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Abstract. We argue that geophysical and geographical ® elds are generally char-
acterised by wide range scaling implying systematic, strong (power law) resolution
dependencies when they are remotely sensed. The corresponding geometric struc-
tures are fractal sets; the corresponding ® elds are multifractals. Mathematically,
multifractals are measures that are singular with respect to the standard Lebesgue
measures; therefore, they are outside the scope of many of the methods of classical
geostatistics. Because the resolutionof a measurement is generally (due to technical
constraints) much larger than the inner scale of the variability/scaling, the observa-
tions will be fundamentally observer dependent; hence, standard remote sensing
algorithms that do not explicitly take this dependence into account will depend
on subjective resolution-dependent parameters. We argue that, on the contrary,
the resolution dependence must be systematically removed so that scale-invariant
algorithms independent of the observer can be produced. We illustrate these ideas
in various ways with the help of eight-channel, 7 m resolution remote ocean colour
data (from the MIES II sensor) over the St Lawrence estuary. First, we show
that the data is indeed multiscaling over nearly four orders of magnitude in scale,
and we quantify this using universal multifractal parameters. With the help of
conditional multifractal statistics, we then show how to use multifractals in various
practical ways such as for extrapolating from one resolution to another or from
one location to another, or to correcting biases introduced when studying extreme,
rare phenomena. We also show how the scaling interrelationship of surrogate and
in situ data can be handled using vector multifractals and examine the resolution
dependence of principle components in dual wavelength analyses. Finally, we
indicate why the standard ocean colour algorithms have hidden resolution
dependencies, and we show how they can (at least in principle) be removed.

1. Introduction

In the last 10 years, various technological developments have contributed to a
profound change in many areas of remote sensing. New generations of satellites and
airborne sensors with ® ner and ® ner space/time resolutions and more and more
channels routinely supply digital data at rates greater than 1 Gb day Õ 1 . At the same
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time, inexpensive high-resolution colour monitors, powerful computers and sophistic-
ated software have opened up unprecedented opportunities for applications. Scientists
using remotely sensed geophysical or geographical information are now daily faced
with data spanning three (or more) of the roughly ten or so orders of magnitude of
scale over which geophysical and geographical variability occurs1 . Resolution (even
if narrowly viewed as the purely technical problem of aggregating, sampling, archiv-
ing, intercomparing, and/or mapping) has become an operational consideration
fundamental for the exploitation of the data.

Remote sensing resolutions are primarily ® xed by technological constraints; the
latter being typically at far larger spatial scales (smaller scale ratios) than the
homogeneity scale which can readily be of the order of millimetres. In addition,
virtually without exception, the radiances are non-linearly and non-trivially related
to the physical processes of interest; in general neither the radiances themselves nor
the corresponding sensor resolutions have any intrinsic geophysical/geographical
signi® cance per se. On the contrary, applications require that the radiances be
transformed into surrogates for a wide variety of geophysical quantities. These are
obtained as the outcome of often complex (and ad hoc) algorithms (themselves
calibrated by in situ measurements) that are characterised by quite diVerent space/
time resolutions. Although it is rarely explicitly stated, remote sensing algorithms
singularise the essentially arbitrary sensor resolution; when the algorithms are given
some physical justi® cation in terms of subpixel processes, the tacit assumption is
that the subpixel ® elds are nearly homogeneous. However, when the sensor resolution
improves, smaller and smaller structures and variability are discovered. A frequent
consequence is that, when the old algorithms (calibrated with the old lower-resolution
data) are applied to the new data, the results are initially worse not better2 improve-
ments only occur after new c̀alibration’ / g̀round truth’ experiments have provided
the algorithms with new empirical coe� cients.

While mainstream remote sensing approaches do acknowledge the resolution
issue, theorising it as the Modi® ed Areal Unit Problem (MAUP, Openshaw (1984 )),
an àggregation’ or s̀caling up problem’ (Bian 1997 ) , the ècological fallacy’ (Clarke
and Avery 1976 ) or an òptimum resolution’ problem (Marceau et al. 1994a, b),
implementations of these conventional approaches have typically only been
attempted over less than a single order of magnitude of scale. For example, standard
t̀exture’ analyses are based on only a factor three of coarse graining (e.g. Gonzalez
and Wintz 1987 ). Implicit is the idea that, for every factor of three of so in scale,
there are qualitative changes in the statistical properties of the ® elds, so that further
extrapolation in scale is not warranted. However, since the 1980s, there has been an
explosion in scale-invariant ideas: ® rst fractals, then multifactals. In particular, with
the development of generalized scale invariance (Lovejoy and Schertzer 1985,
Schertzer and Lovejoy 1985, 1987, 1989a, b, Lewis et al. 1999 ), scale invariance can
now be seen as a very general (non-classical ) symmetry principle which a priori we
may expect to be respected by complex non-linear dynamical systems with many

1For example, in the atmosphere, we have the ratio planet scale/dissipation scale
# 107 m/10 Õ 3 m# 1010 . See Lovejoy et al., (1993, 1997 ) and Sachs et al. (2000 ).

2One symptom of this is the ® nding by Chou (1991 ) that even the sign of the autocorrela-
tions can change with resolution. In section 3.3, we show that scaling predicts that such sign
changes can occur between diVerent ® elds such as between remotely sensed surrogates and
the corresponding in situ measurements.
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degrees of freedom3 . In other words, wide range scaling of geophysical and geograph-
ical processes (and their non-linearly related radiation ® elds) are expected with few,
if any, breaks over wide ranges. Indeed, over 20 geophysical ® elds signi® cant to
remote sensing have been shown to be scaling over various ranges of scale: these
include radar rain and ice surfaces, visible, infrared and passive microwave cloud
and land re¯ ectivities, topography, aeromagnetic and other ® elds (see Gabriel et al.
(1988 ) and Lovejoy and Schertzer (1990 ) and the reviews Lovejoy and Schertzer
(1993 ) and (1995 )). Their resolution dependence in space and/or time has been
quanti® ed clearly demonstrating their systematic strong (power law) resolution
dependencies. It should be mentioned that, perhaps due to the rapid pace of develop-
ment of precise scaling notions, especially in physics, in recent years there has been
an unfortunate tendency to use the same term but in a quite vague sense to denote
nothing more than the general problem of changing resolution (see, for example, the
special issue of the International Journal of Remote Sensing, 15, entitled S̀caling in
Remote Sensing’ which is largely of this genre).

Capitalising on these developments in scaling, various attempts have been made,
starting in the 1980s, to develop scaling approaches capable of tackling resolution
eVects over wide rather than just narrow ranges of scale. Early attempts to exploit
wide range scaling were based around the insight that geographical datasets (the
most famous being the coast Brittany (Perrin 1913 ) and Britain (Richardson 1961,
Mandelbrot 1967 )) had tangents and lengths, respectively, that were purely resolution
(and, hence, observer) dependent. However, if these sets are fractal, their fractal
dimensions are objective (observer independent, scale invariant) measures of coastal
irregularity. Early applications of scaling, therefore, transformed the two-dimensional
remotely sensed ® elds into surfaces in three-dimensional (horizontal-intensity) spaces
and treated the surfaces as fractal sets (Peleg et al. 1984, Pentland 1984, Ait-
Kheddache and Rajala 1988, Keller et al. 1989, Mussigman 1990, Kuklinski 1994,
Verge and Souriau 1994, Datcu and Seidel 1995, de Jong 1995, Rees 1995 ), with the
hypothesis that diVerent texture/irregularity corresponds to diVerent fractal dimen-
sions. A typical application was the use of l̀ocal’ fractal dimensions for image
segmentation (e.g. Pentland 1984 ). This recognition that texture was inherently a
scaling concept involving much wider ranges of scale than the usual factors of three
was indeed a signi® cant advance.

Although the use of fractal geometry represents a major step forward when
compared with the classical non-scaling/scale-bound approaches, it still suVers from
two basic limitations. The ® rst is that (unlike scale-invariant geometric sets), scale-
invariant ® elds are generally multifractal (not monofractal ) and, hence, require an
in® nite number of exponents for their characterisation: a single fractal dimension is
quite inadequate. This inadequacy is clearly shown in the analysis of visible ocean
re¯ ectivities shown in ® gure 1 (discussed in more detail in section 2). This ® gure
shows that, while each visible brightness threshold does indeed accurately de® ne a
fractal set, the dimension of the latter depends crucially on the threshold. As the
threshold is varied from dimmest to brightest values, the dimension of the exceedance
sets varies from 2 to 0, which is the entire range available for sets embedded in two-
dimensional space. The second limitation of the standard fractal approach is that,

3This attitude is the same as that adopted for the more familiar symmetries such as
conservation of energy or momentum.Until we identify speci® c sources or sinks (corresponding
to breaks in the underlying symmetries), we assume them to be conserved.
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Figure 1. The results of functional box-counting of a 1024 Ö 1024 section of channel 2 data
showing the number of boxes NT (l) needed to cover the regions exceeding various
brightness thresholds (T ) ranging from values 31 to 198 (the data were 8 bit). Scaling
predicts NT (l)# lD ( T ) , where l=ratio of picture size to box size. Note that the
fractional coverage (=probability of exceeding T )=NT (l)/l2 =l Õ c ( T ) , where
c(T )=2Õ D(T ) is the co-dimension of the exceedance region. This ® gure shows
that, no matter what exceedance threshold is used to de® ne patches, the areas and
fractioal coverage will depend strongly on resolution l.

even for monofractals ® elds, simulations and analyses using generalized scale invari-
ance (anisotropic scaling, see Pecknold et al. (1993 ) and (1999 ) for numerical simula-
tions and P¯ ug et al. (1993 ) and Lewis et al. (1999 )) show that what is perceived as
texture is often more related to the type of scaling anisotropy, rather than to the
completely seperate family of scaling exponents associated with statistical scaling
exponents such as the fractal dimensions4 . In contrast, the usual scaling approaches
(this comment applies to many multifractal approaches as well ), usually assume (at
least implicitly) that the scaling is isotropic, i.e. that we have self-similar monofractals
or self-similar multifractals.

Before continuing, let us emphasize the signi® cance of the multifractality graphic-
ally exhibited in ® gure 1. Recall that the standard approaches (which purport to be
very general ) are, in fact, all based on various restrictive regularity/homogeneity type
assumptions. For example, RaVy (1994b) developed a sophisticated mathematical
framework for handling non-linear sensor averaging based on the assumption that
remotely sensed ® elds can be considered as mathematical measures, correctly arguing
that this has advantages over certain other approaches that involve restrictive
assumptions about diVerentiability. So far, so good. However, without explicitly

4A scale-invariant system involves two mathematical groups and correspondinggenerators:
the ® rst determines the scale changing operator, i.e. it de® nes the (generally anisotropic, non-
Euclidean) notion of scale; while the second determines the probability distributions at all
scales. See Schertzer and Lovejoy (1987 ).
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saying so, he then goes on to assume that the relevant measures are regular with
respect to the usual L ebesgue measures! However, ® gure 1 already shows that every
single intensity level (at least over the range of 103 accessible in the ® gure) are, on
the contrary, singular with respect to L ebesgue measures requiring instead singular
multifractal measures. Indeed, as far as we can tell from the ® gure, the fractal
dimensions of all the exceedance sets are <2 for the two-dimensional image analysed;
none of the slopes have the value 2 as implicitly assumed by RaVy (i.e. none of the
areas converge to any well-de® ned limit over the observed range). Ironically, in the
same paper, RaVy claims that his approach makes no à priori assumption on the
measured parameter with respect to change of scale, as is made for example with
the fractal assumption’! This is ironic, since certainly the multifractal assumption5

(which, for example, allows for any slopes in ® gure 1 in the interval [0,2]) is more
general than his (implicit) regularity assumption. However, so apparently ǹatural’
is this regularity assumption that the introduction to the special issue of International
Journal of Remote Sensing (RaVy 1994a) on c̀hange of scale theory’ doesn’t even
mention the word fractal’ even though the entire point of the concept is to handle
changes of scale over wide ranges! The term is also strangely absent from a recent
review paper on the subject of scale in remote sensing (Cracknell 1998 ), nor does it
appear in a recent paper on the nature of the p̀ixel’ (Fisher 1997 ) which is otherwise
critical of the standard approach.

We have mentioned that, in the early 1980s, it was realised that the appropriate
framework for scale-invariant ® elds was multifractals, that fractals were only
adequate for handling geometric sets of points. It is perhaps not surprising, therefore,
that remote sensing supplied the data for the very ® rst empirical multifractal analyses,
that of radar re¯ ectivities of rain (Schertzer and Lovejoy 1985, Lovejoy et al. 1987,
Lovejoy and Schertzer 1988 ); since then, many have followed. Multifractal analyses
using remotely sensed data now include microwave backscatter from ice (Falco et al.
1996 ), visible, infrared and microwave radiances from clouds (Gabriel et al. 1988,
Lovejoy and Schertzer 1990, LavalleÂ e et al. 1993a, Tessier 1993, Davis et al. 1996 ),
ocean surfaces (Tessier et al. 1993 ) and surfaces in the visible and infrared from
volcanoes (Gaonac’h et al. 2000, Harvey et al. 2000, LaferrieÁ re and Gaonac’h 1999 ).
These and other studies have laid the empirical basis for the direct use of multifractal
modelling of matter± radiation interactions in order to quantitatively interpret
remotely sensed data, to relate visible radiative transfer to fractal and multifractal
cloud liquid water densities (Davis et al. 1990, 1993, Gabriel et al. 1990, Lovejoy
et al. 1990, 1995, 1997, Naud et al. 1996 ) and to relate microwave re¯ ection to
multifractal scatterer distributions6 (Lovejoy et al. 1996 ). Indeed, such explicit use
of multifractal modelling promises to allow a fundamental physical understanding
of the extreme variability of many remote datasets.

We have argued that the great promise of the multifractal approach is precisely
to exploit the observed wide range scaling of the underlying geophysical/geographical
® elds to overcome the problem of resolution dependency altogether. This wide range
scaling approach is currently gaining ground, as witnessed, for example, in the rec-
ent workshop on R̀esolution dependence and multifractals in remote sensing and

5In his text, it is not clear to exactly what f̀ractal assumption’ he was referring.
6We might also mention the use of fractal surfaces to model bidirectional re¯ ectance

functions (Rees 1995).
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geographical information systems’ (McGill University7 , 10± 12 June 1996 ). Therefore,
it is somewhat paradoxical that there has recently arisen another quite diVerent
multifractal approach to remote sensing which denies (or, more precisely, is agnostic)
about the very existence of any scaling properties whatsoever! For example, Mignot
et al. (1992 ), LeÁ vy-VeÁ hel and Berroir (1994 ), Bourissou et al. (1994 ), LeÁ vy-Vehel and
Mignot (1994 ) and LeÂ vy-Vehel (1995 ) purport to use multifractal techniques for
analysing remotely sensed images but without making any assumptions about the
scale invariance of the latter. In eVect, they argue that, even without this basic
property, multifractal techniques might still be useful. This attitude is consistent with
the fact that they typically apply their techniques only over the same narrow ranges
as the standard techniques (cf. factors of three in scale ratio in LeÂ vy-Vehel (1995 ));
indeed, due to this limitation, such techniques are hard to distinguish from standard
segmentation and texture analysis.

In this paper, we argue that the existence of scaling resolution dependence over
wide ranges of scale not only allows, but also demands, the development of qualitat-
ively new remote sensing algorithms. Rather than being based on unrealistic subpixel
homogeneity assumptions requiring subjective resolution-dependent calibration at
the arbitrary sensor resolution scale, these methods directly exploit the scaling and
can provide algorithms that are independent of the sensor and in situ calibration
resolutions. These scale-invariant remote sensing algorithms are based on the scale/
observer-independent exponents that determine how the statistics change with reso-
lution, rather than the value of the ® elds at any particular (subjective) scale. Early
examples of such algorithms are Schmitt et al. (1997 ), Martinez (1998 ) and Harvey
et al. (1999 ). Here, we illustrate our approach with the example of the remote sensing
of phytoplankton.

Although the paper is based around the important remote sensing problem of ocean
colour, its main aim is to demonstrate the power and scope of the scale-invariant
approach and the concomittant necessity of developing resolution-independent algo-
rithms so as to entirely remove the subjective (observer) dependence in the existing
approaches. Section 2, therefore, provides a brief overview of the relevant properties of
multifractals and the corresponding multifractal analysis techniques. Using the eight-
channel, 7 m MIES II sensor, we quantify the multiscaling of the visible radiances over
an unprecedented four orders of magnitude in scale. Section 3 gives various examples
of the ways that multifractals can be used to resolve resolution problems; we concentrate
on the related problems of changing resolution for a given ® eld (i.e. of extrapolating
from large to small scales or visa versa), of extraplolating data from one location to
another (a component of multifractal objective analysis), on biases introduced by condi-
tional sampling, and, ® nally, the use of scaling surrogate data indicating the pitfalls of
the standard ® xed-resolution cross-correlation analysis. In section 4, we come back to
the ocean colour problem, showing how the standard algorithm for determining chlor-
phyll-like pigment from the Coastal Zone Colour Scanner (CZCS) can be modifed to
render it scale invariant. In section 5, we conclude.

2. Phytoplankton and remotely sensed ocean colour
2.1. Scaling and phytoplankton patchiness

One of the main di� culties in mapping phytoplankton or in estimating their
abundance (or biomass) is that it forms p̀atches’ of all sizes and that these structures

7Organized jointly with the Canadian Centre for Remote Sensing, there were roughly 75
participants.
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are not static but evolve in time. An early scaling theory of this patchiness is due to
Denman and Platt (1975 ), Denman et al. (1976 ), Platt (1978 ) and Platt and Denman
(1975 ), who used a turbulence framework to show that the energy spectrum had the
scaling form E(k)# k Õ

b (k is a horizontal wavenumber). By arguing that patch
lifetimes were growth dominated, they found theoretically that the chlorophyll ¯ uc-
tuation spectrum had b=1. Since then (while generally agreeing about the scaling)
a series of in situ ¯ uorescence (phytoplankton surrogate) measurements have been
inconclusive about the empirical value of the exponent; some coming close to the
Denmann± Platt value 1, while others are closer to b# 5/3, the value expected for a
passive scalar advected by turbulence. More recently, Pascual et al. (1995 ) showed
that, in time, over long periods (days to months), ¯ uctuations in the related zooplank-
ton patchiness were multifractal, not monofractal; hence, the scaling exponent is just
one in the in® nite hierarchy of exponents necessary to specify the statistics8 . Other
temporal analyses (at much smaller time scales (0.5 s to 11 h), Seuront et al. (1996a, b)
have shown that, while the high frequencies (>0.04 Hz) can be passive scalar-like,
the low frequencies are, in fact, ìn between’, with b# 1.22. Claeredeboudt et al. (2000 )
and Lovejoy et al. (2000 ), using spatial phytoplankton data, show that the large
scales (> 100 m) were indeed in between (b# 1.18, in agreement with Seuront et al.
(1996 )), but with more (rather than less) high-frequency variability (b# 0.4 rather
than b# 1.75; see table 2). They hypothesised that the low frequency is a combined
turbulence/growth-dominated regime (rather than only a growth-dominated regime),
while the small scale is a regime dominated by predator/prey (zooplankton/phyto-
plankton). All these multifractal studies found that the plankton density is of the
universal multifractal type (see below), and they found mutually consistent estimates
of the three universal multifractal parameters for the phytoplankton surrogate9 .

2.2. Ocean colour as determined by remote sensing
Because of the severe practical limitations of in situ plankton mapping (even with

the ¯ uorescence surrogate), it is important to use other surrogates that can be easily
sensed remotely. At present, the main technique is to use the fact that chlorophyll
has pigment with well-de® ned absorption characteristics so that the concentration
of phytoplankton is linked to òcean colour’. The standard method of estimating the
phytoplankton density from ocean colour is to relate radiances in bands near 443 nm
(sensitive to chlorophyll ) to those in the red (insensitive, typically near 550 nm); the
relative re¯ ectivities (at the available resolution) de® nes the c̀olour’. After removal
of atmospheric corrections, the usual approaches compare remote measurements of
these re¯ ectivities with in situ chlorphyll-like pigment concentration measurements
and relate the two via ad hoc regression schemes. The main shortcoming of this
approach is that, at best, algorithms have been devised at single (subjective) remote
sensor resolution scales (often of the order of a kilometre; cf. the CZCS, see below)
using calibration by a single (diVerent) subjective in situ scale typically of the order
of metres (still much larger than the internal scale of homogeneity). In order to
objectively characterise the chlorophyll-like pigment concentrations, a scale-invariant
algorithm (for example, based on a scale-invariant notion of ocean colour) is
necessary. In section 4, we discuss this in more detail; ® rst, we examine the statistical

8Unfortunately, they calculated neither spectra nor structure functions so that we cannot
estimate their exponent b.

9The only exception is Pascual et al. (1995), who made no attempt to check this.
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properties of the raw remotely sensed radiances scale by scale and intensity by
intensity.

In order to illustrate our ideas, we now analyse ocean re¯ ectances, determining
their ranges and types of scaling. The data were collected by aircraft with the multi-
detector electro-optical imaging scanner II (MEIS II ) sensor on 3 September 1991,
from Trois-Pistoles to Montmagny along the St Lawrence river ( ® gures 2 and 3).
There were two ¯ ight lines, one predominantly over land and the other over water.
Only the data over water were analysed. The sample used is 1024 Ö 26937 pixels,
and eight frequency bands were recorded (from 433 to 900 nm; see table 1). The
central wavelengthes of ® ve of these channels were close to the wavelengths of the
CZCS sensor.

2.3. T he scaling range
Perhaps the most sensitive method of detecting scaling and determining its limits

is the power spectrum. We calculated this using the ® rst 214 points in the swath,
averaging the one-dimensional spectra over the 210 cross range tracks10 . The spectra
for the diVerent channels are shown in ® gure 4(a). For channels 2, 3, 5, 6 and,
especially, channel 7 (which is the most sensitive to chlorophyll1 1 ), there is a break
in the scaling at roughly 100 m. This is roughly the same scale as the p̀lanktonoscale’
at which Claeredeboudt et al. (2000 ) and Lovejoy et al. (2000 ) observed a scaling
break with in situ chlorophyll ¯ uorescence measurements (see ® gure 4 (b). This break,

Figure 2. Flight path of the aircraft recording the MEIS II data.

10We did not calculate the two-dimensional power spectrum because this would require
the use of square samples and would have thus limited our range of scales to 210 .

11For brevity, we will use the expression c̀hlorophyll’ instead of the more precise term
c̀hlorphyll-like pigment’.



Multif ractals and resolution-independent algorithms 1199

however, is absent in channels 4 and 8, the latter being the least chlorophyll-sensitive
band. With this exception, we can see that the scaling is extremely good over all the
available range, i.e. from1 2 14 m to 7 Ö 21 4 m (# 110 km), for the other channels; it is
the longest range scaling analysis of any remotely sensed data of which we are aware.
The spectral slopes are nearly the same for all channels in the range of 100 m± 110 km,
i.e. they vary from 1.24 to 1.26, which is very close to the value 1.22 found in Seuront
et al. (1996 ) and Lovejoy et al. (2000 ) (see ® gure 4(b), table 213 ). We believe that
both the remote and in situ scaling breaks share a common origin and that the scale
of this break is important in evaluating the pigment concentration from remotely
sensed data.

The spectral slopes are nearly the same for all channels in the scaling range (they
vary from b# 1.24 to b# 1.26; cf. b# 1.18 for the in situ ¯ uorescence). At the high
frequencies, the chlorophyll-sensitive channel 7 also follows more or less the high-
frequency in situ spectra. Although, due to its narrow range (factor of # 100/14 # 7),
the accuracy is not high, we obtain b# 0.3, which is close to the high-frequency in
situ ¯ uorescence value (b# 0.4, table 2).

2.4. T he type of scaling: multifractals and universal multifractals
If the radiances were monofractal (e.g. if they were scaling but quasi-gaussian),

then, at least for isotropic scaling, the basic scaling properties would be determined
by the spectral exponent b. However, theoretically we have seen that this is generally
not the case, and ® gure 1 shows explicitly for the data analysed here that the fractal
dimension is not constant but varies systematically as a function of the re¯ ectivity
threshold (T ). While the functional box-counting (Lovejoy et al. 1987 ) shown in
® gure 1 is simple and shows graphically how the fractional coverage by various
patch densities varies as a function of the scale and threshold, it is still not completely
observer independent, since the threshold is de® ned by an arbitrary subjective (7 m)
resolution. Therefore, the dimension as a function of threshold itself is not an
objective function of the ocean surface; we must express the latter in terms of scale-
invariant singularity values14 c= log T /log l. The multifractal properties can be
investigated by two equivalent routes: the probability distribution and the statistical
moments. Considering ® rst the probability distributions (Schertzer and Lovejoy
1987 ),

Pr(wl > l
c )# l Õ

c (c ) (1)

l=L / F , where L is the largest scale of interest and F is the resolution of the
observation, c is the order of singularity, c (c) is the co-dimension function of the
singularities and wl is the conserved ® eld (see below) at resolution l. The equality
`# ’ means to within constant or slowly varying factors (such as log l). Similarly, the
statistical moments are given by

7 wq
l 8 =lK (q ) , l>1 (2)

12The Nyquist wavelength is 2 Ö 7=14 m.
13Since the measurements were not performed during the blooming season, we could not

substantiate the existence of bloom related breaks. See Barale and Schlittenhardt (1993) and
references therein.

14Note that, in this equation, T must be appropriately normalized/nondimensionalized by
the ensemble average at the largest scale.
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Figure 3. A small sample of the land dominated run, showing both land and ocean for the
various channels.

where K (q ) is the multiple scaling exponent for moments; the two are related to each
other via a Legendre transform (Parisi and Frisch 1985 ):

c(c)=maxq (qc Õ K (q))

K (q)=maxc (qc Õ c (c))
(3)

The only restriction on c(c) and K (q ) is that they are convex. In actual dynamical
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systems involving non-linear interactions over a continuum of scales (and/or invol-
ving multiplicative `mixing’ of diVerent processes), we generally obtain a considerable
simpli® cation. Schertzer and Lovejoy (1987 ) and Schertzer et al. (1991 ) showed that
cascade processes possess stable (attractive) universal generators irrespective of the
details of the dynamics (see also Brax and Pechanski (1991 ) and Kida (1991 ) and,
for a recent debate, Schertzer and Lovejoy (1997 )). Recently, it has been suggested
that a weaker form of universality involving log-Poisson distribution might also be
relevant (e.g. She and Levesque 1994 ); however, it is not stable/attractive nor is it
well supported by the turbulence data (Schertzer et al. 1995, 1997 ) that provided its
initial motivation.



S. L ovejoy et al.1202

Table 1. The various multifractal parameters estimated for one-dimensional strip of MEIS
II data.

Channel Wavelength b a C1 H

1 (infrared) 758 1.26 1.98 0.05 0.18
2 (red) 676 1.24 2.01 0.06 0.18
3 (infrared) 871 1.26 2.03 0.06 0.19
4 (red) 641 1.25 1.97 0.05 0.17
5 (orange) 597 1.26 2.05 0.06 0.19
6 (green) 518 1.24 1.98 0.05 0.17
7 (blue) 448 1.26 2.00 0.06 0.19
8 (green) 557 1.26 1.95 0.04 0.17

Average 1.25 1.99 0.05 0.18

Figure 4(a). Power spectrum for all eight channels recorded, channels 1 to 8 from bottom
to top. The reference line has a slope b# 1.25, close to the in situ value 1.18; see table 2.

The universal K (q ) functions for conservative processes are of the following forms:

K (q)=GC1 (qaÕ q)

aÕ 1
aÞ 1

C1 qLog(q ) a= 1

(4a)

where 0 < a< 2 is the multifractal index, which quanti® es the distance of the process
from monofractality; a=0 is the monofractal b-model of turbulence (Novikov and
Stewart 1964, Mandelbrot 1974, Frisch et al. 1978 ) and a=2 (the maximum) is the
lognormal model. C1 is the co-dimension of the mean of the process; it quanti® es
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Figure 4(b). In situ ¯ uorescence spectra from Lovejoy et al. (2000 ). The boat speed was
1.3 m/s.

Table 2. Fluorescence global comparisons. Part I refers to Claerdeboudt et al. (2000, part II
to Lovejoy et al. (2000 ). For part II, the errors (parentheses) are interbay average
variabilities. The low frequency C1 , a values were not estimated due to an inadequate
range of scales.

C1 a H b

Low frequency
Space: part I Ð Ð 0.21 (0.06) 1.31 (0.13)
Space: part II Ð Ð 0.11 (0.05) 1.18 (0.1 )
Time: Seuront et al. (1996a) 0.02 (0.01) 0.8 (0.02) 0.12 1.22

High frequency

Space: part I 0.064 (0.05 ) 1.84 (0.01) Õ 0.31 (0.02) 0.26 (0.03)
Space: part II 0.022 (0.01) 1.86 (0.10) Õ 0.27 (0.05) 0.41 (0.1 )
Time: Seuront et al. (1996a) 0.04 (0.01) 1.80 (0.05) 0.41 1.75
Time: Seuront et al. (1996b) 0.035 1.80 0.36 1.66

the sparseness of the ® eld values which give a dominant contribution to the mean.
The corresponding c(c) obtained by Legendre transform is

c(c)=C1 A c

C1 a¾
+

1

aB
a¾

;
1
a

+
1
a¾

=1 (4b)

In order to directly test the universality hypothesis, and to estimate a, C1 , we used
the double trace moment (DTM) technique (LavalleÂ e 1991, LavalleÂ e et al. 1993b).
The basic idea is to de® ne a new exponent function K (q, g) via the following equation:

7 (wq

K )q
l 8 =lK (q ,g ) (5)
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This notation indicates that we take the various powers g of the ® eld at its highest
resolution scale ratio (L= image-size/pixel-size), then degrade the result to a lower (w
intermediate) resolution (l) and ® nally (ensemble) average the qth power of the result.

The scaling exponent K (q, g) is related to K (q, 1); K(q ) by

K (q, g)=K (qg, 1 )Õ qK (g, 1 ) (6a)

The advantage of the DTM over other techniques is that, in the case of universal
multifractals, applying equation (6a) to the form in equation (4a), we ® nd that K(q, g)
has a particularly simple dependence on g:

K (q, g)=gaK (q) (6b)

Therefore, a can be estimated on a simple plot of logK (q, g) versus logg for ® xed q.
The above applies to processes that are the direct result of a multiplicative cascade

process in which some quantity (analogous to the energy ¯ ux in turbulent cascades) is
conserved from scale to scale. However, a priori, there is no reason to expect the
observed processes to be conserved; they will more generally be related to a conservative
process by integrations of various (generally fractional ) orders denoted H (diVerenti-
ations are integrations of negative order and hence are obtained for H<0; see Schertzer
and Lovejoy (1987) and Naud et al. (1996)). This is the f̀ractionally integrated ¯ ux’
model. If the process is non-conserved, it su� ces to perform the inverse fractional
integration/diVerentiation so as to return it to the underlying conservative process.
Since fractional integration of order H corresponds to power law ® ltering, this is
conveniently done by Fourier methods. Alternatively, since in practice it su� ces to
diVerentiate by an amount at least Õ H (LavalleÂ e et al. 1993b), if H<1, one can use a
® rst-order derivative (roughly equivalent to ® ltering by the wavenumber modulus),
which in turn can easily be approximated by using the (absolute) gradient of the series.

Once C1 , ahave been estimated, one can calculate K(2 ) for the conserved process
(using equation (3) with q=2) and then calculate H using the result of appendix
A.2. The parameter H can then be estimated by

H=
b Õ 1+ K (2)

2
=

b Õ 1

2
+

C1 (2aÕ 2)

2(aÕ 1 )
(7)

This technique was applied to the diVerent strips which were fractionally integrated
by ® ltering15 by k0 . 2 . The moments for diVerent values of q (g=1) for channel 4 are
shown in ® gure 5. As expected, the scaling is good for all moments. We also calculated
the curves for log10 K(q, g) versus log10 g for all the diVerent channels with q=0.5
( ® gure 6). As we can see, there is very little dispersion in the various curves, so that
K(0.5, g) is nearly the same for all channels. In particular, the slope yields an estimate
of a and the intercept of C1 (cf. equation (6b) and use C1 =K(q) (aÕ 1)/(qaÕ q ) to
calculate C1 from the graphically determined K(q, 1)=K(q)). Note that the curvature
at high values of g is due to the limited number of samples; this can be explained in
terms of multifractal phase transitions which arise from ® nite sample size eVects
(possibly) combined with divergence of high order statistical moments16 (Schertzer
and Lovejoy 1994). The values of the estimated parameters a, C1 and H are shown
in table 1. As we can see, all three channels are roughly compatible with the same

15To avoid numerical problems in the fractional integration, standard windowing
techniques should be used.

16In the former case, the transition is second order; in the latter, it is ® rst order.
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Figure 5. Log10 7 Qq l 8 versus log10 l for values of q decreasing (top to bottom) from 8 to 0
in increments of 0.8. Note the excellent (multi) scaling over the entire range.

Figure 6. Log10 K (q, g) versus log10 g for all eight channels with q=0.5. The reference line
has a slope=1.9.

value of the parameters, i.e. a=2.0 Ô 0.1, C1 =0.05 Ô 0.01 and H=0.18 Ô 0.01. In
Seuront et al. (1996a, b), Claerdebout et al. (2000) and Lovejoy et al. (2000), the
multifractal parameters for in situ data were estimated (see table 2), and the values of
the parameters a and C1 of the remotely sensed images are the same (within statistical
errors) as the in situ measured values. We also note that a=2 is the maximum of the
multifractal index and corresponds to a process with a log-normal generator17 .

17Note that, strictly speaking, DTM only determines the behaviour of K (q) (with linear
term removed) near q=0, i.e. its degree of nonanalyticity at the origin; the result a# 2,
therefore, is compatible with any analytic K (q ); the log-normal multifractal is then simply the
closest pure quadratic approximation.
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2.5. Extreme events, multifractal phase transitions and self-organised criticality
We will now consider an important theoretical and empirical aspect of the data;

the statistics of the extremes. For multifractal processes, the statistics of wl resulting
purely from dynamics at larger scales (smaller l) are very diVerent from those
averaged at the same scale but whose dynamics continue to much smaller scales.
The former are called the bare quantities and the latter the d̀ressed’ quantities18 .
The main diVerence between the two is that all the statistical moments of the bare
® eld wl converge as the sample size increases, whereas the moments of the dressed
wl , d will generally diverge1 9 with sample size if q is large enough:

7 wq
l , d 8 � 2 ; q > qD (8)

This divergence corresponds to hyperbolic fall-oV the probability distribution, i.e.

Pr(wl , d > s)# s Õ
q D (s&1) (9)

The divergence of statistical moments and spatial scaling can be taken as the de® ning
property of self-organised criticality (SOC; Bak et al. 1987, 1988 ) so that such (non-
classical20 ) SOC is in fact a generic property of multifractal ® elds (Schertzer and
Lovejoy 1994 ). Since ® nite samples will always yield ® nite moments, the divergence
can be observed either via the divergence of empirical moments with increasing
sample size or via discontinuities in the derivatives of the observed scaling exponents
K (q ) and c (c). Since there is a formal analogy between multifractals and classical
thermodynamics (Schuster 1988, Schertzer and Lovejoy 1994 ), these discontinuities
result in `multifractal phase transitions’.

The probability distribution for absolute intensity gradients Di is shown for channel
8 in ® gure 7 (a) and for all channels in ® gure 7 (b). Channel 8 is shown seperately,
since it has the most convincing power law tail with the value qD # 3.6. Note that the
very largest gradients have faster fall-oV; these gradients (>100 digital counts in 8-bit
data) are near the limit of the discretisation and could be caused by inadequate
discretisation or related instrument response/saturation problems. In ® gure 7(b), the
behaviour is not so clear, but there is general trend with roughly the same slope (see
the reference lines with slope 3.6), and once again one may suspect instrumental
problems at the extreme gradient end. The value qD # 3.6 is close to the in situ value
qD # 3 reported in21 Lovejoy et al. (2000). It is worth mentioning that large datasets
are typically needed to estimate these exponents; the necessary size can be quanti® ed
with the notion of s̀ampling moment’ qs (Schertzer and Lovejoy 1989b), which is the
largest moment that can be reliably estimated for a given sample size and a, C1 values.
Here, we estimate qs # 4.5, which is >qD , so that we may conclude that our estimate
of qD is indeed based on an adequately large sample.

18This jargon was introduced into the multifractal literature by Schertzer and Lovejoy
(1987 ) and is borrowed from renormalisation theory.

19Various multifractal processes can be constructed which have intrinsic maximum orders
of singularity; in these processes, qD � 2 for su� ciently large averaging dimension D; hence,
in these c̀onditionally hard’ multifractal processes, the divergence can be avoided.

20Classical SOC is based on cellular automaton type models and are characterized by
avalanche-like extreme events associated with the algebraic probability tails. It is restricted to
zero-¯ ux processes whereas multifractal SOC has the advantage of having ® nite ¯ ux.

21This in situ analysis suVered from similar instrumental problems; however, the in situ
values of qD for temperature, O2 density, salinity and transmittivity were 4.3, 4.1 and 4.3,
respectively.
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Figure 7(a). Log10 Pr(Di>I ) versus log10 I for channel 8. The reference line has a slope
of Õ 3.62 and was ® t to the squares.

Figure 7(b). Log10 Pr(Di>I ) versus log10 I for all channels.

3. Conditional Multifractal statistics

3.1. Using multifractals to extrapolate from one resolution to another
Before considering the problem of comparing diVerent data types at diVerent

resolutions (such as in situ and remote surrogates), we ® rst consider the problem of
changing resolution for data of a single type. We have seen that the appropriate
scale-invariant (resolution-independent) characterisation of a multifractal is via the
exponents c, c(c), K(q ) (see ® gure 8(a) for a schematic). If we are only interested in
comparing the unconditional statistics at diVerent scales, then this is adequate. For
example, we can use equation (1) and transform our resolution l data wl into
singularities: c= log wl / log l and then calculate the probability from the resolution-
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(a)

Figure 8. Schematic diagrams showing the various conditional statistics discussed in the text.

independent c (c). However, it is often of interest to use conditional information such
as knowledge of the measured value wl m (=l

c
m

m , singularity cm , resolution lm , m for
measured, e for extrapolated ) and we wish to extrapolate to higher or lower reso-
lutions le either by determining the conditional probability distributions or the
conditional expectations. In particular, the conditional expectation of wl e given wl m

provides the statistically optimum estimator of wl e .
It turns out that, for technical reasons, the easiest way to calculate the conditional

expectations, joint and conditional probability distributions is via the cross-moments;
this is developed in appendix A (see also Salvadori et al. 2000 for a general statement
of the conditioning problem). In order to calculate the conditional expectations from
the cross-moments, ® rst de® ne the conditional probabilities p (ce |cm ) from the joint
probabilities p (ce , cm ) of obtaining both estimated singularity ce and measured
singularity cm :

p(ce |cm )=
p(ce ,cm )

P p(ce ,cm ) dce

(10)
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(b)

The conditional statistical moments are now given by

7 wq e
l

e
8 c

m
=eK (q e | c

m ) =Plq e
c

e
e p(ce |cm ) dce (11)

(we use the e-based second characteristic functions K rather than the usual l-based
ones, since we are interested in using diVerent resolutions for measurements and
extrapolations). We now introduce the following de® nition of K (qe , c):

eK (q e , c
m ) = P eq e

c
e log l

e p(ce , cm ) dce (12)

From equations (10± 12), we have

K (qe |cm )=K (qe , cm )Õ K (0, cm )=K (qe , cm )Õ c(cm ) (13)

In order to calculate K(qe , cm ), we use the inverse Laplace transform relation between
probabilities and moments:

eK (q e , c
m )=P e Õ

q m
c

m log l
m eK (q e , q m ) dqm (14)

Below, we show how such calculations can be performed analytically in the case of
the log-normal multifractals (which are apparently a good approximation to the
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(c)

a# 2 empirical radiances discussed in the previous subsection); all we will require
are the two-point cross-moments which are derived in appendix B. Using the
lognormal K(qe , qm ) from appendix B, we ® nally obtain

K (qe |cm )=C1 logle (q2
e (1 Õ Q2 )Õ qe )+ qe (C1 + cm )Q Ó ( log le )(log lm ) (15)

where Q is the correlation coe� cient between the estimated and the measured
singularities. For example, in the limit where there is a large diVerence in resolution,
Q# 0, and we obtain the usual unconditional moments.

To understand the meaning of the above, consider now the special cases where
the measured and estimated singularities are centred at the same location (Dx=0;
see appendix B, equation (B8)). In this case, we have the following simpli® cation:

Q=
log(min(le , lm ))

Ó log le log lm

(16)

which has the expected property that Q=1 if le =lm and Q# 0 in the limit where
the ratio between the resolutions is very large. We can thus consider the following
cases.

(i ) Disaggregation/downscaling: the measurement scale is larger than the estimated
scale (le >lm )

In this case, we measure the average over a large scale and wish to extrapolate
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(d)

to much smaller scales (recall that the scale ratio l is inversely proportional to
length; see ® gure 8(b)). Using equation (16), we obtain Q2 = log lm /log le and

7 wq e
l

e
8 c

m
= Ale

lm
BK (q e )

lq e
c

m
m (17a)

The interpretation of this is simple: the qe th power of the measured value l
c

m
m is

modulated by a prefactor which is the qe th moment over the scale ratio le /lm over
which the extrapolation is made. This result can also be obtained directly from the
factorisation property of conservative multifractals; the large-scale multiplicatively
modulates the small; therefore it holds for all conservative multifractals.

This leads to the following conditional probabilities:

Pr(wl
e
>l

c
e

e |cm )# l Õ (1 Õ
f ) c ( (c

e Õ
fc

m )/(1 Õ
f ) )

e (17b)

where

f=
log lm

log le

(ii ) T he measurement scale is smaller than the estimated scale (le <lm )
This result corresponds to the more frequent situation where, for example, in situ

measurements are made at small scales and we seek to generalise to larger scales; it
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(e)

is less obvious to interpret ( ® gure 8 (c)). Here, we have Q2 = log le / log lm ; using this
in equation (16), we obtain

7 wq e
l

e
8 c

m
=lK

*
(q e )

e lq e (c m + C
*
1 )

e (18a)

with corresponding conditional probablility

Pr(wl
e
>l

c
e

e |cm )# l Õ
c

*
(c e Õ

c
m Õ

C
*
1 )

e (18b)

where the asterix means the r̀enormalised’ functions with parameter

C *
1 =C1 (1 Õ f Õ 1 ) (18c)

In equation (18a), the second term simply represents the direct extrapolation of the
measured singularity to the large scale (lc

m
e ). It is modulated by a prefactor that

represents a systematic cm independent bias and which disappears for le # lm . For
example, assuming that the scaling extends to planetary scales (L # 107 m) and that
C1 # 0.05 (see table 1), we ® nd that in situ pigment concentration measurements at
1 m resolution (lm # 107 /1=107 ) extrapolated to 1 km (le # 107 /103=104 ; the CZCS
scale; see below) yield a bias in the mean (qm =1) of factor # 8 in the value l

c
m

e ,
which itself represents a systematic bias by the cm dependent factor (le /lm )c

m .
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3.2. Multifractal objective analysis
The correlations/interrelations22 between singularities can be used for useful

purposes other than downscaling or upscaling. Consider a variant on the resolution
problem above in which the points are seperated by a distance Dx non-
dimensionalised by dividing by the outer scale L so that Dx varies between the
pixel scale ratio L Õ 1 and 1; we seek to infer the value of the ® eld at a neighbouring
pixel using a measured value of the ® eld a distance Dx away. For simplicity, take
the resolutions as identical; le =lm =l; this is a special case of the problem of
objective analysis in which the values of many measurements are used to estimate
the conditional expectations at data sparse regions. If our object is only to correct
the statistical properties for biases due to measurement sparseness, then such statist-
ical multifractal objective analysis is relatively straightforward (Tessier et al. 1994 ).
However the conditional expectation discussed here corresponds to the more usual
problem of objective analysis on individual realisations, which is much more di� cult
(see, however, Salvadori (1993 ) and Salvadori et al. (1993, 2000 )). Here, we show
how a simple extension of the above can be used to obtain optimum information
from single measurements in conservative lognormal multifractals2 3 .

First, consider the specialisation of equation (16) to the case where le =lm =l;
we obtain the conditional expectation

7 wq e
l 8 |c

m
=lK ( q e ) Õ

K (q e
Q )+ q e } c

m (19)

where Q(Dx) is the correlation of known and inferred/estimated singularities (see
appendix B). Note that, as expected, when Q=0 ( long distance), we obtain the usual
unconditional result; whereas, when Q=1 (the short distance limit), we obtain the
measured result lqcm .

In the scaling regime, we have the following approximation which can be obtained
by expanding the cosine equation (B8) about |k |# 0:

Q (Dx)#
Õ log Dx

log l
(20)

Now de® ne the èxtrapolation/forecasting24 scale’ lf =lDx as the ratio of the actual
forecast distance Dx to the resolution l Õ 1 . Using equation (20), we obtain

7 wq e
l 8 |c

m
# lK (q e )+ C 1

}
f A l

lf
Bq e

c
m

(21)

When Dx=l Õ 1 (hence lf =1), we have Q(Dx)=1 (since the ® eld is homogeneous
over this distance); this shows how the expectation decays from the known value
lq m to the unconditional expectation value lK (q ) (obtained with Dx=1, i.e. lf =l;
see ® gure 8(d)).

We can also calculate the conditional co-dimension function c (c e |cm ) which

22For a<2, the usual correlation coe� cient between singularites diverges since the c values
are in® nite variance stable Levy random variables; however, they are still interrelated, equation
(A4) still holds.

23Equation (A4) combined with equations (13) and (14) can be used in the general case;
however except for log-normal multifractals analytic results are not generally possible.

24The term f̀orecasting’ would only be fully justi® ed if one of the axes were the time axis.
See Marsan et al. (1996) for detailed treatment of this problem.
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determines the conditional probability distribution. The exact result can be obtained
by Legendre transform of K(qm |cm ):

c(ce |cm )=
(ce Õ Qcm + C1 (1 Õ Q))2

4C1 (1 Õ Q2 )
=

c(ce Õ Q(cm + C1 ))

(1 Õ Q2 )
(22)

When Q# log Dx/log l%1 ( long range extrapolation/forecast; lf &1), we obtain the
following approximation (valid to ® rst order in Q) for the conditional co-dimension
function:

c(ce |cm )=c(ce Õ Q(cm + C1 )) (23)

which shows how the unconditional co-dimension (c(ce )) is modi® ed by the measure-
ment; the distribution of singularities is slightly shifted as a function of Q and the
measured singularity ¯ uctuation2 5 (cm + C1 ). The case of short range extrapolation
(Q# 1) requires a bit more care. De® ning the small quantity D=1 Õ Q, we obtain

c(cm |cm )#
(ce Õ cm )2

8C1 D
(24)

which shows that c# cm as expected for su� ciently short range extrapolations /
forecasts.

In practice, although it is important to obtain an estimate of the optimum
extrapolation/forecast value, one also seeks to characterise the expected root-mean-
square (RMS) error in the estimate. This is also straightforward to obtain using the
above formulae. For example, we can now de® ne the relative RMS error for the
extrapolation of the qth moment:

E 2
q =

7 w2 q
l 8 |c

m

7 wq
l 8 2 |c

m

Õ 1=lK (2 q ) Õ 2 K (q ) Õ (K (2 q } ) Õ 2K (q } ) ) Õ 1=l2 C 1 q
2

(1 Õ
} ) Õ 1 (25)

Using equation (20) for Q, we obtain

E2
q + 1=l2 C 1 q

2

f (26a)

For example, for the ¯ uorescence plankton surrogate, we have C1 # 0.05 (table 2);
hence, for the mean (q=1), we obtain

E1 = Ó l2 C 1
f Õ 1 (26b)

so that in situ concentration values at 1 m resolutions extrapolated to a location
1 km away (e.g. the opposite side of a CZCS pixel ) requires lf =1 km/1 m=103 and
yields an RMS error in the mean of # 170%. However, the relative RMS eror in
extrapolating the variance will be much larger; taking (q=2) we obtain

E1 = Ó l4 l
1

f Õ 1 (26c)

i.e. # 400%.

25For the log-normal multifractal, c is a Gaussian random variable with 7 c 8 =Õ C1 ,
7 c2 8 =2C1 ; hence, c+C1 is the ¯ uctuation in the singularity value about the mean.
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3.3. Conditional autocorrelations and spectra: biased exponents and spurious breaks
in the scaling

We are often interested in remotely studying phenomena which are both extreme
and rare, e.g. using infrared imagery to study volcanic h̀ot spots’ (Gaonac’h et al.
1999, Harvey et al. 1999 ). In this case, we may have one or a few pixels which are
far more intense than their neighbours and appear as nearly a d̀ function’ (e.g. a
lava lake). The resulting autocorrelations and spectra will generally be biased; for
example, in the extreme case of a true d function, the spectrum would be ¯ at26 . In
order to quantify the resulting statistical biases, we must therefore consider condi-
tional autocorrelations and conditional spectra (obtained from the latter by Fourier
transform). Finally, when studying such extremes, we often are not so interested in
studying ensemble statistics (the statistics of the extremes may not be too reliable
anyway), but rather single realisation statistics, e.g. the spectrum of a single satellite
picture of an active volcano. In this case, we will need to consider the variability
about the ensemble mean.

In appendix C, by using three-point statistics we show how to estimate the
corresponding conditional statistics for the case of log-normal multifractals (see
® gure 8(e)). The main result is that, if we condition the statistics to the presence of
a su� ciently large order of singularity (cm >3C1 ), we obtain (see equation (C11))

7 wl
m

(xlag )wl
m

(xlag + D x)cm (x) 8 # DxC 1
f

Õ
c

m (27)

where the overbar indicates spatial averaging over all xlag locations in the satellite
picture (overall size, l Õ

1
s with pixel size l Õ

1
m ) and here and in the rest of this

subsection, f= ( log ls )/( log lm ). Since the unconditional exponent of Dx is Õ 2C1 ,
this shows that there is a shift in the exponent so that the eVect of the conditioning
is to roughen the spectrum by the same amount as a fractional integration of
order DH:

DH=C1 A1+
f

2B Õ
cm

2
(28)

Since this result is valid only for cm >3C1 , since ls <lm , we ® nd f<1; hence DH<0
(corresponding to a fractional diVerentiation), indicating that the eVect of this condi-
tioning is indeed to ¯ atten the spectrum.

When the conditioning order of singularity is not so great (in the range
(4fÕ 1)<cm <3C1 ), only the short distances will have anomalous scaling; therefore,
we obtain a spurious scaling break. However, as indicated in appendix C, on spectra
from individual realisations of the multifractal process, these relatively low cm eVects
may be quite hard to make out above the noise, so this result may not be too
signi® cant in practice.

To make this discussion concrete, let us further consider volcanoes and extreme
hot spots, e.g. regions with temperatures >800C. For illustrative purposes, assume
that the outer scale is 104 km, resolution 10 m (l=104 km/10 m=106 ) and at any
given moment, there are 10 pixels of this size somewhere on the planet showing such
a temperature (corresponding for example to lava lakes). Assuming the Earth’s

26The exact slope would depend somewhat on the assumed statistics of the d function,
Gaussian or Levy.



S. L ovejoy et al.1216

surface area is # 101 4 m2 , then the probability of a given 10 m Ö 10 m pixel exceeding
this temperature would be

p(cm )=l Õ
c (c m ) # 10/(106 )2 =10 Õ 11 (29a)

hence

c(cm )# 11/6=1.83 (29b)

We can attempt to estimate the maximum order of singularity from this probability
by using the C1 , a values estimated by Gaonac’h et al. (1999 ) and Harvey et al.
(1999 ); very roughly, they obtained C1 =0.1, a=2. Using these values and equation
(29b) in equation (4b), we obtain cm # 0.75. If we now consider an infrared picture
with 1000 pixels on a side (each 10 m), then ls =103 . Using equation (28), the bias
2DH in the spectral exponent is thus # 0.5.

3.4. Vector multifractals: calibration of remotely sensed data and the resolution
dependence of principle component analysis

We are frequently faced with two (or more) interrelated datasets. For example,
principle component analysis uses several wavelength channels of the same scene to
determine covariance matrices and hence eigenvectors (principle components) which
de® ne uncorrelated27 linear combinations of the diVerent channels. A related example
which we develop in detail, is the problem of comparing in situ measurements with
surrogates derived from remotely sensed radiances, with the former being used for
calibrating the algorithm. In subsection 3.1, we have seen how for a known (e.g.
satellite ® eld) one can extrapolate from one resolution to another (e.g. to the calib-
ration scale) . However, at best, we expect the measurements and surrogates (denoted
P,S for p̀lankton’ and s̀urrogate’) to have non-linear but scaling statistical relations
due to complex non-linear (coupled cascade) processes from large to small scales.
This statistical relationship between P,S is very poorly discerned by traditional cross-
correlation analysis which is performed at a single resolution; in fact, below, in
accord with the empirical ® ndings of Chou (1991 ) on the autocorrelations mentioned
above, we show that even the sign of the cross-correlations can change as a function
of resolution. Similarly, we shall see that, in general, the principle components will
be scaling functions of the resolution. Since satellite resolution is fairly arbitrary, this
considerably diminishes their signi® cance at any ® xed resolution; on the contrary,
augmenting the importance of the corresponding (resolution invariant) exponent.

The simplest way to to treat scaling interrelations is to introduce the state vector
vl = (Pl , Sl ) at resolution2 8 l; we then can relate the large-scale and small-scale
vectors by a matrix (rather than by the usual scalar):

vl =lcv1 (30)

where here c is a random, 2 Ö 2 matrix singularity (2 Ö 2 matrices are indicated in
bold ). Note that here we assume that vl is the direct result of a multiplicative cascade
(i.e. H=0). Just as in the scalar case, it is more realistic and general to consider the
observed components to be fractional integrals with respect to such a process; for

27As we see in the example below, although their covariance may be zero, they can
nevertheless have a strong statistical dependence.

28These must ® rst be suitably non-dimensionalized, e.g. using the mean.
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simplicity, we do not treat this complication here. The framework for handling such
vector and matrix processes is Lie cascades (Schertzer and Lovejoy 1995 ).

To see how this works; make the following pseudoquaternion decomposition:

1=A1 0

0 1B I=A0 Õ 1

1 0B
K=A1 0

0 Õ 1B J=A0 1

1 0B
c =1c

1
+ Ic

I
+ Jc

J
+ Kc

K
(31)

so that the c1 , cK , cJ , cI are the (random) coe� cients of the various basis matrices.
Note that I2 =Õ 1, J2 =K2=1. Just as in the scalar case, the statistical properties of
the process can then be speci® ed via the second (Laplace) characteristic function
(now of a scalar function of a matrix moment Q):

lK (Q ) = 7 lT r (Q´c ) 8 (32)

where Tr (Q ´ c ) indicates the trace of the matrix product Q ´ c . In order to understand
the complexity of the resulting behaviour, recall the following formula (e.g. Schertzer
and Lovejoy 1985 ) for the exponentiation of a 2 Ö 2 matrix:

lc =l
c

1 A1 cosh au+
(c Õ c1 1)

a
sinh auB (33)

with

a2 =c2
K + c2

J Õ c2
I

u= log l (34)

Note that, when a2<0, the cosh and sinh are replaced by cos, sin and a by |a | in
the above.

We now calculate the cross-correlation coe� cient of Pl , Sl as functions of l,
showing how it can periodically change sign at ® xed factors of resolution. For
simplicity, consider a process involving only the commuting components c1 , cI . In
this case, equation (33) reduces to

lc =lc 1 (1 cos uc1 + I sin uc1 ) (35)

We can see that the use of the symbol I is not accidental; the sub-algebra it generates
corresponds to the algebra of complex numbers, the c̀omplex cascades’ discussed in
Schertzer and Lovejoy (1995 ). Therefore, it is advantageous to use the complex
notation zl =Pl + iSl ; c=c1 + icI , with i2 =Õ 1; thus

zl =l
c

z1 (36)

These rather special complex processes, therefore, describe a vector whose length is
determined by the random modulus l

c
1 and random angle cI log l; the measured

surrogate (Sl ) and inferred/estimated quantity (Pl ) are simply diVerent components
of the resulting random vector. In this example, the problem of estimation from the
known surrogate is equivalent, therefore, to that of using the statistics of the vector
length and angle as a function of scale to obtain the conditional expectation of one
of the vector components given another orthogonal component.
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The statistics can now be de® ned by the following:

7 lqc1 8 =lK 1 (q )

7 li q c
I 8 =lK I (q ) =lK I ,R ( q )+ iK I ,J ( q ) (37)

Note that the Laplace second characteristic function K1 (q ) is purely real, while the
Fourier transform yields a generally complex second characteristic function KI (q )
as indicated. Note further that the conservation condition 7 lc 8 =1 implies
K1 (1)+ KI (1)=0 and 7 Pl 8 =P1 , 7 Sl 8 =S1 . Schertzer and Lovejoy (1995 )
showed how complex cascades can be generated with extremal Levy l1 , but with
non-extremal Levy lI (this is indeed necessary to obtain non-zero K I , I (q )).

We shall now calculate the cross-correlation coe� cient between the vector com-
ponents. For example, to calculate the cross-variance, we can take the ensemble
average of the relation 2Pl Sl = Im(z2

1 ). Doing this and using the above de® nitions
of the characteristic functions, we obtain

7 Pl Sl 8 Õ 7 Pl 8 7 Sl 8 =
R2

1

2
[lK 1 (2 )+ K I ,R (2 ) sin(K I , I (2) log l+ 2h1 )Õ sin(2h1 )]

(38a)

where R1 eih 1 =z1 =P1+ iS1 is the initial large-scale (l=1) vector. The combination
of the convexity of second characteristic functions and the conservation condition
shows that K1 (2)+ KI , R (2)>0; hence, as l increases, the constant term sin 2h1

becomes negligible and the sign of the above (centred) cross-correlation oscillates
with period log l. To complete the calculation, we work out the cross-correlation
coe� cient:

rP S ,l =
7 Pl Sl 8 Õ 7 Pl 8 7 Sl 8

sP ,l sS ,l
(38b)

where the s are the standard deviations given below:

s2
P ,l =R2

1 ClK 1 (2 )+ K I ,R (2 ) cos2AK I , I (2)
2

log l+h1B Õ cos2 (h1 )D
s2

S ,l =R2
1 ClK 1 (2 )+ K I ,R (2 ) sin2AK I , I (2)

2
log l+h1B Õ sin2 (h1 )D

(39)

As l � 2 , the product sP ,l sS ,l approaches R2
1 /2 lK 1 (2)+K I ,R (2 ) |sin (K I , I (2)log l+2 h1 )|;

hence, rP S ,l # Ô 1 alternating in sign every factor of ep /K I ,I (2 ) . The interpretation of
this is that, when l is large, the components of the vector are typically of comparable
magnitude, with signs depending on the quadrant in which they fall; KI , I quanti® es
the rotation of the centre of the distribution of angles with scale (and hence the
quadrant ).

We may now use this example to consider the resolution eVect on the principle
components in a dual-channel analysis where P, S represent two radiances. Denoted
by hc , the angle of one of the eigenvectors/ principle-components with respect to the
P axis of the covariance matrix of P, S, we obtain

sin2 (2hc )=
(rP S ,l sP ,l sS ,l )2

AsP ,l Õ sS ,l

2 B2

+ (rP S ,l sP ,l sS ,l )2
(40a)
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Using equations (38) and (40), when l is large, we obtain

hc # h1 +
K I , I (2) log l

2
(40b)

showing that the principle components continuously rotate with a constant
( logarithmic) rate with resolution.

This example clearly shows the danger of making quantitative or even qualitative
inferences about the relation of two processes from the correlations/covariances at
® xed resolutions.

4. Ocean colour and phytoplankton biomass by remote sensing

4.1. T he standard resolution-dependent approach
The use of ocean colour to infer ocean properties is a branch of marine optics

that received major impetus in the 1960s and 1970s due to the advent of satellite
remote sensing, the highlight of which was the roughly 1 km resolution, four-channel
CZCS sensor which was operational from 1978 to 1986 (see the papers in Barale
and Schlittenhardt (1993 )). One of the signi® cant uses of the CZCS sensor was to
estimate the density of chlorophyll-like pigment (which is a phytoplankton surrogate).
Of the four relatively narrow channels, one is particularly sensitive to cholorophyll
and another is particularly insensitive (a reference band); these correspond very
closely to MIES channels 7 and 8, respectively. The basic idea (explained in detail
in Sturm (1993 )) is to use information from the other two CZCS channels to provide
corrections (to account for both additive aerosol and surface scattering eVects as
well as for multiplicative atmospheric transmission eVects). This information is used
in a semi-empirical formula for estimating the chlorophyll-like pigment concentration
from the (corrected) pigment sensitive re¯ ection (Rp ) and the reference re¯ ection
(Rr ). To express the semi-empirical2 9 formula, it is then usual to introduce the
re¯ ectance ratio X:

X=Rp /Rr (41)

which has the property of being insensitive to sun and satellite angles, as well as to
overall atmospheric absorption. If the additive and multiplicative corrections are
nearly uniform across the scene, then the multifractal parameters estimated in the
previous sections will correspond to those of the re¯ ection coe� cients, since the
spectral and DTM techniques are not aVected by a linear transformation. In the
following, to simplify the discussion, we therefore assume that Rp and Rr have
the same scaling properties as the measured MIES channel 7 and 8 radiances.

The s̀tandard’ CZCS algorithm is based on single scattering theory and other
approximations that are used to obtain relations for the pigment concentration
surrogate S, of the form

log S= �
3

i= 0

ai ( log X )i (42)

with the ai determined empiricially from estimates of in situ pigment concentrations
P by regression of P versus the remote surrogate S. For example, Sturm (1993 ) with
CZCS sensor in t̀ype 1 waters’ obtains a0 =0.768, a1 =2.61, a2 =0.791, a3 =Õ 0.388

29We use the term s̀emi-empirical’ to denote algorithms which may have some physical
motivation but which involve various ad hoc assumptions or approximations.
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( logs to base 10). Since we have found that Rp and Rr are multifractal, they are each
strongly resolution dependent; hence, a priori, so will be their ratio X. Therefore, we
anticipate that the empirical ai values will have diVerent scalings from each other
(diVerent functions of l) since log X, ( log X )2 and (log X )3 will each have diVerent
scalings. We expect then, that observers using either in situ or remote data with
other resolutions will obtain a diVerent (subjective) set of ai values.

4.2. Scale-invariant calibration
We have seen that P (as inferred from the in situ ¯ uorescence measurements) and

Rc and Rr (as inferred by the scaling of the radiances) are all strongly dependent on
the resolution l; hence, we expect that, in general, for the surrogate S to provide a
good approximation to P at all scales (not just at the calibration scale), the ai values
should be functions of scale; a priori, this implies that one requires a series of
empirical functions ai (l), which, in the absence of any other information, corresponds
to the impossible determination of an in® nite number of empirical parameters.

The fundamental reason for introducing multifractals in remote sensing is pre-
cisely to circumvent these resolution-dependent quantities by introducing resolution-
independent exponents (e.g c, c (c), K(q ), etc.). In other words, we exploit the scale
invariance to relate scale-invariant quantities derived from P to scale-invariant
surrogate quantities derived from Rc and Rr using a scale-invariant function. The
scale-invariant values of the ® eld are the singularities

cP =
log P/ 7 P 8

log l

cR =
log R/ 7 R 8

log l

(43)

where we have used the ensemble means for normalisation. We can then obtain

cS = f (cR e
, cR r

) (44)

where f is now an objective (observer independent ) function. The resolution-
independent estimator cS determined at the satellite resolution can then be compared
to the resolution-independent in situ calibration values cP . Note that, since scale
invariance is a statistical symmetry principle, we do not generally expect cP =cS in

the usual deterministic sense; rather, we expect cP =
d

cS , where the symbol `=
d

’ indicates
equality in probability distributions30 . If f is parametrised, then resolution-
independent regressions can be used to determine resolution-independent coe� cients.
As a simple example, consider the CZCS calibration problem, noting that, from
equations (41± 43),

log X = log
7 Rp 8
7 Rr 8

+ (cr Õ cp ) log l (45)

Therefore, the semi-empirical formula for S can be rewritten in terms of the scale-
invariant calibration parameters Ai :

cP e
= �

3

i= 0

A i (cr Õ cp )i (46)

30a=
d

b means that Pr(a>s)=Pr(b>s) for all thresholds s; P̀r’ indicates p̀robability’.
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where Ai =a¾
i log l and the a ¾

i are themselves polynomial functions of ai . This shows
that we expect the coe� cients ai to have complex polynomial dependence on the
log resolution. Finally, if l is known31 , this allows us to estimate the scale-invariant
Ai values from the CZCS ai values, obtaining a scale-invariant algorithm by using
equation (43) to determine the surrogate S and then by using

cP # cS (47)

as discussed below.
We now discuss the type of equality in equation (44), since it immediately

introduces a statistical constraint which is important even when the measured and
surrogate data are not simultaneous (as in this paper). Indeed, equations (43) and

(44) imply, at the very least, that the `# ’ in equation (44) is taken as `=
d

’, i.e. that

the probability distributions of cS and cP are identical. The relation cS =
d

cP is a fairly
minimal requirement; in practical remote sensing algorithms, the much stronger

deterministic equality P=S is used (this is a special case of cS =
d

cP ). In either case,
if the c (c) or K (q ) functions are known (in the case of universal multifractals, the
latter are determined from H, C1 and a), we require that the corresponding H, C1

and a for P and S be equal. This requirement that the statistics of P and S be the
same at all scales can be taken into account in the initial stages of semi-empirical
algorithm development.

For example, the analyses presented earlier showed that a, C1 and H are roughly
same for in situ ¯ uorescence and remotely sensed images. This suggests that derived
pigment concentration should be obtained from a transformation that also preserves
the universal multifractal parameters. For simplicity, consider once again conservat-
ive multifractals, H=0 (if H is non-zero, the following will apply to the absolute
gradients for which H=0).

Consider an algorithm that consists of taking weighted powers of the re¯ ectivities
R at various channels (indexed by i ):

Sl =P
i

b i R
ai
i ,l (48)

This algorithm is equivalent to a linear transformation of the singularities; if we
assume that the diVerent channels are statistically independent with identical a

values, we can exploit the basic stability property of stable Levy variables. This
stability property implies that the weighted sum of independent Levy variables with
the same a values is another stable Levy with the same a but with C1 transformed as

C1 , S = �
i

C1 i a
a
i (49)

thus providing a constraint on the possible values of the3 2 ai .

31Note that the relevant resolution of data is its space/time resolution. Hence, in situ
measurements at p̀oints’ in space (which are invariably averaged over ® nite times) are not
point measurements in space/time and have ® nite, not in® nite, l.

32Note that, in equation (49), the a i values were assumed positive. If a=2, then we may
use the modulus of a i ; otherwise, for a<2 the negative statistical moments of S will diverge
so that we require a i >0.
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4.3. Implications for scale-invariant phytoplankton algorithms
If a remote sensing algorithm is to provide a reliable surrogate of plankton

concentration, we have seen that a necessary (but not su� cient!) condition is that
the surrogate must have the same statistical properties as the plankton at all scales3 3 .
We have seen that this scaling condition can be pro® tably used to limit the types of
possible algorithms.

Let us ® rst consider the case where there is no break in the scaling. In this case,
if the remote and in situ parameters were identical, (and this is consistent with the
analyses above), the scale-by-scale statistical properties of the radiances and the
¯ uorescence would be the same. However, standard remote plankton estimating
algorithms use non-linear relations at the ® nest scale which will break the scaling and
alter the statistics. It is easy, however, to devise other relations (such as those
involving products of powers of ® eld gradients) that would be scale invariant.

Because of the break, the actual situation is less favourable, since extrapolating
to the smallest scale of variability requires knowledge of the break scale. Recall that
Claeredeboudt et al. (2000 ) and Lovejoy et al. (2000 ) found that there was a break
at the p̀lanktonoscale’ that was highly variable34 but was often in the vicinity of
100 m. Furthermore, rather than becoming homogeneous at the planktonoscale, the
scaling was simply changed, with the concentration ® eld becoming more rather than
less variable at higher spatial frequencies, with this high level of variability continuing
down to the smallest observed scales (# 1 m) but presumably being cut-oV at centi-
metre scales by viscosity! The simplest model for this would be to assume that the
the high-frequency and low-fequency multifractal parameters are ® xed, as well as
the true inner homogeneity scale. In this case, knowledge of the planktonoscale
becomes fundamental in extrapolating to ® ner resolutions and hence for both calib-
ration and plankton estimates. This indicates that (contrary to the CZCS) the sensor
resolution must be of the order of 100 m or better (more study of the variability of
this scale is required; it may frequently be much smaller). It would be interesting to
test these ideas using simultaneous ocean colour and in situ measurements.

5. Conclusions

We have argued that geophysical and geographical ® elds are extremely variable
over ranges of up to 10 orders of magnitude in scale, but that they nevertheless
respect a (non-classical ) scale-invariant symmetry principle leading to multifractal
® elds and strong power law resolution dependencies. Over the last 12 years, empirical
analyses of atmospheric, land and ocean surface ® elds at visible, infrared and micro-
wave wavelengths, have con® rmed these ideas for various scale ranges, some as small
as 1 m (lidar rain, Lovejoy and Schertzer 1991 ), cloud radiances (Lovejoy et al. 1997,
Sachs et al. 2000 , Stanway 2000 )) and some as large as 5000 km (infrared and visible
radiances (Lovejoy et al. 1997 )). This theoretically predicted and empirically
observed, wide range scaling renders traditional remote sensing algorithms strongly
scale/resolution dependent. Mathematically, it corresponds to the fact that the corr-
sponding mathematical measures are singular with respect to the usual Lebesgue
measures. At ® rst glance, it is perceived as a subjective observer dependence that is

33Even if this criterion is satis® ed, the two series may nevertheless be statistically independ-
ent of each other, in which case S would have no information about P.

34They argued that this scale was determined by predator/prey type interactions and was
thus in¯ uenced by the highly variable (intermittent) velocity ® eld.
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an increasingly signi® cant barrier to quantitative exploitation of remotely sensed
data. We argue that wide range scaling demands the development of new objective
(observer/resolution-independent) algorithms and techniques. These techniques are
based on the existence of two scale-invariant generators. The ® rst (discussed here) is
a statistical generator that determines the statistical properties of the ® eld (including
all joint n point probabilities) as functions of scale. The second (discussed elsewhere)
determines the notion of scale itself and is necessary because geophysical scaling is
not isotropic; the corresponding fractals and multifractals are not self-similar; here,
we used isotropic analysis techniques, implicitly making the approximation that they
were self-similar.

In order to indicate how scale-invariant algorithms can be developed, and to
show the limits of current non-scaling approaches, we studied the example of ocean
colour using an eight-channel, 7 m resolution dataset from the St Lawrence estuary
(sensitive to chlorophyll-like pigment). We ® rst showed that the various channels
indeed had wide range scaling which we quanti® ed over roughly four orders of
magnitude in scale, obtaining multifractal parameters very similar to those observed
by in situ measurements. In section 3, we provided some simple examples demonstrat-
ing how multifractals can used to answer basic resolution problems in remote sensing;
in particular, we showed how to extrapolate from one resolution to another and
from one location to another. We quantitatively, showed how the study of special
extreme and rare events can lead to biased exponents and spurious breaks in the
scaling. We also showed some of the pitfalls of conventional ( ® xed resolution)
statistics, going into detail through a simple example where not only the magnitude
but also the sign of the cross-correlation between the surrogate and the measurement
can change with resolution, and in which even the angles of the principle components
change linearly with the log of resolution. In section 4, we showed that the standard
CZCS pigment concentration algorithm had hidden resolution dependencies and
indicated how these could be removed to obtain a resolution-independent algorithm.

Appendix A: Cross-moments, correlations and spectra of multifractals

A frequently used characterisation of scale-by-scale variability is the energy/
power spectrum which (for statistically translationally invariant processes, via the
Wiener Khintchine theorem), is the Fourier transform of the autocorrelation function.
Since the autocorrelation function is a second-order statistic, and statistics of all
orders are generally important in multifractals, the autocorrelation is not as funda-
mental a quantity as it is in (non-intermittent) quasi-Gaussian statistics where the
autocorrelation function/spectrum determines essentially all the variability.

We start with an argument (Monin and Yaglom 1975 ) for discrete cascade
processes on the unit interval (the dimension of space is unimportant; we can take
it to equal 1 here). Consider a discrete cascade with ratio l0 ; n cascade steps (external
scale ratio l=ln

0 ). De® ne the cross-correlation function rn (q1 , q2 , Dx) and
cross-correlation exponent K(q1 , q2 ):

rn (q1 , q2 , Dx); lK (q 1 , q 2 ) = 7 wq 1
n (x)wq 2

n (x+ Dx) 8 (A1)

(this is only a function of the seperation Dx, since the cascade is approximately
statistically translationally invariant. Continuous cascades are exactly translational
invariant).
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If we take Dx=l Õ
m

0 , then the points x, x+ Dx (typically) share m parent eddies;
they have m multiplicative factors (mw) the same, n ± m diVerent; therefore, we obtain

rn (q1 , q2 , Dx)= 7 mwq 1 + q 2 8 m 7 mwq 1 8 n
Õ

m 7 mwq 2 8 n
Õ

m (A2)

Hence, using the fact that <mwq >=lK (q )
0 (and, for l=ln

0 , switching to the notation
rl =rn ):

rl (q1 , q2 , Dx)=DxK (q 1 )+ K (q 2 ) Õ
K (q 1+ q 2 ) lK (q 1 )+ K (q 2 ) (A3)

Now, writing Q=Õ log Dx/log l, we obtain

K (q1 , q2 )= (1 Õ Q) (K (q1 )+ K (q2 ))+QK (q1 + q2 ) (A4)

Hence, we see that Q plays the role of a correlation coe� cient; Q=0 corresponds to
complete independence, Q=1 to complete dependence (however, only for log-normal
multifractals is Q a true correlation coe� cient). Obviously, this result can be gen-
eralised for the n point statistics, although it gets rapidly more complicated; see
Schertzer et al. 1997 appendix C for some results on four-point statistics. For example,
using the same method, we obtain the following formula for the three-point statistics:

K (q1 , q2 , q3 )=K (q1 , q3 )+ (K (q1 , q3 )+ K (q2 , q3 )Õ (1 Õ Q1 23 )(K (q1 )+ K (q2 )

+ K (q3 ))+ Q1 23 (K (q1 + q2 + q3 )Õ K (q1 + q2 )

Õ K (q1 + q3 )Õ K (q2 + q3 )) (A5)

where Q1 23 =min(Q1 2 , Q1 3 , Q2 3 ) corresponds to the shared interrelation of the three
points (Qi j is the Q for the i, j pair of points).

In the special case of two-point lognormal statistics, K(q )=C1 (q2 Õ q ), and we
obtain

K (q1 , q2 )=C1 (q2
1 Õ q1 )+ C1 (q2 Õ q2 )+ 2C1q1q2 Q (A6)

In the lognormal case, considered in more detail in appendix B, we show that Q is
indeed the correlation function for the singularities, and we generalise the above
equation for the case where the resolutions are no longer equal to l. See Schertzer
et al. 1997 for a generalization to anisotropic space-time multifractals (especially
appendix C).

A.2. T he spectral exponent
We can now use this result to obtain the usual autocorrelation function r K (Dx)

at the ® nest resolution (scale ratio L>1, and hence the spectrum:

r K (Dx)=r K (1, 1, Dx)=Dx Õ
K (2 ) (A7)

To obtain the spectral energy density P (k):

P (k)= 7 |rÄ K (k)|2 8 =Pr K (x)e i k x dx (A8)
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we need only use the Tauberian theorem (D=dimension of space; the above is valid
for any D, even anisotropic spaces):

P (k)# k(D
Õ

K (2 )) (A9)

Thus, the usual (angle integrated ) spectrum is

E(k)# kD
Õ 1 P(k)=k Õ (1 Õ

K (2 )) (A10)

Hence, the spectral exponent is b=1Õ K(2).

Appendix B: The lognormal multifractal

We seek moments of the form

7 wq 1
l

1
(x1 )wq 2

l
2
(x2 ) 8 =eK ( q 1 , q 2 ) (B1)

Using

wl (x)=exp Cl (x)

Cl (x)= P
A l1

exp(ik´x)c(k) f (k)dk (B2)

where c(k) is the subgenerator, f (k) is the deterministic ® lter, f (k)= |k | Õ
a/d (see

Schertzer and Lovejoy (1987 ) and Schertzer et al. (1997 ), a is the Levy index of the
noise c(k)). Al is the Fourier space dual of the real space zone of homogeneity. For
example, if d=2, and wl is homogeneous over circular regions size l Õ 1 in real space
(as we are used to), then, Al is the ànnulus’ formed by taking a Fourier space circle
radius l with the unit circle removed.

Here, we will typically take Al as usual isotropic annuli, although the following
will be quite general; a special case (of interest, for example, in radiative transfer) is
when Al is a line length l Õ 1 in a given direction, centred at x). In this case, Al will
be an in® nitely long strip in Fourier space, width l Õ 1 , oriented perpendicular to the
real space line. Below, we consider the two dimensional (d=2) case using 7 c(k)8 =0
and c(k) is complex gaussian while noise (i.e. a=2) with 7 |c(k) | 2 8 =C1 /2p. We have

7 wq 1
l

1
(x1 )wq 2

l
2
(x2 )8 = 7 exp P

A l2

q1 exp(ik´x1 )c(k)|k | Õ 1 dk

+ P
A l2

q2 exp(ik´x2 )c (k)|k | Õ 1 dk 8 (B3)

To evaluate this, we divide up Fourier space into three zones:

Am =Al 1 mAl 2

Al 1 Õ m =Al 1 Õ Am

Al 2 Õ m =Al 2 Õ Am (B4)



S. L ovejoy et al.1226

In each zone, we will apply the standard results for addition of second characteristic
functions:3 5

2p

C1

log 7 wq 1
l

1
(x1 )wq 2

l
2
(x2 )8 = P

A l1

m

|q1 exp (ik´x1 ) |2 |k| Õ 2dk+ P
A l2

m

|q2 exp(ik´x2 ) | 2 |k| Õ 2 dk

+ P
A

m

|q1 exp (ik´x1 )+ q2 exp(ik´x2 ) |2 |k| Õ 2 dk (B5)

We ® nally obtain, using Dx= (x1 Õ x2 ):

2p

C1

log 7 wq 1
l

1
(x1 )wq 2

l
2
(x2 )8 =q2

1 P
A l1

|k| Õ 2 dk

+ q2
2 P

A l2

|k| Õ 2 dk+ 2q1q2 P
A

m

cos (k´x) |k| Õ 2 dk (B6)

Therefore, we de® ne the correlation as

Q=

P
A

m

cos(k´Dx) |k| Õ 2 dk

2p (j1 j2 )1 /2
(B7)

where

j i =
1

2p P
A li

|k | Õ 2 dk (B8)

It is not hard to show that Q < max[(j1 /j2 )1 /2 , (j2 /j1 )1 /2 ]. In the special case of
interest here, Al 1 , Al 2 are concentric annuli with inner radius 1, outer radius l1 , l2 ,
we have dk=2p |k|d|k| hence j i = log li , and Al is equal to the smaller annulus so
that when Dx=0, we obtain the simpli® cation indicated in equation 16.

We have

log 7 wq 1
l

1
(x1 )wq 2

l
2
(x2 ) 8 =K (q1 , q2 )=C1 q2

1 j1 + C1 q2
2 j2

+ 2C1 q1 q2 Q(j1 j2 )1 /2 (B9)

corresponding to a normalized, conservative w: (i.e. 7 wl
1
8 = 7 wl

2
8 = 1).

To obtain a normalised K, we subtract

K � K (q1 , q2 )Õ q1 K (1, 0 )Õ q2 K (0, 1 ) (B10)

The normalised K is thus

K (q1 , q2 )=C1 (q2
1 Õ q1 )j1 + C1 (q2

2 Õ q2 )j2 + 2C1q1q2 Q(j1 j2 )1 /2 (B11)

35i.e. for any complex w, 7 ew c 8 =e( |w |
2
s

2
) /2 where s2 = 7 |c|2 8 , c is a complex gaussian random

variable with independent phase and modulus.
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which, for lognormal multifractals, is slightly more general than the result of appendix
A (the latter result is valid for any multifractal with l1 =l2 ).

Appendix C: Autocorrelations and spectra conditional on presence of a singularity

order c m

We ® rst seek the cross-moments at points x1 , x2 conditional on the measurement
of value at point x (all values are at resolution l). The goal is to calculate the bias
introduced by the conditioning in the statistics of satellite imagery at scale ls<lm .
Using the notation of appendix B, we can de® ne the conditional two-point statistics:

7 wq 1
l

m
(x1 )wq 2

l
m

(x2 ) |cm (x) 8 =lK (q 1 , q 2 | c
m )

m (C1)

where all values are measured at scale lm .
This is the conditional cross-moment conditioned on a singularity order cm

existing at point x. Now, the conditional moments can be expressed in terms of the
Legendre transform of the three-point moment exponent K(q1 , q, qm ) with respect
to qm :

K (q1 , q2 |cm )=K (q1 , q2 , cm )Õ K (0, 0, cm ) (C2)

Using the form for the lognormal multifractal, one obtains explicitly

K (q1 , q2 |cm )=K (q1 , q2 )+ (cm + C1 )(q1 Q1 m + q2 Q2 m )Õ C1 (q1 Q1 m + q2 Q2 m )2 (C3)

This reduces to the corresponding two-point exponent as expected when q2 or
q1 =0. This conditional moment exponent can be conveniently rewritten

K (q1 , q2 |cm )=K (q1 , q2 )+ cm QÕ K (Q)

Q=q1 Q1 m + q2 Q2 m (C4)

C.1. Spatially averaged autocorrelation and the spectrum
In order to calculate the conditional spectrum, we must calculate the autocorrel-

ation with the coordinate x ® xed (in the case of satellite pictures, somewhere in the
satellite image region l Õ

1
s Xl Õ

1
s ) and average the result over all x1 ag with x1=x1 ag ,

x2 =x1 ag+ D x and D x ® xed (see ® gure 8(e)). Once again, we will exploit the saddle
point method; the integration in this averaging will yield lK (q 1 , q 2 | c

m ) a v e
m with

K (q1 , q2 |cm )a v e =K (q1 , q2 )+ maxQ m in< Q <Q m a x
(cm QÕ K (Q)) (C5)

with Q given by equation (C4); the maximum in the Legendre transform (C5) is
over all the allowed values of Q with Qm in , Qm ax constrained by the geometrical
restrictions on Q(|x Õ xlag |), Q(|x Õ x1 ag Õ D x |).

Consider the special case q1=q2 =q. In this case, for D x>l Õ
1

m (see equation (20))
and l Õ

1
s Õ D x>l Õ

1
m (due to the restriction Q<1),

Q=Õ q
log(|x Õ xlag | |x Õ xlag Õ D x |)

log lm

(C6)

If we now assume that x, xlag are somewhere within an interval size l Õ
1

s , we can
show that, to within unimportant factors of order 1, for all x, xlag , (D x ® xed), the
distance product is bounded by

l Õ
1

m D x<|x Õ xlag | |x Õ xlag Õ D x |<l Õ
2

s (C7)
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Taking logs and dividing through by log lm , we therefore obtain (ignoring the
constant of order 1)

1+Q>Q/q>2f; f=
log ls

log lm

(C8)

i.e. for D x ® xed, we have upper and lower bounds on Q: Qm ax # q(1+Q), Qm in # 2qf.
The exponent of the conditional autocorrelation function integrating over xlag is
thus obtaining from the Legendre transform with Q bounded as indicated.

Note also that, since

1 > Q > f (C9)

we have the following bounds on Qm ax as we vary D x from 1 pixel (max(Qm ax )) to
the entire image (min(Qm ax )):

minD x (Qm ax )# q(1+f)

max D x (Qm ax )# 2q
(C10)

For q=1, we have the following three cases depending on the value of the critical
moment Qm corresponding to the conditioning singularity: cm =K ¾ (Qm ) or
equivalently c ¾ (cm )=Qm = (cm /C1 + 1)/2.

C.2.1. Qm >max D x (Qm ax ), i.e. cm >3C1

In this case, the Legendre achieves its maximum at Qm ax =1+ Q and, furthermore,
this maximum will be valid over the entire range of D x. We therefore obtain

7 wl
m

(xlag )wl
m

(xlag + D x) |cm (x) 8 =l( C 1+ c
m )w

m l Õ
C1 } 2

m l
c

m
m # D xC 1

f

Õ
c

m (C11)

where the overbar indicates spatial averaging over all xlag . The approximtion on the
far right was obtained by linearising the (quadratic) Q dependent part about the
mean value Q= (1+f)/2. The spectral exponent b is now obtained in the usual way
(section A.2), yielding

b= 1 Õ cm + C1 f (C12)

If we compare this to the usual unconditioned spectral exponent (b= 1 Õ 2C1 ), we
see that the eVect of conditioning is to ¯ atten the spectrum by 2DH, i.e. with fractional
integration order DH:

DH=C1A1+
f

2BÕ
cm

2
(C13)

Since this result is valid for cm >3C1 , we ® nd

DH<Õ
C1

2
(1 Õ f) (C14)

since ls<lm , f<1, and hence this is <0 (corresponding to a fractional diVerentiation),
indicating that the eVect of this conditioning is indeed to ¯ atten the spectrum.

Interpretation . This corresponds to the low-resolution situation, in which a h̀ot
spot’ is of the order of single pixel. In that case, the spectrum is considerably ¯ attened
by the presence of the hot spot. On the contrary, a blow-up around the hot spot,
such that virtually the entire picture is h̀ot’, will give smooth variations correspond-
ing roughly to the unconditional statistics.
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C.2.2. minD x (Qm ax )<Qm <max D x (Qm ax ), i.e. C1 (2Qm in )<cm <3C1

In this range, there will be a critical Q (and hence distance) where the Legendre
maximum is no longer attained at the maximum value Qm ax =1+ Q, but rather at
Qm . The critical value is obtained at the critical distance Dxcr , such that

Qcr =Q(Dxcr )=
1

2Acm

C1

Õ 1B (C15)

Starting at the small scale, for Dx<Dxcr , we have Q>Qcr , and we have the same result
as before. At larger distances, the Legendre transform gives an exponent c(cm ), which is
independent of Dx, so that (due to the K(1, 1) term), we recover the usual slope (b=
1Õ 2C1 ). At still lower frequencies, the prefactor changes (the Legendre transform gives
cm Qmin Õ K(Qmin )), but we have the same dependence of Q and hence Dx (only the standard
K(1,1) term remains). This is the regime where the conditioning breaks the scaling.

C.2.3. Qm <minD x (Qm ax ), i.e. cm <(C1 (2Qm in )
In this case, there is no more Q dependence (except via K(1,1)), so that, although

(when Qm >Qm in ), the value of the autocorrelation function may be diVerent from
the standard value, we obtain the standard scaling exponent throughout.

C.3. T he interpretation of the conditional autocorrelation /conditional spectrum
We have calculated the spatially averaged correlation conditional on there being

a singularity cm at location x. This means that, if we had an in® nite ensemble of
realisations each with such a singulariity at exactly the same location x and averaged
over all of them, we would obtain the anomalous behaviour indicated. However, in
actual fact, we are more often interested in inferring the behaviour of the spatially
averaged autocorrelation function/spectrum on individual realisations. In this case,
we must have an idea of the dispersion about the mean behaviour: if the dispersion
is large enough, then we will be unlikely to be able to identify the corresponding
systematic behaviour compared to the background ǹoise’ . By calculating the relative
RMS conditional autocorrelation (i.e. by considering the case q1 =q2=q=2 in the
above), we can show that indeed the eVect of the singularity will likely only be
pronounced on a single realisation for fairly large cm . Rather than giving the analytic
results, we show some simple numerics illustrating the very large dispersions obtained,
® gure C1 shows that the relative dispersion increases rapidly as cm decreases.

Figure C1. This shows the relative RMS exponent R (labelled c̀or’) for distances Dx corresponding
to Q(Dx)=0.5, 0.75, 1 (bottom to top at left corresponding to the largest scale, and intermediate
scale and 1 pixel scale, respectively), with parameters C1=0.1 and l=l2

s (i.e. Qmin=1). Since
the actual relative RMS factor is lR , if l=106 (as would be the case for 10m resolution data:
104 km/10m=106 ), for cm less than about 0.5, the dispersion factor is enormous. However,
for large cm , the eVect of the conditioning should be visible on single realisations.
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