420

A f@ remark is in order. The bifurcation diagram provides information on
the quality of the solutions of a model. For a complete coniparison between the
molecul.ar model and the simplified equations, also the solution diagrams should
be considered. Indeed, these diagrams, which report a proper norm (or seminorm)

of the solution versus the parameter, to i i i grams
itio , together with the bifurcation dia i
complete insight into a model. oes
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Space-time multiplicative cascade models reproduce the scaling both in space and
time of the Navier-Stokes equations. They are powerful tools in the investigation
of space-time properties of turbulent flows, including their limits of predictability.
We detail the use of such models in quantifying the decorrelation process associated
with turbulence. It is shown that classical quantities like correlated or uncorrelated
energy spectra give an incomplete description of such an intermittent dynamical
process. We propose extensions of these quantities to overcome these limitations.

1 Introduction

The scaling symmetries of the Navier-Stokes equations are responsible for
the intermittency in the inertial range. Most of the theoretical developments
(which as the cascade models: log-normal 1 B-model 23, a-model?, random -
model %, universal multifractals®, log-Poisson "~ 9) or applications concentrated
on the spatial variability. The temporal intermittency was reduced through
Taylor’s frozen turbulence hypothesis to a purely spatial one, and too little
attention has been paid to cascade models on space-time domains!%-12.

However, scaling in both space and time is an essential feature of tur-
bulent dynamics. A scaling space-time framework is required for numerous
applications, e.g.: sampling strategies for remote-sensing data assimilation,
corrections to Taylor’s hypothesis (taking into account not only the velocity
at the largest scale, but indeed the velocities at all scales), or forecasting, etc.
The important issue of causality in multifractal processes 1?2 and corresponding
means for respecting it, i.e., removing the artificial temporal mirror symmetry
of earlier time-space cascade models, enable us to address another important
issue in the present paper: the determination of the limits of predictability of
turbulent flows.

The sensitivity of nonlinear dynamics to small perturbations has been
widely popularized with the help of the ’butterfly effect’ metaphore in ’de-
terministic chaos’ (few degrees of freedom). Two flows initially very close in
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phase-space will tend to diverge exponentially with time, becoming in a fi-
nite characteristic time (the inverse of which is the Liapounov exponent) fully
uncorrelated. For fully developed turbulence (infinite number of degrees of
freedom), due to scaling both in space and time, there is no characteristic
time of the process, and one thus expects an algebraic decorrelation in time.
The characterization of this phase-space divergence, or decorrelation process,
in turbulence has been discussed mainly for atmospheric flows (Lilly *3 and
Houtekamer !* for reviews). Closure techniques for homogeneous turbulence:
Quasi-Gaussian approximations !5, the Test-Field model 16, or the EDQNM
model 17 lead to a characterization of the temporal evolution of the cross-
correlated energy spectrum for two flows initially differing only for wavenum-
bers larger than an ’error cut-off. wavenumber’ k.(t = 0). These models are
intrinsically limited by strong assumptions on the statistics of the solution,
thus missing the essential feature of the intermittency of the process. One
may note that an approach based on shell-models has been proposed 1819,
However, shell-models drastically lose their spatial dimensionality (see Chi-
girinskaya and Schertzer ?° for discussion and alternatives) and keep only a
very reduced number of degrees of freedom, choosen typically around 30 for
numerical purposes; therefore their relevance to turbulence predictability issues
remains questionnable. '

Multiplicative cascade models have a very large number of degrees of free-
dom, and correspond to the action of a scale-invariant generator which mul-
tiplicatively modulates, in an intermittent manner, the larger structures into
smaller structures from the largest scale of the system down to the resolution
scale. Their extension to space-time domains, justified by the scaling properties
of the Navier-Stokes equation in both space and time, enables us to study the
intermittency of the turbulent decorrelation process, commonly observed by
meteorologists as long quiescent and predictable periods interrupted by short,
sudden, non-predictable bursts of decorrelation.

We first recall multiplicative cascade models giving (scalar) velocity fields
on space-time domains; the extension from space to space-time implies two
fundamental characteristics: a scaling anisotropy between space and time (on
average given by the Kolmogorov-Obukhov theory) and the respect of causality
by breaking the artificial temporal mirror symmetry of earlier space-time cas-
cade models. We then quantify the mean behavior of the decorrelation process
for such fields, by considering the rather classical uncorrelated and respectively
correlated energy spectra. However, it is shown that such quantities cannot
describe completely or in a satisfactory manner the decorrelation process, and

we propose extensions in order to explore the whole range of multifractal sin-
gularities.
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2 Causal cascade models for the scalar velocity field

2.1 Discrete space-lime cascade models

Cascade models operate through a scale-invariant generator acting fr9m the
largest scale L down to the smallest scale | = % of the system, A b_emg. t.he
maximum resolution, thus creating structures at all scales. For simplicity
purposes, we look here at the two-dimensionnal case (2-D cut of the 35_D space).
Consider a square domain of size L x L, characterized by a.n.lgtensn;y €0, a:nd
the scale invariant generator acting at any given step n by d;vndmg the existing
structures at scale I,-1 = A%r with intensities €,_; into A{ new structures at
1

I .. _ . . and
scale I, = I':\‘l‘ = % with intensities €, = €,_ X ge where X; 1s an integer

the multiplicative increment pe is a positive random vari}z;,?ql)e with 4'.1 seco'nd
Laplace characteristic function K(q) such thi’t {pe?) = Al : The 1t;e(;atloﬁ
of this generato(r )leads, after N steps (A = A}'), to an intermittent field suc
) ~ AK(D), .
thatA(cggntinuous version of this model (i.e. in the limit' Ay — 1 kee;?mg A
constant) would be characterized by its statis.tical inv?,rla.nce proper/tles. for
any intermediate scale ratio A, e.g. for the scaling function moment K(g):

VA € (LA): (1) ~ AK@ (1)

through the action of the contraction operator:

Ty : (z) = A7 (z) (2)

where in the simplest case shown here of a self-similar cascade Fhe m;t;izx G re-

duces to the identity matrice I. Linear Generalized chle Invariance " ('GSI)

already involves matrices G # I; diagonal matrices yield self-affine m.ultlfrac- :
tals, with an associated generalized scale function, denoted [}.]], more involved

than a norm, satisfying:

ITaLzlll = A~ iz (3)

The structures created at all scales are interpreted as typical edfiies trans-
fering energy to smaller scales through a shearing process; such gddxes possess
a life-time 7, depending on the scale I, after which they are considered to have
been swept by other structures. In the framework of homogeneous tqrbulence
2324 this life-time is a characteristic time for each scale, and scales like:

7 o~ 1313 (4)
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with € being homogeneous in space and in scale. In the framework of inho-
mogeneous turbulence 2%2%, the same scaling relation should hold only on the
average, whereas at any given scale I, the eddy turn-over time 7; is spatially
intermittent, and depends on the non-homogeneous ¢ rather than on €.

We thus see that a space-time cascade model for turbulence merely corre-
sponds to a self-affine generator instead of a self-similar one as presented above,
thus distinguishing the temporal and spatial coordinates. The contraction op-
erator of Eq. 2 (now acting on a space-time domain) admits the following

generator G:
1 0
5=(0 ) ®)

The operator is characterized by the elliptical dimension d,; such that the
Jacobian of the transform of Eq. 2 is A=%t. This dimension is the trace of G,
so that in our case do; = 5/3; in the more general (d + 1)-case (with d being
the dimension of space, so d + 1 being the dimension of the space-time cut),
we would rather have obtained do; = d + 2/3.

2.2 Continuous causal cascades

A major drawback of the rather pedagogical discrete cascade models is that
they create artificialities due to the discrete dividing method (the fixed scale
ratio A; is integer), so that structures are generated only on a discrete set of
scales. .

In order to remove these artificialities, we now turn to continuous cascades
which, contrary to the ’discrete’ cascades, allow elementary cascade steps of
scale ratio arbitrary close to 1. In fact, the continuous cascades may be ob-
tained as a limit of discrete cascades by scale densification ?” and have log-
infinitely divisible statistics, which recently aroused wide interest ®. However,
among these processes, strong universal multifractals® are the only ones which
possess attractive and stable properties 8. These processes have log-Lévy
statistics; conservative universal multifractals have a moment scaling function
of the form:

K@) = =2(¢" ~q) ©)

where C) is the codimension of the mean singularity and measures the mean
fractality of the field, whereas a is the Lévy index of the logarithm of the
field (o € (0;2]). Self-affine spatial (i.e., non-causal) conservative multifractals
€a are obtained by first computing their generator T'y = loge, as Ca(z) =
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Ga(z)*y(z), where v is the sub-generator, i.e., an extre‘n_lzal Lévy white noise of
Lévy index o, and Gy is a filter such that G(z) ~ ||z]|= = , and Ga(z) = G(g)
for ||z]| € [A~1; 1], with d the dimension of the space, and ||.|| is the generalized
scale function of Eq. 3. In order to generate a causal multifractal, the filter G

should be defined as a retarded Green function; the simplest choice is of the

form12:
A 1
Gl w) ~ £~ (w) i

where the symbol (7) stands for the Fourier Transform, and x is such that

1 d.
1,1 (8)
a x 2

A more complete derivation of these results can be found in Marsan et al. 12,

2.3 The scalar velocity field

25,26

The Kolmogorov’s refined similarity hypotheses correspond to

o ~ 1% ¢ (9)
where v, is the shear velocity at scale [, and ¢ is the spatially intermitent
energy flux through this same scale. In a purely spatial domain, one can
construct a field with statistical properties analoguous to the ones observed
for turbulent shear velocities by performing a spatial fractional integration of
order % on the conservative field ¢ obtained by any of the spatial version of the

models described above 2%:

oa(k) = F(k) (k) (10)

where the function f(k) scales like lk|=3. A similar method has been used
2830-32 {or the inverse problem in data analysis, i.e., in order to retrieve the
energy flux € from the (atmospheric horizontal wind) velocity shear év yielding
the estimates of universal parameters C; = 0.15 and a = 1.5 of the energy flux.
For a space-time domain, the analogue of Eq. 10 is

v

Ak, w) = f(k,w) 4 (k,w) (11)

with f(k,w) being now a causal version of lI(k,w)||~*/3; the simplest choice
corresponds to



1

f(lc_,w)fv IkllT(z—w)l—/—z (12)

3 Mean decorrelation process

For two fields év;4 and Svgs with corresponding sub-generators v; and ¥,
such that y1(z,t) = y2(z,t) for ¢ < tg and 7;(z,t) and Y2(z,t) independent for
t > to, a decorrelation process takes place as At = { — ¢, increases. This is due
to the fact that their respective generators ’integrates’ identical noises up to a
scale |At[3/2,

A very similar process can be observed, looking at only one field §v,:
instead of measuring the correlation between dvia(.,t) and Suaa(.,t), we now
look at the auto-correlation for an interval At, thus at the correlation between
6vua(.,t) and Sva(.,t+ At). The same phenomenology should also lead here to
a decorrelation characterized by a ’cut-off’ scale |At[3/2. We will, in this third
section, derive this result more carefully.

3.1 Definition of the spectra

We consider similar spectra to those introduced in homogeneous turbulence 16:

En(E) 6(k+ K) = (ia(k, 1) 5a (¥, 1) a (13)
Ew,(k,At) 8k + k') = (9a(k,t) oa(k',t + AL)) (14)
Ea,(k,At) §(k + k) = %([aA(k,t) — in(k,t + A1) [5a(K, 1) — 4 (K, £ + AL)])

(15)

One may note that the presence of the 6(.) function is merely a consequence
of the statistical translation invariance of the velocity field. Ej is the usual
spectrum of (total) energy, Ew, and Ea, are respectively the correlated energy
and the uncorrelated energy spectra, for a given time lag Af. Due to the
stationnarity of E5, we have indeed

Ew,(k, At) + Ea, (k, At) = Ep(k) (16)

We define the following energy transfers as time derivatives of the correspond-
ing spectra:
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Tw,(k,At) = 8,Ew, (k, At) (17)
Ta, (k, At) 8. En,(k, At) (18)

and because of the stationnarity of Ex(k):

Tw, (k, At) = —Ta, (k, At) (19)

hence Tw, and —T,, indeed correspond to energy transfers from the correlated
energy spectra into the uncorrelated energy spectra.

3.2 Determination of the spectra

For conservative multifractal fields, correlation measures in space-time domains
are easily derived 12

(8 (z,)e%(z + Az, t + At)) ~ AK(ql)+K(q2)“(Ax,At)llK(ql)+K(q2)_K(<h+q2)
(20)

with the generalized scale function ||.|| of Eq. 3, and K(g) being the moment

scaling function of the field €x. For example, any function of the type ||(z,t)|| =

[lz|¢ + |t|%{]% where z and ¢ have been nondimensionnalized by dividing them
with the integral scale L and time T respectively, and £ is positive, are sgale
functions (note that in the limit £ — co we obtain ||(z,t)|| = maz{|z]|, |t|z}).
For n = ¢q; = ¢, this leads to:

(A(z, ) (z + Az,t + At)) ~ [|(Az, Ag)||~KEm A2KD) (21)

The corresponding spectrum Efx(kw) is thus

—

e (k,w)li(k, w)[| =%+ 8(k + ¥)6(w + ') = (A (k,w)eh (K, &) (22)
which yields
Een(k,w) ~ ||(k,w)||7 1K@ m p2K @) (23)

where K(q,1) = K(ng) — ¢K(n) is the moment scaling function of 65\"), the
normalized 7 power of €4:

A= Ty (24)
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Note that the term ||(k,w)||"%'*! in the Lh.s. of Eq. 22 corresponds to the
integration factor |k|~9*! in isotropic spaces, the anisotropy of the space-time
domain introducing the dimension d.; instead of d. The spectrum Ew, can
now be written as

Ew,(k,w) = |f(k,W)|2E€x(k,w) (25)

with f(k,w) defined in Sec. 2.3. Note that |f(k,w)|2, i.e., the composition
of a causal and an anti-causal operators, is indeed no longer causal, since it
depends on |w| and no longer on the sign of w; the mirror symmetry along
the temporal axis is restored in this composition. This corresponds to the fact
that our spectra, and merely all two-points correlation measures, possess this
mirror symmetry: Ew,(k, At) = Ew, (k, —At). We simply have |f(k,w)|? ~
Ik w2,

Using Eq. 23, we get

Ew,(k,w) ~ [|(k,w)||7¥/3+KE1/2) p2KQ/ (26)

The scaling of the spectrum holds when we change the representation,
though the norm involved acts on the new domain; thus

Ew, (k, At) ~ ||(k, At)||73/3+K21/3) p2KQ/3) (27)

The classical spectrum E(k), scaling like Ep(k) ~ |k|~53/3+K(2.1/3) A2K(1/3)
(note that indeed Ex(k) = Ew,(k, At = 0)), we eventually get

Ew,(k, At) ~ E(k){[k|™Y]|(k, At)[[]>/3+K @D (28)

3.3 Resulls
We finally obtain

En(k) ~ k- 3HK(2,3) A2K(3) (29)
Twalk,At) ~ k3@ AT g(k|AL3) A2KE) (31)

The ¢-function (¢ denotes its derivative) is a cut-off function, explicitly deter-
mined by the choice of the scale function, such that:

ok, At) = ||(1, k/k(At))||~5/3+KZ1/3) (32)
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with the cut-off wavenumber k.(At) scaling like k.(At) ~ At=3/2. As can
be seen, the limit k << k.(At) leads to Eyw, (k, At) ~ Ex(k), and the limit
k >> kc(At) the spectrum Ew,(k, At) tends to zero as a consequence of the
breaking of scaling introduced by k.(At).

The transfer Ty, is not stationnary in the range k << ke(At). This
is due to the fact that such a function is the result of a time derivative of
order 1, though the physical dependence of the system is in |At]|? (due to the
scaling anisotropy between space and time). In order to obtain a stationnary
transfer in this range, we can introduce the fractional transfer Ty, (k,At) =

6t% Ew,(k, At), giving

Th, (k, At) ~ k™ 3TKZD) 6B (k|AL]?) AZKG) (33)

with ¢(3)(z) the fractionnal derivative of order 2 of ¢(z).

Figure 1 displays the uncorrelated energy spectra Ea,(k, At) for the first
128 time steps (a time step corresponding to the mean life-time of the struc-
tures at the smallest scale) of a simulated continuous causal multifractal scalar
velocity field with the universal parameters o = 1.5 and C) = 0.15. The spec-
tra are averaged on 100 realizations, and are computed for 256x256 2D-cuts. As
expected, the uncorrelated energy spectrum develops from large wave-numbers
to smaller wave numbers; the transition wave-number k.(At) between the large
wave-numbers Kolmogorov regime and the low-wave numbers range where the
decorrelation process is occuring, scales as k.(At) ~ At=%, as shown by Fig-
ure 2 (the cut-off wavenumber k.(At) was estimated as being the smallest k
such that Ea,(k, At) > 0.99E4(k)).

4 Limits of the (second order) correlation measures and beyond

Eq. 20 shows that the correlation with any order (g1, ¢2) decays algebraically
with the generalized scale, whereas spectra considered in the previous section
correspond to second order moment and therefore yield information only for
q1 = g2 = 1. As any given order of moment of (¢%) of a multifractal field e
corresponds to a given singularity v, = I\(q) using the Legendre transform 32,
this corresponds to characterizing only one singularity of the decorrelation
process. Therefore, we consider the following 7** order correlation structure
functions (in fact n** order correlation measures, with ¢; = ¢ = 7):

(€X(z,t) €x(z + Az, t+ At))
(eA(z.1))?

Crle,n, Az, At) = (34)
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3,

uncorrelated energy spectrum

10
wavenumber k

Figure 1: Uncorrelated energy spectra Ea, for the first 128 time steps, from bottom to

top (a time step beingthe mean life-time of smallest scale structures), for 100 realizations

of a causal cascade which scale resolution A = 256. As expected, a scaling range close to

Kolmogorov —% scaling (displayed by the dashed line) develops from large wavenumbers to
small wavenumbers.

cut-off wavenumber ke(t)

Figure 2: Cut-off wavenumber k. (t) deduced from the simulations of Figure 1. The dashed
line corresponds to the ke(t) ~ t~15 law.
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since they a priori allow one to explore the full range of singularities due to
the fact they scale as the normalized 5 power of the field:

L
B

Indeed, the corresponding codimension function ¢(y, ) to K(2, 1), i.e., the
scaling exponent function of the probability distribution of the singularities
of the normalized 7 of the field:

Ca(e,n, Az, At) ~ XK@ 1Az, At)|| = (35)

& ~ AT Pr(y’ 2 ) ~ AT (36)
1s:
7+ K
c() = o T (my) (37)

K(q,n),c(y,n) are, as K(q),c(v), dual pairs for the Legendre transform. The
nonlinearity of K(gq,n) (corresponding to non unicity of v, i.e., multifractality),
implies an intermittent behavior which is well beyond the scope of the theories
or models of homogeneous turbulence. For instance, the existence of ’bursts’
of impredictability is related to the fact that the estimates on a finite sample
of the #** order correlation structure function are more and more intermittent
for increasing order 7. This intermittency may be so extreme that it can
induce two fundamental statistical problems (‘multifractal phase transitions’4
respectively of second and first order) for any D dimensional valued process ¢:

(1) a possible spurious maximum observable singularity 7§") due to the finite
size of sample (N, ~ AP+ being the number of realizations of scale ratio A,
D, the ’sampling dimension’) (ii) a possible statistical divergence for higher
order: 7 > np(q = 2), np(q) being the critical order of divergence. In the case
of universal multifractals (A; = D + D;):

()
¥s A,
c = — 38
5 = (39)
D
K q('lo(q)) - = q(ﬂD(q)) -1 39
(@) = 2 ) (39)

Conclusion

The decorrelation process of turbulent flows is characterized by a strong tem-
poral and spatial variability, a consequence of scaling dynamics. Causal multi-
fractal processes offer a relevant framework for the analysis of such variability.
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They indeed reproduce the mean behavior obtained with other models, but
also display properties going beyond it. We show that these latter proper-

ties

can be explored with the help of extension of the classical correlation

measures, and we demonstrate that indeed the latter have rather interesting
general properties which should be investigated in detail.
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