
slight decrease for � 1 6 g 6 � 0.5. The UM parameter estimates
(i.e. we find a = 1.60 and C1 = 0.13 for small scales and a = 0.87
and C1 = 0.43 for large scale) are rather similar to the one used

for the simulation. This shows that the truncated simulated UM
field enables to retrieve the properties of the observed radar data,
and that for this specific data set the UM parameter estimates are
not significantly affected by the threshold. It should be mentioned
here that the potential effect of H (equal to zero the simulated field,
and to 0.3 and 0.5, respectively for small and large scale for radar
data) is not investigated in this paper.

As a conclusion of this section, it appears that the model con-
sisting of a thresholding of the multifractal field almost perfectly
mimics the observed behavior, whereas the hypothesis of indepen-
dent support generated with the help of a b-model does not work.
This fact certainly does not answer to whether the threshold corre-
sponds to a limit of detection of the rainfall measurement device
(the zero values would then be spurious) or is associated to a
threshold in the physical process (the zero value would then be
real). Nevertheless it shows that the zeros of the rainfall are cer-
tainly not independent from the rest of the rainfall field and hence
justifies the idea that the underlying multifractal process is indeed
affected by some threshold. Therefore, it seems relevant to investi-
gate how such threshold affects the multifractal analysis.

5. Simulated multifractal fields

In this section the theoretical predictions (see Section 3) are
tested with the help of simulated multifractal fields. For a given
pair of UM parameters a and C1, 1000 simulations of 4096 (=212)
time steps are performed, and are then considered as independent

Fig. 5. Effects of the truncation (cases 1 to 5 are tested, corresponding respectively to thresholds of 10�80, 10�10, 10�5, 10�3 and 10�1) on a simulated field with a = 0.5 and
C1 = 0.2. (a) Scaling moment function K(q) for 0 6 q 6 3. (b) Scaling moment function K(q) for 0 6 q 6 1. (c) DTM curve. (d) Illustration of the box counting method (Eq. (1)), the
determination coefficients of the curves are all above 0.995.
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samples of the same phenomenon. The above figures could be
understood as 40 year records of 5 min data that was sub-divided
into separate samples in order to evaluate the scaling behavior
from 5 min to two weeks. The 1000 samples were ensemble aver-
aged and normalized to unity, which allows keeping the variability
among the samples. Then the truncated multifractal fields were
obtained by implementing a threshold on the fields at their maxi-
mum resolution, the field was normalized again as usually done
with observed rainfall data. However the mean is generally de-
creased by only around 1% even with the greatest thresholds that
were implemented. Finally it should be mentioned that the analy-
sis is performed on the dressed fields, i.e. the fields aggregated to a
lower resolution.

5.1. Unique scaling regime with a > 1

Based on the results of the multifractal analysis obtained from
the rainfall data over the large scales, we first discuss the case of
simulated multifractal fields with a = 1.8 and C1 = 0.5 over the full
range of scales, i.e. displaying a unique scaling regime. Five differ-
ent thresholds were used on the normalized fields: 0–10�5–10�3–
10�2–10�1, corresponding respectively to percentages of zeros
equal to 0–5.4–27–51–76% in the generated field. The main curves
showing the effect of the zeroes are in Fig. 4. As suggested by Mar-
san et al. [9] the smallest and largest scale are not included in the
linear regression used to estimate K(q) because they often deviate
from the scaling behavior. As seen in Fig. 4(a) and (b) that display
Eq. (3) in a log–log plot, the scaling behavior is excellent (determi-
nation coefficients -R2- are greater than 0.998) on the actual field.
On the truncated one, there is no change for q > 1 whereas the

scaling is worse for small q (R2 = 0.95 for q = 0.1). This phenomenon
is expected since large order moments focus on extremes which
are not affected by the thresholds, whereas small order moments
focus on the small values. The curvature on the scaling curve for
small q (especially visible for q = 0.1) means that small scales are
more affected by the threshold than large scales. At resolution K,
this is a direct consequence of the truncation of the singularities,
for lower resolution this is more indirect due to the upscaling pro-
cess that tends to remove zero-values as the resolution decreases.
This is related to the fact that the threshold is implemented at a gi-
ven resolution which breaks the scaling.

For large moment orders q, the scaling moment function, K(q), it
is not affected by the thresholds (Fig. 4(c)), as argued above. For
small orders, the expected multifractal phase transition occurs,
and the linearity of K(q) enables us to retrieve the intercept (�cmin,
the fractal codimension) and the slope (cmin, the minimum obser-
vable singularity). As expected cmin and cmin; increase with the
threshold. It is possible to evaluate these parameters with the help
of another method: cmin is obtained by functional box counting (Eq.
(1)), and then cmin is estimated with Eq. (6) (using the parameter
values a and C1 of the simulation). The results are displayed on
Fig. 4(f). Despite the poor scaling for small q, cmin and cmin obtained
by both methods are respectively in excellent and good agreement,
which confirms the existence of the multifractal phase transition
as described in the previous section. Nevertheless the observed
cmin are larger than the expected one with the formula T ¼ Kcmin ,
where T is the threshold. This is likely to be due to perturbations
arising in the dressing process, and the fact that the threshold al-
ters the quality of the scaling for small moments. It should be men-
tioned that the estimated spectral slope does not change when the

Fig. 6. Same as is Fig. 2 but for a simulated field with a = 1.7 and C1 = 0.1 for small scale and a = 1.7 and C1 = 0.4 for large scale.

A. Gires et al. / Advances in Water Resources 45 (2012) 13–25 19



Author's personal copy

field is truncated. This is not surprising since the power spectrum
is equivalent to a moment of order 2, which as previously said is
not affected if cmin is low enough. More precisely it can theoreti-
cally be expected that statistical moments of order q > qmin should
not be too affected, with qmin ¼ c0ðcminÞ, but empirically we observe
an effect for higher orders.

On the DTM curve (Fig. 4(e)), the correct a and C1 (respec-
tively 1.79 and 0.47) are found when there is no threshold. As
expected the curve levels off for large g values. The increase of
the minimum value of K(q, g) (which is in agreement with the
expected value of (q � 1)cmin) with the threshold, narrows the
range of available g to evaluate a (the linear portion of the
curve), whose estimations strongly decreases (1.33 for the great-
est threshold). On the contrary, the estimates of C1 are not sig-
nificantly affected.

The same analysis performed on fields with a = 1.8, 1.5 or 1.2
and C1 = 0.5 or 0.2 yield similar results as long as cmin is not too
close from C1 (C1 � cmin 6 0.2 for instance). In these cases it means
that too much significant portion of the field has been removed by
the truncation. In these cases, even greater moments are affected.

5.2. Unique scaling regime with a<1

The same expected behavior is observed on simulations with
a < 1. Nevertheless there are few differences which are illustrated
on Fig. 5. It displays the main curves showing the effect of a
threshold for the simulated fields with a = 0.5 and C1 = 0.2. Five dif-
ferent thresholds are used 10�80 � 10�10 � 10�5 � 10�3 � 10�1,
corresponding respectively to percentages of zeros equal to

19–47–59–67–79% in the generated field. It is important to note
that as a and C1 decrease, g+(q) = ((d + dS)/C1)1/a increases. As a con-
sequence the DTM curve starts to level off for larger g, which wid-
ens the range of available g to evaluate a. Thus the estimates of a
are less affected by the zeroes. This effect is visible on Fig. 5(c). It
should also be mentioned that few difficulties arise for small
thresholds when estimating cmin from K(q). Indeed the linearity
of K(q) is not very good for q around 0 (Fig. 5(b)). This is likely to
be due to the fact that for a < 1 theoretically K0(0) = �1, which is
hard to deviate from. As for the case a > 1, if cmin is too close to
C1, then even large moments (i.e. q > 1.5) are affected. This is illus-
trated by the case with the largest threshold (case number 5) on
Fig. 5(a), where cmin = 0.19 and C1 = 0.2, and K(q) differs from its
theoretical value for q > 1.5. Similar results are found for fields sim-
ulated with a = 0.5 and C1 = 0.5.

5.3. Results with a scaling break

It appears that the rainfall data exhibits a scaling break (see Sec-
tion 4). This section aims at discussing some of the features of a
truncated multifractal field simulated with a scaling break. The
scaling break is introduced first by a change of the mean co-dimen-
sion only, and then of the multifractality parameter as well. In the
first case, the same a (=1.7) was chosen on the whole range of
scales, whereas C1 = 0.1 for small scales and C1 = 0.4 for large
scales. The break is observed on the scaling curve (Fig. 6(a)) and
the original UM parameters are retrieved with the DTM technique
for both range of scale (Fig 6(c)). When the field is truncated, the
estimates of cmin found with the help of the linear behavior of

Fig. 7. Same as is Fig. 2 but for a simulated field with a = 1.8 and C1 = 0.1 for small scale and a = 1.1 and C1 = 0.4 for large scale.
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K(q) near zero (Fig. 6(b)), and box counting (Fig. 6(d)) are in excel-
lent agreement, whereas the agreement (unlike in the case of the
fields with no breaks) between cmin is not very good. C1 remains
unaffected by the threshold. It is striking to note that simply by
putting a threshold, significant differences are found in the esti-
mates of a for small (a = 1.65) and large (a = 1.17) scale, whereas
they are equal on the original field. This is due to the fact that as
pointed out in the previous section, for a given a, the estimates
of UM exponents of fields with greater C1 are more affected by a
threshold. It should be noted that for small scale, despite the fact
that cmin (=0.24 by estimating it with the help of the linear regres-
sion on K(q) for small q) is quite superior to C1 (=0.082) (although it
should be qualified by the fact that with the box counting dimen-
sion and Eq. (6) one find cmin = 0.11), the estimates of a remains va-
lid (equal to 1.65 instead of 1.70). This quite surprising feature is
due to the fact that the determination curve of a slightly decreases
for � 1 6 g 6 � 0.5, which extends the range of available g to esti-
mate a. This is likely to come from the fact that some singularities
that were removed at the maximum resolution were reintroduced
by the up-scaling process.

Then tests with a and C1, both being different according to the
range of scales, are performed. Simulated fields with a = 1.8 and
C1 = 0.1 for small scale and a = 1.1 and C1 = 0.4 for large scale are
used. The results are displayed on Fig. 7. The comments of the pre-
vious paragraph made on the field with the same a for both range
of scales concerning the observation of the break (Fig. 7(a)), cmin

and cmin (Fig. 7(b) and (d)) remain valid. The estimates of a for both
ranges of scales are affected (1.67 for small scales, and 0.93 for

small scale). As previously mentioned in Section 4, the pattern of
the DTM curve (Fig. 7(c)) is very similar to the one of rainfall radar
(Fig. 2(c)).

6. Correction of the bias introduced by the zeroes

6.1. Correction of the field

In the previous sections, the influence of the threshold effect on
multifractal analysis was underlined. This section aims at present-
ing a technique to thwart this effect (i.e. that enables to retrieve
the actual UM exponents), that provides encouraging results while
exhibiting some limitations. The actual field (without truncation)
is denoted by Rk and RðmÞk is the measured field (with truncation).
Both fields are normalized, i.e. hRki ¼ hRðmÞk i ¼ 1. Before going on,
it should be reminded that the definition of the codimension func-
tions (Eq. (2)) leads to:

hRki /
Z þ1

�1
c0ðcÞkc�cðcÞdc ¼

Z þ1

�1
f ðc;a;C1; kÞdc ð10Þ

As pointed out in the previous section the measured field does not
take into account the singularities smaller than cmin. We therefore
suggest modifying the measured field at the highest resolution (K
to give an estimate of the actual field by renormalizing it and adding
a random contribution to represent the truncated singularities. Gi-
ven the three parameters a, C1 and cmin the measured field is cor-
rected as follows:

Fig. 8. Illustration of Eq. (11) for a sample with the UM parameters a = 1.8, C1 = 0.5, and a threshold of 0.01. The graphics labeled ‘‘normalized thresholded field’’ and
‘‘normalized random small singularity field’’ correspond respectively to the first and second term of the right part of Eq. (11). The ‘‘reconstructed field’’ is the sum of the latter
two. On the left part of the figure, all the fields which are shown in separate graphs on the right part of the figure are superposed, and the vertical scale does not enable to
highlight any visible differences.
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R̂K ¼ RðmÞK

Rþ1
c min f ðc;a;C1;KÞdcRþ1
�1 f ðc;a;C1;KÞdc

þ Sc<c min
K ða;C1Þ

R c min
�1 f ðc;a; C1;KÞdcR þ1
�1 f ðc;a; C1;KÞdc

ð11Þ

where R̂K is an estimate of Rk. Sc<c min
K mimics the variability gener-

ated by the truncated singularities. To obtain this truncated field,
an independent UM multifractal field with parameters a and C1

is simulated. Then at the highest resolution, the pixels whose sin-
gularity is greater than cmin (i.e. the value is greater to Kcmin ) are
set to zero. Finally the field is normalized to one (i.e.
hSc<c min

K i ¼ 1). The weight factors with the integrals were chosen
to ensure the normalization to unity of the estimate of the actual
field R̂ðaÞK . Fig. 8 illustrates Eq. (11).

In order to evaluate the UM exponents of a measured field a first
guess estimate is obtained by implementing the standard DTM
technique. Then a DTM analysis is performed on the field corrected
according to Eq. (11) with the help of the parameters of the first
parameters guess, and so on. The iterations are stopped when
the difference between two successive estimates of a is below
0.01. Since the algorithm does not always converge, it is also
stopped after a pre-determined number of steps (from the first
implementation of the DTM technique). Details are provided be-
low. The scaling moment function K(q) is evaluated on the field
corrected with the help of the final estimate of a and C1.

6.2. Results on synthetic multifractal fields

The algorithm was tested on the truncated simulated fields.
Fig. 9 displays the main results for the simulation with a = 1.8

and C1 = 0.5, which is representative of the other cases. The main
differences will be pointed out below. Fig. 9(a) shows a clear
improvement of the scaling behavior for small moments (increase
of R2 with the correction), which leads to a quite good correction of
K(q) (Fig. 9b). As expected, large order moments remain unaffected
by this technique. Concerning the DTM method, the successive
iterations for the fourth threshold (Table 1) are displayed on
Fig. 9(c). It can be seen that the correction widens the range of
available g to estimate a. The value of a obtained with the standard
DTM is 1.53, and the algorithm converges towards 1.75 in three
iterations, which is quite close from the value of 1.79 found on
the actual field. With the fifth threshold, the algorithm does not
converge. The first six estimations of a are 1.33, 1.62, 1.76, 1.85,
and 1.87. This lack of convergence is also observed with large
thresholds on the simulations with other UM parameters, espe-
cially when C1 � cmin 6 0.2. The divergence is faster for smaller a
and greater C1. A close analysis of the results shows that it is rele-
vant to limit the number of iterations according to the range of
available g(D log(g)), evaluated on the DTM curve of the truncated
field (see Fig. 9(d) for an illustration). If 1.2 6 D log(g) no iteration
is required. If .8 6 D log(g) < 1.2 then one iteration is performed. If
D log(g) < 0.8 then two iterations are performed. These rules en-
able to perform enough iterations to obtain the correct value when
the algorithm converges, and to stop it before it diverges (or con-
verges toward a too large value of a) when necessary.

Table 1 displays the results obtained with the new algorithm
(DTM_0) for all the simulations. The results are on the whole quite
encouraging. The DTM_0 technique is more efficient for greater a
and C1 (for example, for the simulations with an actual a of 1.8

Fig. 9. Results of the multifractal analysis on the simulated field with a = 1.8 and C1 = 0.5. (a) Scaling curve, i.e. Eq. (3) in a log–log plot for q < 1 for the 4th and 5th threshold.
(b) Scaling moment function K(q) for 0 6 q 6 1 for the 4th and 5th threshold. (c) DTM curve in the DTM_0 method for 4th threshold. (d) Determination curve of a on the
truncated field and definition of D log(g).
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the estimations of a are better for an actual C1 of 0.5 rather than of
0.2), that is to say when the influence of the zeroes is the strongest.
C1 estimates tend to be slightly decreased by the DTM_0 technique,

but not significantly. It should be reminded that when
C1 � cmin 6 0.2, the obtained estimates should be cautiously con-
sidered since a too significant part of the field has been removed.

Fig. 10. Corrected multifractal analysis for the simulated field with a = 1.8 and C1 = 0.1 for small scale and a = 1.1 and C1 = 0.4 for large scale. (a) DTM curve in the DTM_0
method for large scale. (b) Same as in (a) for small scale. (c) Scaling moment function K(q) for 0 6 q 6 1 for large scale. (d) Same as in (c) for small scale.

Table 1
Multifractal parameters for the simulated fields.

Simulated UM parameters Threshold cmin cmin D log(g) With threshold Corrected

a C1 a C1

a = 1.8
C1 = 0.5

0 0.00 �0.51 – 1.79 0.47 1.79 0.47
10�5 0.01 �0.47 1.22 1.75 0.46 1.81 0.47
0.001 0.03 �0.34 0.87 1.66 0.45 1.76 0.46
0.01 0.08 �0.19 0.72 1.54 0.45 1.75 0.45
0.1 0.18 0.05 0.60 1.33 0.46 1.76 0.44

a = 1.8
C1 = 0.2

0 0.00 �0.22 – 1.80 0.19 1.80 0.19
0.01 0.01 �0.16 1.07 1.73 0.19 1.76 0.19
0.1 0.06 �0.06 0.79 1.57 0.20 1.66 0.19
0.3 0.11 0.04 0.69 1.42 0.22 1.65 0.19

a = 1.5
C1 = 0.5

0 0.00 �0.72 – 1.49 0.47 1.49 0.47
0.001 0.06 �0.30 0.87 1.36 0.45 1.53 0.46
0.1 0.21 0.09 0.66 1.12 0.46 1.57 0.43

a = 1.5
C1 = 0.2

0 0.00 �0.30 – 1.51 0.19 1.51 0.19
0.1 0.07 �0.03 0.86 1.31 0.20 1.44 0.18
0.5 0.15 0.12 0.73 1.16 0.22 1.51 0.17

a = 1.2
C1 = 0.5

0 0.00 �1.00 – 1.19 0.47 1.19 0.47
0.1 0.15 �0.09 0.84 0.99 0.44 0.99 0.44
1 0.36 0.34 0.68 0.72 0.48 1.12 0.40

a = 1.2
C1 = 0.2

0 0.00 �0.44 – 1.20 0.19 1.20 0.19
0.01 0.05 �0.11 1.10 1.15 0.19 1.26 0.19
0.1 0.09 0.00 0.90 1.11 0.19 1.24 0.18
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A limitation of the DTM_0 technique is that the stochastic field
added to represent the unobserved singularities does not preserve
the multiplicative structure of the original process. Moreover the
robustness of the DTM_0 technique with regard to the random nat-
ure of the simulated low values should be tested. Both limitations
are checked by implementing many times the DTM_0 technique on
the same samples. It appears that whatever the size of the sample,
the variability among the obtained estimates of UM exponents is
smaller than the one existing among different samples simulated
with the same UM exponents. This means that the error associated
with the non-preservation of the multiplicative structure is much
smaller than the one introduced by a truncation.

6.3. Results on a case with a scaling break

The DTM_0 is slightly modified when implemented on multi-
fractal fields exhibiting a scaling break. The random field added
to represent unobserved singularities (Sc<c min

K , Eq. (11)) is gener-
ated with a break. The large scale cmin is used. The number of iter-
ations is determined according to the D log(g) for large scales. The
small scale cmin, which as pointed out in Section 5.3 is surprisingly
large, was tested and yielded worse results.

The results for the field with a = 1.8 and C1 = 0.1 for small scale
and a = 1.1 and C1 = 0.4 for large scale are displayed on Fig. 10. The
DTM_0 technique enables to retrieve the correct value of a for large
scales (1.04 is found whereas the first guess was 0.93, Fig. 10(a)),
but has almost no impact on small scale estimates (Fig. 10(b)).
Concerning the correction of the scaling moment function K(q),
the correction is quite good for large scales (Fig. 10(c)) and not very
good for small scales (Fig. 10(d)).

The results of the DTM_0 technique implemented on the radar
data are shown in Fig. 11. The estimates are similar to that ob-
tained with the standard DTM (basically no change is found). This
tends to confirm the results of Section 4 that the estimates of UM
parameters of this specific data set are not affected by the zero val-
ues or are strongly affected by the parameter H. Further investiga-
tions on other observed rainfall fields should be performed to
assess the impact of the threshold of detection on UM parameter
estimates of actual measured fields.

7. Conclusion

We analyzed the effects of numerous zeros (either real or
spurious) of a high-resolution rainfall field on multifractal anal-
yses and simulations, especially with the help of the Universal
Multifractals (UM). We first clarify the possible sources of the

discrepancy on the proportion of zeros between observations and
models, including the detection limitations. Indeed, only the
monofractal b-model, i.e. the exceptional UM having a multifrac-
tality index a = 0, has a fractal support. However, not only this
model is too simplistic (only one level of rain), but we show that
its multiplication with an independent UM field is not relevant,
although it yields a fractal support of the same type of the b-model.

We therefore closely analysed the alternative that corresponds
to thresholding a UM field. The following features are theoretically
expected and observed on simulations:

� Thresholding a multifractal field is rather similar to truncating
its lowest singularities, i.e. setting to�1 the singularities below
a singularity cmin corresponding to the threshold, and therefore
to increasing the codimension of its support to cmin = c(cmin).

� This corresponds to a second order multifractal phase transition
for small moment orders q’s: the scaling moment function
becomes linear for the order q close to zero, and the intercept
with the vertical axis (q = 0) and the slope of K(q) are respec-
tively equal to cmin and cmin.

� The scaling is deteriorated for small order moments, whereas
large order moments are not affected as long as C1 � cmin 6 0.2.
Otherwise it implies that a too large proportion of the field has
been removed by the threshold.

� As a consequence, the range of available moments to safely esti-
mate UM exponents becomes narrower and this easily leads to a
significant under-estimation of a. The corresponding semi-ana-
lytical estimates of the extremes are therefore affected, more
precisely under-estimated.

� The larger a and C1, the larger the influence of the zeroes is.

Observed radar rainfall data, corresponding to a heavy rainfall
event that occurred in the south of France in September 2005, ex-
hibit a more complex behavior with a scaling break at about 20 km.
On the whole, the multifractal phase transition is observed for both
small and large scales. Most of the features of observed rainfall
fields are retrieved with the help of simulated fields generated
with a break (different a and C1 for small and large scales) and then
truncated.

A new multifractal analysis technique is suggested and tenta-
tively tested to improve the estimates of UM exponents. It basically
relies on renormalizing the field, adding a small random multifrac-
tal field to represent the unobserved, low singularities, and iterat-
ing the process. The technique, tested on truncated simulated
fields with known exponents, enables to significantly improve
the estimates as long as C1 � cmin 6 0.2. The results are much more
contrasted on fields exhibiting a scaling break. Indeed small scale

Fig. 11. Corrected multifractal analysis for the radar data. (a) DTM curve in the DTM_0 method for large scale. (b) Same as in (a) for small scale.
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estimates are almost not corrected (but are also less affected by the
threshold), and large scale estimates are improved. Despite clear
limitations (mainly a lack of convergence treated by limiting the
number of iterations, and scaling breaks difficulties) the new tech-
niques provides encouraging results and might be step forward in
dealing with the zeroes. However further investigations are still re-
quired to improve the estimates of UM exponents in the presence
of numerous zeros.

These results mean that one should be very careful when per-
forming a multifractal analysis on high resolution rainfall fields
which contain numerous zeros. Indeed a standard analysis will
lead to an under-estimate of a. The influence of the multifractal
phase transition for small moments should be checked to evaluate
the reliability of the UM parameters estimates. A way of doing that
is to implement the suggested new multifractal analysis technique.
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