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The discrete angle radiative transfer systems discussed in part 1 readily lend themselves to approximation 
schemes in which simple scaling systems with known radiative transfer properties can be doubled in size 
yielding analytic expressions relating the transfer coefficients corresponding to the initial and doubled scale. 
This "real space renormalization" method can be viewed as a generalization of conventional invariant 
imbedding techniques to scaling systems. Analytic nonlinear doubling mappings are obtained for 
homogeneous square, cubic and triangular systems, as well as for a simple fractal system with both open and 
cyclic horizontal boundary conditions. The doubling mappings have both thick and thin cloud fixed points; to 
which the transmission and albedoes are respectively algebraically attracted and repelled, with universal (phase 
function independent) exponents we estimate analytically. The method is approximate since it systematically 
neglects small-scale intensity gradients; however, the results are qualitatively correct, and it therefore 
establishes the connection between the scaling of the cloud optical density field and the scaling of the 
corresponding transfer coefficients. We also discuss the limitations of the method; in part 3 we compare it 
with a numerical approach. 

1. INTRODUCHON 

1.1. Review 

In part 1 of this series [Lovejoy et al., this issue], we propose 
the study of Discrete Angle (DA) radiative transfer systems 
which involve the coupling of only a small number of intensity 
fields. These systems are considerably simpler to deal with than 
the more usual (continuous angle, fully coupled) systems, yet are 

for DA(d, 2d) systems with d = 1, 2, 3 (see part 1 for the 
notation). In this case the lattice coordinate system is assumed to 
be orthogonal and single-cell "scattering" occurs in angles of 0, 
•c/2, •c with transfer coefficients T, S, R respectively, i.e., 
T+R+2(d-1)S+A = 1, where A is the absorption coefficient. In 
this paper, we are particularly interested in conservative (A = 0) 
systems where cells are either full (and identical in terms of o) or 
empty, in which case o = 1 (the unit matrix). 

We then showed how to obtain the DA radiative transfer 
general enough to provide new insight iiato radiative transfer in equations in the limit of the lattice size going to zero by ensuring 
inhomogeneous media. As in any system of partial differential that the the absolute eigenvalues of the transfer matrix o 
equations, the DA equations can be given a number of discrete 
(lattice) approximations. In part 1, we obtained these directly 
from the interaction principle [Preisendorfer, 1965], a 
particularly simple discretization which involves a 
straightforward interpretation in terms of single-cell transfer 
coefficients, and provides the natural starting point for the 
method described here. We have 

Item)= E øilt(m) Ilt[(m - k)] (1) 
k 

when no internal sources are present. Ik(m ) is the DA intensity 
in direction k (i.e., unit vectors along lattice directions) at 
position m in the lattice coordinate system, and 
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approached the value one, i.e., either T--> 1, R--->0 or R---> 1, 
T-->0. It was noted that in conservative scattering, the DA 
systems involve four basic regimes determined by oo>pq > O, 
pq = 0 or _oo<pq < 0, or I pq I =oo where q and p are related to 
the first and second Legendre coefficients of the (DA) phase 
function, respectively; see section 4 of part 1. The first, 
physically relevant regime is obt -ained by the limit T--> 1, R-->0 
with S > 0, the second is an uninteresting one-dimensional 
diffusion regime obtained in the same limit but with S = 0, and 
the third obtained in the limit R--> 1, T-->0 is an unphysical 
regime characterized by negatively valued DA phase functions 
and the fourth, obtained for example with T=R=S is a discretized 
diffusion equation. 

We then stated without too much justification that in scaling 
systems with conservative scattering we expect the following 
behavior as the optical thickness (x) becomes very large: 

T- T* = hr(P) x-vr 

R*- R = he(P) 

(3) 

where P is a matrix with the same symmetry as o in (2) 
describing the DA phase function. As a result of exact DA 
similarity relationships, we showed in scaling systems that the 
exponents vr and ve were universal (i.e., P independent). In 
contrast to this, the prefactors h r and h e are expected to depend 
on P, according to general formulas discussed in part 1. 
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1.2. Nonlinear Maps and Real Space Renormalization in DA 
Systems 

Below, we justify the scaling relations (3) for a number of 
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systems, making use of a renormalization group approach which 
allows us to estimate the relevant exponents both analytically and 
numerically. Renormalization is very similar to the concept of 
invariant imbedding [Bellman et al., 1960] which has been 
widely applied to (continuous angle) radiative transfer through 
plane-parallel media both semi-infinite [Ambarzumian, 1942] and 
finite [Chandrasekhar, 1950] under the genetic name of "adding" 
(in this case, an infinitesimal layer to the given medium and 
applying principles of invariance). The closely related idea of 
"doubling" (of a given layer) has been used as an 
computationally efficient alternative to standard methods of 
solving the plane-parallel radiative transfer problem [Hansen, 
1969] by starting with a very thin layer well described by single 
scattering in closed form. This computational method has 
recently been extended to horizontally finite homogeneous 
[CogIcy, 1981] and internally inhomogeneous horizontally 
periodic media [Stephens, 1986]; our approach is more 
analytical. 

Essentially, renormalization as applied here aims to estimate 
the global R and T coefficients of an optically thick system by 
repeatedly doubling the size of the system (or more generally 
quadrupling, etc.) starting with (optically thin) single cell transfer 
coefficients. Specifically, we obtain approximate doubling 
relations expressing the transfer matrix c•(2't) in terms of c•('t), 
i.e., c•(2x) = f[c•(x)], where f is a nonlinear function to be 
evaluated for specific cloud geometries and we associate a c• 
matrix with the global response of the medium. Thus we have 
transformed a relatively complex boundary value problem for a 
linear system of partial differential equations into an 
approximately equivalent nonlinear algebraic one. As we shall 
see, although (for reasons detailed in section 4) the method is not 
very accurate quantitatively, it is qualitatively correct and 
provides insight into the basic transfer processes, especially in 
the optically thin aJ•d thick limits (the latter are explored 
numerically by Davis et al. [1989] and in part 3 [Davis et al., this 
issue]). 

The optical properties of v9ry thick clouds can then be obtained 
by iteration: o(2nx)= f(n)[o(x)] where we have used the 
notation f(n) for the nth iterate of f. The properties of f(n) such 
as fixed points and scaling exponents can then be studied using 
functional iteration methods [e.g., Schuster, 1989]. As the 
thickness of the cloud is doubled, the albedo approaches 1 and 
near the fixed point, R = 1, T =0, the iteration is 
approximated by matrix multiplication, yielding a power law 
(scaling) behavior governing the approach of R to 1 and T to 0. 
Recalling that the latter coefficients correspond to pq < 0, we 
may already anticipate that the exponents will be generally not be 
the same as those with pq > 0. Nevertheless, although at best 
the method is approximate, it gives insight into the thick and thin 

to radiative transfer: spectral line transfer with complete 
frequency redistribution (incoherent isotropic scattering), a 
subject of interest in the theory of stellar atmospheres. Bell et al. 
[1978] retrieve known scaling results by a (Fourier space) 
renormalization procedure. In this problem, photons with 
different frequencies have different path distributions: "core" 
photons diffuse through the (slightly absorbing) medium, 
whereas "wing" photons exhibit strongly nonlocal behavior. 
This recalls ordinary (coherent) multiple scattering of photons 
through a medium with dense and tenuous regions, which in 
broad terms, is exactly the effect we attempt to model here. 

It is interesting to note that in one spatial dimension the 
symmetries are such that the spatially discretized DA(1, 2) 
system can be solved exactly using very simple functional 
analysis applied to "adding" relations in the case of conservative 
scattering; see Appendix A. Of course, this exercise yields once 
again the plane-parallel result vr= v• = 1. The case of 
nonconservative scattering the DA(1, 2) system is also solvable 
exactly via renormalization (i.e. "doubling"), see Appendix C. 

2. ASYMFrOTIC SCALING PROPERTIES OF HORIZONTALt,Y FIN• 
HOMOGENEOUS CLOUDS: ANALYTICAL ESTIMAT• 

2.1. Doubling Cubic, Square, and Triangular Media 

We illustrate the doubling method in detail with d = 2 by 
calculating the radiative transfer properties of the 2 x 2 square 
made up of square cells with S(x), T(x), R(x) coefficients as 
defined in (2) and illustrated in Figure l a. Appendix B gives the 
full details in the square lattice case with particular attention to the 
necessary approximations. We irradiate the square with unit 
radiation incident on the top face only (i.e., the boundary 
conditions are l_v(x,2x)=l , l+y(x,O)=O for 0_•x<2x, and 
l-x(2X,y)=O, l+x(O,y)=O for 0<29<2'0. Applying •) to the 
2 x 2 square lattice system, ignoring gradients along individual 
cell faces (the approximation) and interpreting the total +y 
intensity at the top as R(2x), the total -y intensity at the bottom as 
T(2x), and that from the sides as S(2x), we obtain 

[r(x)+ra(x)] 2 
r(2x) = 

1- [R(x)+ra(,0] 2 

R(2'0 = [R(•)+Fa('0] [1 +T(2'0] 

cloud limits and shows how thick cloud DA phase function where the index d refers to the (integer) dimension (=2 here) and 
independent exponents arise, as well as the converse (phase 
function sensitivity) which arises in the thin cloud limit. It also 
shows why we expect the albedo and transmission to scale when S(,02 

the medium itself is scaling. This formulation also has the F2(x)- l-R('0 (5) advantage of being at once analytical and applicable to certain 
fractal clouds as we shall see in section 3. 

The method described below is actually a type of "real space" 
renormalization,.a method used to study the large scale behavior Analogous calculations in d = 1, 3 (cube) give formulas 
of many n6nlinear physical systems (perhaps the simplest being identical to (4) except that Fl(X) = 0 and 
the percolation problem mentioned in part 1). More precise (and 2S(,02 more theoretically satisfying) renormalization approaches operate F3(x) = (6) 
in Fourier-space, but these are outside our scope. Although the 1-R(x)-S(x) 
material presented in this paper is fairly self-contained it is 
primarily motivated by the desire to understand radiative transfer When there is absorption, the expression for S(2x) is very 
in inhomogeneous systems discussed in part 1, and its numerical complicated. However, in the case of conservative scattering, 
predictions will primarily be discussed in part 3. we have S(2x) = [1-T(2x)-R(2x)]/2. Cogley [1981] obtained 

To the best of our knowledge, there is only one other instance partial results in this direction by formulating a three step 
in the literature of explicit application of renormalization methods procedure of doubling in each spatial dimension separately; he 
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[ Rn+l 11 b 1[ Rn+l 11 

Sn+l 

[n,'l'n,Sn 

Sn+l Sn+l Sn+l 

Tn+l 
Fig, 1. Illustration of the doubling principle applied to (a) square and (b) triangular media. The averaged transfer coefficients in 
the nth iteration can be used as shown to calculate those in the (n+l)th iteration. Note that in the triangular case light can be only 
reflected or side-scattered, not transmitted dir•tly. 

then exploited his results numerically. Similarly, doubling 
triangles as shown in Figure 1 b leads to 

where 

Ft(x) = « [1-R(x)2] [R(x)+S(•)]+R(x)S(x) 2 
In conservative scattering, R+2S = 1; hence R can be 
eliminated, leading to 

8- 9s(-0 ) s(2x)= s_• (5 6s(x) (lO) 

2.2. Fixed Points and Scaling Exponents 

The system of nonlinear equations (4) and (5) can now be 
regarded as a mapping (T(2x), R(2x), S(2x)) = f(T(x) ,R(x), 
S(x)) and the functional behavior of (T(x), R(x), S(x)) over the 
whole range of x can be analyzed by iterating to obtain 

(Tn, R n ,Sn) = f(n)(To, R O, So) (11) 

where we have used the notation (T(2nx0), R(2nx0), s(2nx0)) = 
(T n, R n, Sn). In analyzing a nonlinear mapping such as (11), 
we must first determine its fixed points, i.e., those points which 
satisfy 

(T*, R*, S*) = f(T*, R*, S*) 

where the asterisk indicates a fixed point value. Fixed points are 
either attractive or repulsive, depending on whether the mapping 
results in points in the infinitesimal neighborhood decreasing or 
increasing their distance from the fixed point. Mathematically, 
we require that the largest eigenvalue (A) of the Jacobian of f 
(evaluated at the fixed point), denoted 

Of(T'R'S) I (13) J = a(T,R,S) T*,R*,$* 

is less than or greater than unity (the Jacobians will be explicitly 
evaluated in the following sections). Concentrating on the case 
of conservative scattering, we have 

aTn+ 1 aTn+ 1 

af(r,•) i arn a•n J = i)(T,R) T*,R* = aRn+ 1 ann+l (14) 
i}T n i}R n 

8•R :• 

For reference, the derivatives when written out in full are as 
follows (for all three DA(d, 2d) models) 

aTn+l (Tn+I'n œ aI'n \ Rn+rn aI'n'• 'arn =2rn+l [l+3-•nJ+ l_(Rn+Fn)2 Ta--•nJ (15a) 
•}Tn+l ( Rn+Fn f •}Fn \ 1 •}Fn'• 
aRn = 2Tn+l (l_•-•n)2 [1+•'• + Tn+Fn T•-•n'n)(15b> 

aRn+l aTn+l arn (15c) 'aTn = (•n+rn) aTn + (l+Tn+l) • 
aRn+l aTn+l aFn 
aRn = (Rn+Fn) aRn + (l+Tn+l) • (15d) 

where Fn will of course depend on d. For instance, in d = 2, 
(12) Fn is obtained from (5) with Sn = (1-Tn-Rn)/2, i.e., 
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l ( Tn 2 .... Fn = •!_Rn + 1-Rn - 2Tn (16a) 

henc• 

•rn 1 l( Tn T•n = •(1----•n- 1 (16b) 0.$ 

•}Fn 1 ((. Tn •2 ) 
Continu•g our study of •e d = 2, consedative •atter•g 

case, we may •op explicit reference m S, •d consider o•y •e 
po•ts • (T,R) space. Us•g f deffm• by O) •d (5), •d 0 
imposing the condition (12), we obta• the following fix• 
po• 

(0,1) stable •ck cloM 
(1,0) •mble • cloud 
(1•,-1•) •mble •physiml 
(-1/9,•) •mble •physi• 

Similarly, for the cubic lattice, we obtain 

(0,1) stable thick cloud 
(1,0) unstable thin cloud 
(1/3,-2/3) unstable unphysical 
(- 1/25,oo) unstable unphysical 

whereas for the triangular lattice, setting S(2x) = S(x) = S* in 
(10) yields S* = 0, 2/3. 

Since R and T must be positive and such that R+T < 1, 
physically realizable points (T, R) must lie in the "physical 
triangle" defined by the points (0,0), (1,0), (0,1). Figures 2a 
and 2b show the results of iterating (4) for points starting very 
near the unstable thin cloud fixed point (1,0), for d = 2, 3 
respectively. 

We now seek to study the behavior of f near the fixed points 
by expanding f in a Taylor series (to first order only). Define 

0.5 

0.$ 

0 0.5 T 

AR n R n -R* 
(17) 

As long as the Jacobian is nondegenerate (see Appendix C for 
the degenerate case that arises in nonconservative scattering), 

near the fixed point we have 1• = JXn-1 or X n = JnX 0 0.$ where X 0 = (ATo,ARo)T=(o, •l' (see section 2.3); the 
superscript "T" designates matrix transposition. If we now write Fig. 2. (R,T) plot obtained by doubling method for (a) d = 2 using 

(4) and (5) iterafively. The curves top to bottom are for doubling of J = M-1AM, where A is a diagonal matrix (and M is a (the size parameter, proportional to x) starting with T = 0.99 and 
diagonalizingmatrix) then S/R =0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10, and 20, respectively. Note 

that as the curves approach the thick cloud fixed point (0,1), the 

Xn=M.1AnMXo=M.1tAlnO ) absoluteslope(w) becomesconstant(w--->w*=13.93...)asexpected. 0 A2n MX 0 (18) Each point represents successive iterations; near the (0,1), they converge algebraically fast, the corresponding exponent is 

and for large n (near the fixed point), X n is dominated by the 
largest eigenvalue of J, denoted by A = max(A 1,A2). Thus 
AT n = AT(2nX) -- AnATo, and similarly for AR m Hence, we 
arrive at the following expressions: 

aT(x) 

•('C) = hR2 'C 'v 2 
(19) 

with v2=-log(A)/log(2 ), whereas hT2 and hR2 are determined by 
the matrix M; the subscript "2" indicates "doubling". 

v z = 0.447... as discussed in the text. (b) For d = 3 with (6), the 
slope and sealing exponent near (0,1) are w* = 42.26"' and 
v2 = 0.28-.., respectively. (c) For the D = 1.58.-- fractal; 
w* = 3.266 and v2 = 0.147. 

2.3. Thin Cloud Limit: Sensitive Dependence on the Phase 
Function and Extent of the Linear Regime 

Any approach to radiative transfer must clearly distinguish the 
thin and thick cloud limits. Our renormalization approach does 
this in a natural way by associating the thin cloud limit with an 
unstable, repelling fixed point (and hence sensitive dependence 
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on initial conditions, such as phase functions), and the thick 
cloud limit with stable, attracting fixed points and with universal 
behavior (lack of phase function sensitivity). Here we examine 
in more detail the properties of thin clouds, using the mapping 
(4) and (5). As outlined in section 3.2 of part 1, we may expect 
that near the thin cloud fixed point, that the transfer coefficients 
T•,S depend linearly on x. Furthermore, the linear regime is 
expected to extend to greater or smaller values of x d•ding on 
the value 1-g where g=t-r is the asynm•etry factor characterizing 
the extent of forward (conservative) scattering (Appendix D in 
part 1); we have reintroduced the DA phase function matrix Pij 
with elements t---Pñ/ñ/, r=-P:ki :r-/and s=P:t:/ffd•-P:t:/ ;j for/•j (see 
subsection 3.3 in part 1). 

In this subsection, we show how these results are determined 
by the properties of the neighbourhood of the thin cloud fixed 
point and derive these results from the mapping f. The thin 
rl,•,a fiYoa pont i• iT* g*5=tl m t,•.,•ino th•.ep. va111•.• intn ß "'"" '%,•. t-.-. / %.. •-."/ ......... o ...... 

the ]acobian using the equations following (16) yields 

20 

O(T,R) 2 ) (20) 

or, AI=A2=2=A; v2 =- 1. Thus, for small x we obtain (recalling 
that Xn=2n•0) the relationship 

1-T 1-To (21) 

This result is simply the familiar lineariF relation for thin clouds. 
A direct consequence of (21) is that the properties of two thin 
clouds, identical except for the precise values of their discrete 
angle phase functions, will have linearly diverging albedoes and 
transmittances. In other words, error in our initial assumptions 
will be amplified. In the language of nonlinear dynamics, the 
optical properties of thick clouds are "sensitively dependent" on 
the DA phase functions. 

We may now estimate the limits to the linear regime by 
expanding f(T,R) to second order, and considering the second 
order term as a perturbation. We obtain 

211 + •Rn( •+3 311+1 ] L Z•n_l (22) 

where I• = AT0/AR0. From first-order scattering, ARn=rX n 
and ATn= (1-t)xn, we obtain I• = (1-0/r. The largest eigenvalue 
(A) is found to be 

A = 2+2([I+l)AR n (23) 

The linear regime only holds for A--2; hence we therefore 
require 

1 
AR n << (24) 

or, using g=t-r, 

2.4. Thick Cloud Limit: Scaling Exponents and Universality 
With Respect to DA Phase Functions 

The analysis of thick cloud beh•ivior (x-->oo) is more involved, 
since the Jacobian i}f(T,R)/i}(T,R)lo_ 1 depends on the direction 
in (T,R) space that the fixed point '(0,1) is approached. More 
specifically, the various derivatives i}Tn+l/i}Tn, i}Tn+l/i}Rn, 
i}Rn+l/i}Tn, i}Rn+l/i}Rn evaluated at the fixed point T*=0, 
R*=I are indeterminate; to get a well-def'med value, we must 
specify the direction in R-T space in which the fixed point is 
approached. This direction is most easily defined by the 
(negative) direction tangent w = (1-R)/T. The following 
calculation is required in order to find the limiting value of w. 
Eliminating R in favour of w in the mapping L we obtain the 
new mapping: 

g: (Tn,wn) -• (Tn+l,Wn+ 1) 

For d = 2 we find 

(wn+l)3 
Tn+ 1 = (3wn_l)[8wn/T n -(3Wn-1)(wn+l)] (27a) 

Wn+ 1 =_ 2Tnwn(3Wn-1) r3Wn-1 ]2 wn+l + 2[Wn+ 1 - 1 (27b) 

Since we are interested in the behavior in the vicinity of (0,1), 
we set Tn+i=Tn=T*=O and seek solutions of (27b) satisfying 
W n+ 1 =W n=W* ' 

(w*- 1)(w '2- 14w* + 1)=0 (28) 

which yields 

w* = 1, 7ñ4•/'• (29) 

By analyzing the (new) Jacobian iJg(T,w)/•(T,w)lT, w* for 
the various fixed points, we find that the only stable (at•'acting) 
fixed point is (T*,w*)=(0,7+4 •/-•). This means that under 
doubl•g, the ratio (1-R)/T takes on a nontrivial limiting value 
(7+4•/3=13.93...) as x-->oo which is phase function independent 
(i.e., independent of r,t,s). This phase function independence 
assures us that the approach to the fixed point (T*,R*) will also 
be phase function independent (universal). We now use this 
result to obtain the behavior of f in the vicinity of (0,1), by 
calculating the Jacobian J=Of(T,R)/iJ(T,R)IT, R* in the limit 
T-->0 and w-->w*=7+4 •/•. Using the replacem'ent R=I-Tw, and 
taking the indicated limits, the various elements of the Jacobian 

•}Tn+l (w*+l) 2 l-w* •Tn - 2w*(3w*- l ) (1 + 2(2w*-1)') 

i•Tn+l (w*+l) 2 ( l-w* l+3w '2 ) •Rn - ' 4w'2 (3w*-1 + 2(3w'2_'1) (30) 
l-w* l-w* •Rn+l (w*+l)2 (1 + )+ •Tn - 2w*(3w*-l) 2(3w*-1) 2w* 

(1-g)x n << 1 (25) •}Rn+l 

We see that, as expected from standard continuous angle theory, 
it is the value of (1-g)x with respect to 1 that controls the 
importance of the nonlinearities; (1-g)x may be viewed as the 
equivalent isotropic scattering optical thickness. 

(w*+l)2(1-w *) (w*+l)2(l+3w '2) l+3w '2 
4w,2(3w,_l) + 8w,2(3w,2-1) + 2w* 

yielding for the largest eigenvalue of J, which can always be 
written 
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A =--•--+ + - det J 
where we have here 

61w *4-16w*3+ 3w*2-8w*-3 
Tr J = 8w,2(3w,_l)2 

(w*+l) 3 
det J = 4w*(3w*- 1) 

Inserting the value w*=7+4 x/•, we obtain 

•/2367483-1366816X]• X/3 (627) 67 ^= 32 

(31) 

(32a) 

(32b) 

= 0.731..- 

This implies, v2 = 0.452..., which may be regarded as an 
estimate of the true exponent that would be obtained by direct 
numerical calculation on an enormous grid; see section 4. A 
similar analysis can be conducted for the DA(2, 6) model, we 
obtain A = 4/5 and v2 = 0.322.... 

In the DA(3, 6) model, the results analogous to (2.24)-(2.26) 

Tn(wn+3)2(wn+l) 
Tn+l = (5Wn-1)(4(3Wn-1)-Tn(wn+l)(5Wn-1)) (34a) 

4Tn(wn+l)(5Wn-1)(1-Wn) ,./5Wn-1 • Wn+l = (Wn+3) 2 + Z(Wn+ 3 - 1 (34b) 

cloud models described and studied in the previous section. 
Rather than being homogeneous over a set with dimension equal 
to that in which the cloud is embedded, it is now "fractally 
homogeneous", i.e., homogeneous over a fractal set with 
dimension less than that of the embedding space. The main 
difference is that instead of modeling inhomogeneity at a very 
specific scale (essentially, the size of the cloud), we consider 
clouds in which inhomogeneities appear by construction at all 
scales (from the size of the unit cell to that of the complete 
cloud). We shall first consider the case of an isolated fractal 
cloud which can be analyzed following the same methods applied 
above to the internally homogeneous clouds; then we shall 
consider cyclic boundary conditions. This will allow us to 
independently assess the effects of finite horizontal extent and 
holes. 

The cloud model discussed below is in fact a kind of 

(33) deterministic two-dimensional "13 model" for turbulence with an 
inner cutoff at some physical scale corresponding to an optical 
thickness 'co (see part 3 for more details). Gabriel et al. [1986] 
investigated numerically a random 13 model using DA(3, 6) 
radiative transfer on a (cubic) lattice and compared its (average) 
liquid water content with that of plane-parallel clouds of identical 
albedo; this yields systematically lower values for the latter. The 
following deterministic model explains this finding qualitatively; 
it is summarized in Lovejoy et al. [1989]. Interestingly enough, 
the random [3 model (although itself described by a single fractal 
dimension) exhibits multifractal DA radiation fields across the 
cloud top; this is not unlike the Earth's own cloud fields as 
measured by GOES radiometry in both VIS and IR channels 
[Gabriel eta/., 1988]. 

3.2. A D=log3/log2 Cloud With Open Boundary Conditions 

with Tn+ 1 = Tn = T* = 0, Wn+ 1 = Wn = w*, we obtain 

(w* - 1)(w '2 - 42w* - 11) = 0 

hence 

w* = 1, 21:1:2q 113 (36) 

The stable fixed point is w* = 21+2 X/113 = 42.26-'.. 
Following the same procedure as above, we obtain A = 0.83... 
and v2 = -log(A)/log(2) = 0.28-'.. 

It is interesting to follow the evolution of the (Tn, Rn) point as 
we iterate equations (4) with (5) or (6) in d = 2,3 respectively; 
the corresponding physical picture is Figure la (for d = 2). 
This is illustrated in Figures 2a and 2b respectively, where in 
both cases, we see the different trajectories for various choices of 
(To, R0) converging in the thick cloud limit, i.e., at 
(T,R) = (0,1), but with different slopes. These initial choices 
are equivalent to various choices of DA phase function as 
described in the preceding subsection, and the convergence 
illustrates the fact that the scaling exponent v2(d) has no memory 
of this phase function, i.e., it is "universal" (in the sense of 
nonlinear dynamical systems). Other relevant results on direct 
transmittance in multifractal clouds, as well as total transmittance 
in plane parallel multifractal clouds can be found in Lovejoy et al 
1990, Davis et al 1990. 

3. /••OTIC SCALING PROPERTIF3 OF A FRACTAL CIX)UD 
AND TI-IE EFFF. L-W OF BOUNDARY CONDIIIONS 

3.1. Fractals as Simple Inhomogeneous Scaling Systems 

The fractal clouds studied in this section can be viewed as 

straightforward generalizations of the internally homogeneous 

In this section we apply the renormalization approach 
developed in section 2 to the simplest fractal cloud imaginable, 
shown in its early stages of construction in Figure 3, where the 

(35) (internally uniform) purely scattering regions are shaded and the 
empty cells (clustering into huge holes) are white. Starting at a 
small inner scale with optical thickness 'co (below which the 
cloud has different, e.g., homogeneous behavior), we generate 
thicker and thicker clouds by placing three squares obtained at a 
previous iteration in the square pattern shown (this fourth square 
is empty). At each iteration, the mean optical depth increases by 
a factor 3/2; from the inner scale up to the resulting outer scale, 
the cloud is a scaling (monodimensional) fractal with dimension 

:i:i:i:i:! 
:.:.:.:.:. 

Fig. 3. Generator for the deterministic fractal medium embedded in 
d = 2 space with "dimension" 
D = log2(3) = log(3)/log(2) = 1.58-'-< d; the first three stages in 
its construction are illustrated. Each iteration doubles the physical 
thickness but the total number of cells is only increased by a factor 
3 = 2 D (this determines D, in analogy with the full square, where it 
is a factor 4 = 2d). It follows that the op. tical thickness (averaged 
across any side) is multiplied by 3/2 = 21-C, where C is the fractal's 
"co-dimension" d-D, which is a direct measure of the sparseness of the 
medium. 
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D = 1og3/log2 = 1.58.... Following exactly the same 1 (w*-l)(l+2w*)(1-10w*) procedure as for the DA(2, 4) system used for investigating det J = i+ 4-¾;' + 8w*(3w*+l)(5w*-l) (42) 
square clouds described in section 2, we can obtain approximate 
doubling relations for DA radiative transfer in fractal clouds Each iteration conesponds to a doubling of the physical size and 
(necessary modifications for the fractal are indicated in Appendix to an increase by a factor 3/2 of the average optical thickness. 
B). The corresponding doubled transmission and reflection Denoting the doubling exponent of x for this D = 1.58... cloud 
coefficients for this fractal cloud are by v2(1.58) and inserting the value w* = 3.2260 into eq. (3.6), 

Tn+l = 2 
Tn( l +Tn) 

Rn+ l = Rn + 

Sn 2 Fn 2 { Rn2(l_Rn2)(l+ Tn2- • + •- + 2(1_Rn21.2) Sn---'2-) 
+ Tn(1 + 2Rn + Tn2Rn 2) + RnSn 2 + 

Rn2Sn 2 + Rn(1-Rn 2) } 

1"• 2 [ R.rl_R.2'•rl + Tn 2,• ß -, 4- 

2(l_RnWn •) ß Sn •, 

Tn(2+RnTn) + RnSn 2 } 

(37) 

where 

Fn= 2 
1-Rn 

and we have used the notation Tn=T(x), Tn+I=T(1.Sx), 
Rn=R(x), Rn+ I=R(•.Sx), Sn=S(x), Sn+•=S(•.Sx). 

Conservative scattering can again be considered by requiring 
R+T+2S = 1; however questionable for such an asymmetrical 
fractal, the (implicit) assumption that both side losses are equal is 
consistent wi _th_ _the approximations used in Appendix B to obtain 
(37)-(38). We then obtain the basic physically significant fixed 
points (T*J•*) are (0,1), (1,0), corresponding to thick and thin 
clouds, respectively. We also have the following (nonphysical 
but real) fixed points (5,-5), (0.3416...,-0.4472--'), (o•,_o•). As 
we iterate these equations we systematically build up the fractal 
cloud (as shown in Figure 3), and obtain a T-R plot showing 
successive iterations with different trajectories for various 
choices of (To, R0); see Figure 2c. 

Following the procedure outlined in subsection 2.4, we find 
that the thick cloud limit depends on the Jacobian of the nonlinear 
(Tn,Rn)-O(Tn+l,Rtl+l) mapping (f), which in turn depends on 
the direction at which the point (0,1) is approached; we again 
introduce the negative direction tangent w = (1-R)/T, and 
eliminate R. This results in a new map (Tn,wt•)-O(Tn+ 1 ,Wn+ 1) 
which, in the neighborhood of T = T* = O yields 

Wn+ 1 = 
(2Wn-1)(3wn+l)(5Wn-1) - 2Wn(Wn-1) 2 

4Wn(Wn-1) 2 + (3wn+l)(Swn-1) 

we obtain A = 0.942 and hence: 

-log(A) 
v2(1.58) = 1og(3/2) = 0.147 

This exponent is an estimate of that which would be obtained by 
direct numerical calculation on an enormous grid with T=0, R=I 
for each grid element. 

All of the models studied in the previous subsection feature 
light "leakage" through the sides, a feature which is not 
unrealistic in the case of sparse cloud fields, where very little 
reflected light from one cloud illuminates another. Convers61y, 

(38) in dense cloud fields, individual clouds cannot be considered 
isolated, and the radiation leaking out of the sides of one cloud 
would serve as inputs into the sides of neighboring clouds. As 
mentioned in the introduction of part 1, this dichotomy is 
artificial, and more realistic models should involve highly 
variable cloud fields which do not separate the two situations. At 
any rate, a well documented situation [see Tsay and Jayaweera, 
1984] worth modeling is the extended cloud deck exhibiting 
intemai inhomogeneity. 

Fortunately, it is easy to make a renormalization estimate of 
this effect by imposing periodic boundary conditions in the 
horizontal, and studying the effect of the internal 
inhomogeneities alone (without side losses). The calculation 
proceeds in two steps. First, the same doubling geometry is 
used as before, and the system of linear equations this time 
appropriate for cyclic boundary conditions is set up, and solved 
for the total transmission and reflection. Since there is no 

leakage, the sum of the reflected and transmitted fluxes is 1 
(ensuring that the corresponding exponents will be equal). The 
second step is to use the thick cloud formulas for the individual 
scattering elements, which means assuming the transmittance T 
is a small quantity, and 1-R = w*T with w* = 3.2260 (as 
above). With this thick element approximation (ignoring terms 
second and higher order in T), we obtain 

(39) 

Since we are interested in the behavior near the attracting fixed 

point (T,R)-->,(O,1), we seek solutions satisfying 
Wn+l = Wn = w . This yields w* = 1 and 

4w '3- 13w'2 + 1 =0 

whose roots are -0.2666, 0.2907, and 3.2260. A lengthy 
analysis of the new Jacobian near each of these four fixed points 
shows that the only attracting fixed point is T* = O, 
w = 3.2260. The thick cloud scaling exponent is now 
obtained from the largest eigenvalue (A) of the Jacobian (J) of f 
evaluated at the fixed point; see (31) which calls for its trace (Tr 
J) and its determinant (det J). Evaluating these, we obtain 

D(•x) = 1- U(•x) = (l+w*)(2w*+l) 3+5w* T(x) (44) 

3 3(w*- 1)(l+2w*) 
Tr J = • - 2(3w*+l)(5w*- 1) 

where U(1.Sx) is the total upwelling flux (cyclic boundary 
conditions albedo, D = 1.58'") and D(1.Sx) its downwelling 
counterpart. Recall that R, T are the corresponding values in the 
noncyclic case. To obtain the (unique) cyclic exponent, we must 
now express U(x), D(x) in terms of TOO, R(x). Consider a 

(40) single cell with unit incoming radiation along the top, with 
periodic boundary conditions in the horizontal. Denote the 
horizontal intensities by H, the left and right intensifies must be 
equal when (spatially) averaged over an extended medium; 
applying the definitions of the transfer coefficients, we obtain 
H = S+HT+HR (hence H = 1/2) as well as 
U = R+2HS = R+S and D = T+2HS = T+S. Thus, to 
within our doubling approximation, we find 

(41) 

u(x) = g(x) +s(x) 

D(x) = T(x) + S(x) 
(45) 
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i.e., half the flux "recycled" by the periodic boundary conditions 
(2S(x)) is redirected up and the other half, down. Needless to 
say, this is a very rough approximation, but it is consistent with 
our previous assumptions of single-cell uniformity. In thick 
clouds, we have 

1 [l_R(x)_r(x)] = w*- 1 S(x) = • 2 T(x) (46) 

Hence 

w*+l 

O(x) = 1-U(x)= 2 T(x) (47) 

.2 

-4 

-12 

-14 

Thus, for the thick limit (and taking w* = 3.2260), 

D((3/2)x•) 2 (2w*+l D(x) = •,3+5w*) = 0.779 (48) 
Hence, D(x) = x-V2•y c(1'58) where 

1ø15(0'779) - 0.616 v2•yc(1.58)=- log(3/2)- 

4. ACCUgACY OFTm• DOUBLING EXPONENTS 

(49) 

a 

4.1. Refinement of the Doubling Estimate: Quadrupling, 
Octupling, etc. 

As mentioned in the previous sections, the analytical estimates 
of v 2 for various geometries only approximate the exponent that • 
would be found by simulation on an enormous grid with each of 
the single-cell transfer coefficients having R-- 1, T--0. The 
transfer on such a grid can be better approximated by replacing 
"doubling" by "quadrupling", etc., which is best done -1.1 
numerically. First, (1) and (2) are solved on 2x2 through 16xl 6 
arrays (by factors of 2) using the appropriate geometry. The •' -1.2 
outcome is then recycled as the new transfer coefficients in (2). • 
In fact, Gabriel [ 1988] obtains computationally exact solutions in • -1.3 
closed form for finite media discretized on orthogonal grids of * 

,• -1.4 
any size in d = 2,3; in all other cases, over-relaxed iteration is 
used (see Appendix A, part 3). This procedure yields exponents 
v2 through v16, which approach the limiting value vR-. The .1.5 
negative sign in the index underlines the fact that since R = 1, 
T -- 0, these exponents correspond to pq < 0, and will not in -1.6 
general be the same as would be obtained with the physically 
significant phase functions with pq > O. • 

Figures 4a and 4b show the results for squares in d = 2 
indicating v R_(2)= 3/4 (c.f. the doubling estimate 
v2(2) = 0.45-.-), cubes in d = 3 yields re_(3) = 1/2 (c.f. 
v2(3) = 0.28.--). These exponents are written in the form of 
(small) whole number fractions, since they are obtained from 
numerical solutions of linear systems of partial differential 
equations with regular boundary conditions (see parts 1 or 3); 
hence we do not expect the appearance of irrational exponents. 
Figure 4c corresponds to the same refinement procedure applied 
to the D = 1.58... fractal cloud (with open boundary 
conditions); in this case, the exponent v2m(1.58) is a slowly 
decreasing function of rn, which indicates vn_(1.58)--0.16 
(c.f. v2(1.58) = 0.147). For this kind of medium, there is no 
reason to argue for a ratio of small integers. 

4.2. Direct Numerical Simulation and Universality With 
Respect to Lattice Type 

5 10 15 

L0g2(M 

2O 

o lO 20 30 

Log2(•.) 

0 10 20 30 

L0g2(•.) 

Fig. 4. Determination of the exponents v2, V4, V8 V16 for (a)d = 2 
which determine the rate of convergence (left to right) toward the fixed 
point R* = 1 and T* = 0 for (top to bottom) doubling, quadrupling, 
octupling, and hexadecupling respectively. The 3. is the physical size 
of the square in units of cell size, which is proportional to •:. The top 
line has the theoretically predicted (absolute) slope of v 2 = 0.447-'-. 
The transfer coefficients for basic unit cells were R = 0.9, T = 0.05; 
hence S = 0.025, corresponding to a square of optical thickness 
x = 100 [see Davis et al., 1989]. The slopes are seen to be 

O , 

accumulatang toward 0.75, corresponding to a ratio of small integers 
for vn_ = 3/4. (b) For d = 3 we find vn_ = 1/2 with v2=0.28.-'; it 
was initiated with cubic cells described by R = 0.5625, T = 0.0089, 
S =0.10715 (these were obtained by Davies [1976] from a Monte 
Carlo simulation for a cube of optical thickness x = 100, 
illuminated normally with a Deirmendjian C1 drop size dist•bution at 
0.45 I. tm wavelength, g = 0.85). (c) For the D = 1.58'" fractal in 
d = 2, where 3. is proportional to xI/(l-C) with C = d-D = 0.42-'-, 
the same single (square) cell transfer coefficients were used initially 
and the procedure yields vtt- = 0.16 with the tenorrealization estimate 
v 2 =0.147 now on the bottom. In order to obtain v zm 

Using numerical simulation, we can address the question (m = 1,2,3,4) the slopes on the graph must be divided by 
whether the independence of the scaling exponents on DA phase (1-C)1og10(2) in all cases. 
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functions can be extended to different angular discretizations, 
which are really just other DA phase functions. An obvious way 
to test this hypothesis is to estimate vn- using the triangular 
lattice configuration in d = 2 discussed in section 2 (and 
Appendix D for further details). We therefore solved the 
triangular lattice DA equations (D1) numerically, obtaining 
results which are virtually identical to the square results, 
¾triangle = ¾square = v n_ = 3/4. This supports the conjecture that 
the universality of v n. holds independent of lattice type, 
equivalently (here), angular discretization. Direct calculations 
give not only vn. but also vt. (vr- = vn. only for boundary 
conditions where the sides do not act as sinks for radiation); in 
both square and cubic clouds, we find vr-= 1, i.e. the (d=l) 
value predicted in Part I for internally homogeneous media in any 
dimension which we expect to be dominated by diffusion. 

Direct numerical solutions were also obtained for 2x2 through 

v•_(•.5•) = 0.!62, which is quite close to the doubling value 
v2(•.5•,open ) = 0.•47. The corresponding transmission 
exponent is vr-(•.5•,open)= 0.69. In the case of periodic 
boundary conditions, direct numerical solutions yield 
VR_(1.58,cyclic) = VT_(1.58,cyclic) = 0.60, which is again 
fairly close to the corresponding doubling estimate 
v 2(1.58,cyclic)=0.616. 

To understand why vr_ > vR_, recall that 
w = (1-R)/T-- x TM -vR_ = I+2(d-1)S/T; since T must 
approach zero faster than S as x increases indefinitely we obtain 
vr- > vR.. Notice that all the cases studied verify the double 
inequality 1 > vr_ > vn_ with the former equality applying for 
internally homogeneous systems and the latter for periodic 
systems (where i-R = T in 'the above). 

4.3. The Fundamental Limitation of Renormalization in DA 
Radiative Transfer 

Although we have seen that doubling is not exact because of 
the approximation that for each iteration the intensity field is 
constant over half the size of the system, we might have expected 
(as is often the case) that quadrupling, octupling, etc., would 
lead to a converging series of improved approximations. Above, 
we saw that this was indeed the case, except that the improved 
approximations were with respect to the DA exponents 
characterized by the unphysical pq<O. In other words, the basic 
limitation of real space renormalization in DA radiative transfer is 
that more than one universality class exists (with generally 
different exponents), and the method gives the wrong one. 

Let us consider the renormalization process in a bit more detail; 
in the remainder of this subsection, we refer to equations in part 
1. Starting with (7), and considering thin clouds (T-- 1), the 
eigenvalues of c• 2 are all --1, the gradients across each cell are 

Finally, we may ask whether the exponents obtained by 
numerically solving (7) with R--1, T--0 (which, as 
indicated, corresponds to solving (6) with unphysical, negative 
phase functions) are the same as those that would have been 
obtained on enormous grids with T--1, R--0 (or 
equivalently, DA Monte Carlo methods). In other words, are the 
universality classes (exponents) of (6) the same for positive and 
negative pq? Although we consider this question numerically in 
some detail in part 3, we can anticipate the results: the only case 
studied in which the exponents form pq < O, pq > 0 are the 
same is in the DA(2,4) system for an internally homogeneous 
medium. Here, the identity of the exlx)nqnts can be understood, 
since considering (45) we expect the õy"~• term to dominate near 
the top of the cloud, where the light comes in, imposing a large 
gn)die/tt in intensity, and hence to determine vn, while the 
(•5•+õ• diffusion term dominates the bulk of the system, far 
frown the. tap hcmnclary, and h•.ne.•. determln•.e vt. It ie nnly in 
this homogeneous two-dimensional case, that the relative sign 
between the two terms, i.e., sign(pq), is unimportant in 
determining the exponents. 

5. CONCLUSIONS 

We have presented an approach called "real space 
renormalization", which we use for studying discrete angle 
radiative transfer in scaling systems, and which is really just a 
generalization of invariant imbedding methods to scaling systems 
of which the plane-parallel kind are only the simplest examples. 
The method works by starting with transfer coefficients for 
optically thin clouds and estimating the corresponding 
coefficients in thicker clouds obtained by doubling (or more 
generally, quadrupling, octupling, etc.). One obtains a nonlinear 
mapping which transforms the coeificients at one scale to a larger 
(e.g., doubled scale). The thick and thin cloud behavior is then 
obtained as a power law approach to fixed points of the mapping 
with exponents universal, in the sense that they are independent 
of the phase function. 

Although the method correctly reproduces the basic features of 
radiative transfer in these scaling systems, including both the 
phase function sensitivity for thin clouds, and insensitivity 
(universality) for the thick clouds, as well as the scaling behavior 
of the transmission and albedo, the quantitative predictions are 
poor primarily because two main universality classes exist, and 
the method converges to the unphysical one. 

APPENDIX A: DA(1, 2) RADIATIVE TRANSFER SYSTEM FOR 
CONSERVA•Y SCATIERING LA• MEDIA 

It is interesting to see that the simple DA(1, 2) system (which 
small, and the doublingprocedure givesan accurateestimate of was shown in part 1 to be equivalent to the two-flux 
the DA radiative transfer properties of the system (i.e., it approximation of continuous angle radiative transfer) can be 
reproduces the linear regime). As the iteration proceeds, T and R solved without recourse to calculus for the solution of a 
take on intermediate values; the gradients and the high order two-point boundary value problem. This alternative approach 
terms in the expansion (9) are no longer negligible. The makes use of the "adding" of two finite layers and provides a 
reflection and transmission coefficients estimated by the doubling good example of the power of invariant imbedding techniques. 
method are therefore in error by quantities depending on the Let layer the first layer (R (x l) ,T(X l )) lay between (optical) 
magnitude of these terms. Eventually, when R -- 1, T -- 0, the coordinates 0 and Xl, and the second layer (R(x2),T(x2)) extends 
eigenvalues of c• 2 are once again near 1, the fields are smooth beyond, between •1 and x = •1+•2; the ordering corresponds 
and high order terms are negligible. The fields are thus solution to light propagation. The interaction principle [Preisendorfer, 
of the (spatially continuous) DA radiative transfer equation (6); 1965] expressed in (1), with definitions (2) in mind, yields 
however, as indicated elsewhere (section 3 and Appendix A of 
Part I), with a negative phase function (matrix) P. l+(Xl)=T(xl)l+(O)+R(x2)l_(Xl) 
Unfortunately, in spite of the decrease in importance of the 
high-order terms, unlike the thin cloud limit, the thick limit l+(x) = T(x2)l+(xl)+R(x2)l_(x) (A1) 
depends on the direction in (T,R) space from which the point L(0) = T(xl)L(Xl)+R(xl)l+(O) 
(0,1) is approached (it depends on w), and the limiting value 
(w*) will not be accurate. L(Xl) = T(x2)l_(x)+R(xl)l+(Xl) 
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Boundary conditions are L(0)=I, l+(x)=0 and, by definition, 
l+(O)=R(x), L(x)=T(x). Eliminating the intensifies, we obtain 
the following nonlinear relationship between the various c• 
coefficients: 

R(x2)T(Xl) 2 
R(Xl+•2) = R(Xl) + (A2a) 

1-R(xl)R(x2) 

T(xl)T(x2) 
T(x+x2) = (n20) 

Similarly, 

x 2x 

l [I_y(X,2x)dx + ll_y(X,2x)dx } 
't 

1 •Lx(O,y)dy } 
We have split up •e li•ts of integration • •is way, s•ce it 

suggesm a s•ple appromate me• for esfi•t•g •e doubl• 

(B2) 

(B3) 

These relations have an interesting physical interpretation: reflectivity, transmissivity, and side-scattering coefficients 
expanding the (common) denominator in a Taylor series, we see (R(2x), T(2x), S(2x)) by replacing the intensity function over 
that each term corresponds to a specific number of (diffuse) each face by a constant ftmction equal to the average. This is the 
reflections between the two layers. This natural approach to crucial approximation, a kind of "mean field" assumption. 
radiative transfer has been used in model building; for instance, Using the notation 
Tanr• et al. [1979] use (A2a) with R(x2) identified as a ground 
reflectance. The functional equations (A2a) and (A2b) can be 
solved exactly, the simplest case being non-absorbing systems 
where we can use radiant energy conservation (T+R = 1) to 
eliminate the reflectancies. We are left with 

T(Xl)T(x2) 
T('rl+'r2) = (A3) 

T(X l)+T(x2)-T(x l)T(x2) 

(n+l)x 
1 

1 

= { 
(m+l)x 

or, after rearrangement 

1 1 1 
- 1- - 1+• - I (A4) 

T(X l +X2) T(Xl) T(x2) 

The general solution of the functional equation (A4) is thus 

hence 

- 1 =Cx (A5) 

(B4) 

with rn and n the integers 0, 1, 2. We obtain the following 
expressions for the coefficients from (B 1)-(B4): 

1 

œ(2'0 = (/+y(0,2) + l+y(1,2)) 
1 

T(2x) = 5 (l_y(O,O) + l_y(1,0)) (BS) 
1 (l+x(2,0) + l+x(2,1) ) = 1 (l_x(O,O) + l_x(0,1) ) s(2) = 

1 

The arbitrary constant C can be determined by considering the equations to be solved for the various li(n• ) values (note that 
thin cloud limit (x->O) where we have T-- 1-Cx and identifying for many of the values of m,n, the equations for the components 
with the single-scattering approximation. This yields Ii(n,m) are trivial, and are not included in the above). Since 
C = 1-t = r = (l-g)/2 thus retrieving (B6a) of part 1 using the there is also left/fight symmetry, this is reduced to only 12. 

If we now maintain this uniformity approximation for all the 
radiation fields inside the square, then each x x x square can be 
regarded as a unit cell, and we can then apply (1) to estimate the 

(A6) Ii(n,m). Since there are 12 boundaries with fluxes crossing each 
in two directions, there are 12 x 2 = 24 simultaneous (linear) 

(B6) 

We illustrate this method in detail within DA(2, 4) radiative the system of equations describing the intensity emerging at the 
transfer by calculating the coefficients of the 2x2 square made up boundaries is, from (1) and (2), 
of square cells with S(x), T(x), R(x) coefficients, as shown in 
Figure l a (where we take the origin to be in the lower left 
comer). We now irradiate the square with unit radiation incident 
on the top face only (i.e. the boundary conditions are 
l_y(x,2x) = 1, l+ v(x,O) = O for O<x<2x, and 
l_•(2x,y) = l+x(O,y) = O for O'5_y<2x). We obtain 

x 2x 2x 

n(2,)= { [%(x,2,)& + 1/[ [,_y(x,2,)& ) 

x 2x 

1 { [l+y(X,2x)dx + II+y(X,2x)dx} 
2x 6 x 

(B1) 

l+y(0,2) = R+SI_x(1,1) + Tl+y(O,1) 
l_y(O,O) = Tl_y(O,1) + Sl_x(1,O) 

l_x(0,1) = Sl_y(0,2) + Sl+y(O,1) + Tl_x(1,1) 
l_x(O,O) = SLy(O,1) + Thx(1,0) 

whereas the remaining internal fields are found from 

l_x(1,1) = S+RI+x(1,1) + SI+y(1,1) 
l_y(0,1) = T+SLx(1,1)+ R/+y(0,1) 

l+y(0,1) = R/_y(0,1) + Sl_x(1,O ) 
l+x(1,0) = Sl_y(O,1) + Rl_x(1,0) 

(B7) 

(B8) 

B.1. The Homogeneous Square Cloud 

APPENDIX B: DETAILS ON DOUBLING IN THE SQUARE AND 
FRACTAL •UI• 

notations of section 2.3 above or section 3.3 of part 1. Using the boundary conditions 

l_y(0,2) = 1 l_y(1,2) = 1 
l+y(O,O) = 0 l+y(1,0) = 0 

l_x(2,1) = 0 l_x(2,0) = 0 
l+x(O,O ) = 0 l+x(0,1): 0 
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Finally, by left/right symmetry 

/_+y(0,m) =/_+y(1,m) m = 0,1,2 

l:t•(1,m) = I +x(1,rn) m = 0,1 
(B9) 

This yields an additional 10 equations, of which two are the 
same as (B6), yielding a total of 24 equations for 24 unknowns. 
Solving (B6) to (B9) for l+y(0,2), l+y(1,2), l_y(0,0), l_y(1,0), 
l+x(2,0), and l+x(2,1) and s'ubstitutin• into (BS), we o6tain (4) 
for d = 2 and (5). 

B.2. Modifications for the 1.58-D Fractal Cloud 

in the other models studied. The relevant doubling mapping can 
be obtained from (4) by putting S = F 1 = 0: 

Tn+l = 1 - Rn 2 
Rn+ 1 = Rn(1 + Tn+l) 

(C1) 

Writing the thick cloud fixed point as (0,R*), and expanding to 
second order, we obtain 

ATn2 
ATn+I- 1 - R '2 (C2a) 

Equations (37) and (38) are derived by solving the 24 linear 
equations of subsection B.1 with the boundary conditions 
modified to correspond to the 2X2 square with an upper (right) 
comer hole as shown in Figure 3. The left/right symmetry 
invoked no longer holds, and the eight equations replacing (B9) 
are, from (1) and (2) as well as boundary conditions 

ARn+ 1 = AR n + R*ATn+ 1 

The solution to these equations is obtained by taking 
Yn = log AT n, and solving the resulting linear finite difference 
equation for Yn. Recalling that x n = 2nxo and T* = 0, hence 
T n = AT n, we obtain: 

kx(• ,• ) = o 
! (1,1)-1 

I+y(1,2) - l+y(a,1) 
I+X(2,1) = I+X(1,I) 

l+y(1,1) = Rl_y(1,1) + Sl+x(1,0) 
I_X(1,0) = Sl_y(1,1) + Rl+x(1,O) 
I (1,0) - TI y(1,1) + Sl+x(1,0) 
l-x(2,0) = Tl-x(1,0) + Sl_y(1,1) 

If cyclical boundary conditions were applied, the (external) 
boundary conditions (B6) must be modified to read 

l_y(0,2) = 1 l_y(1,2) = 1 
l+y(O,O) =0 l+y(1,0) = 0 

(Bll) 
l_x(2,1) = l_x(O, 1) l_x(2,0) = l_x(O,O) 
l+x(O,O) = l+x(2,0) l+x(O,1) = l+x(2,1) 

APPENDIX C: RENORMALIZATION IN THE CASE OF 
NONCONSERVATIVE SCATIERING 

We have seen, by expanding the doubling function near fixed 
points in Taylor series, that (local) scaling (rather than 
exponential) behavior is generally obtained. This derivation is so 
general that at first sight it would appear to apply not only to 
conservative scattering, but also to nonconservative scattering. 
This is the converse of the usual arguments which yield 
exponential type behavior for thick absorbing clouds, with 
algebraic behavior only as a special case (when the absorption is 
exactly zero); see, for example, for the DA(1, 2) model detailed 
In Appenctlx B ot part 1. In tills appenchx, we show how this 
apparent contradiction is resolved by the fact that the 
nonconservative cases involve degenerate Jacobians. 

Let f be the two-dimension nonlinear map (R,T)n-->(R,T)n+I. 
We have seen that in the conservative scattering cases examined, 
the JacobJan matrix evaluated at the thick cloud fixed point 
(3f(R,T)/3(R,T)IT,,R,) is nondegenerate (it has a nonzero 
determinant). Below, we show that all first-order derivatives are 
zero (with the exception of 3Rn+i/ORnlT,.R, = 1), and hence 
[3f(R,T)/3(R,T)IT,_R,] is no longer approximated by A 
(recall that A is the l'•gest eigenvalue). To see how this leads to 
exponential behavior, we study the simple DA(1, 2) case with 

1 e_k0xn (C3a) Tn- 1 _R,2 
logAT 0 

k 0 =- (C3b) 

which is an exponential transmission law (k 0 is positive) as 
expected. The expression for z• n can now be obtained by 
inserting (C3) into (C2b) and performing finite integration; this 
would naturally yield R* < 1. Similar results may be obtained 
for d = 2,3, although the algebra is much more involved. 
When the absorption is very small, but finite, we expect 
exponential behavior to arise only for extremely thick clouds, 
scaling (algebraic) regimes (with the previously determined 
exponents) should still hold, although now only over a finite 
range of optical thickness. 

APPENDIX D: SPATIALLY DISCRgr•zm} EQUATIONS OF DA 
RADIATIVE TRANSFER ON A TRIANG• LATIICE 

A slightly more complex situation arises than that described in 
the introduction (section 1) when the lattice cells do not all share 
the same orientation, such as in the case of the plane covered by 
equilateral triangles. In this case, upward pointing triangles (at 
lattice positions m) have nonzero intensities only along directions 
•:/3, •:, 5•:/3 (k l, k2, k3, respectively, which are the vectors 
connecting the centers of upward pointing triangles with the 
surrounding downward pointing triangles); angles being 
measured from zenith. In comparison, downward pointing 
triangles (at positions m', where the m' vectors are displaced by 
k with respect to the lattice of upward triangles) have nonzero 
intensities along directions 4•:/3, 0, 2x/3 (respectively, vectors 
kl'=-kl, k2'=-k2, k3'=-k3, connecting the centers of 
downward pointing triangles with the surrounding upward 
pointing ones). We therefore obtain from (1) 

/i(m) = Z Oik(m) Ik(m-k) 
k:k•,k2,k3 

(D1) 

Li(m ) = E Oik,(m ) lk'(tn '-k') 
k'--k'•,k•,k'• 

absorption, although it is not hard to see that the results will hold where Oik is a 3x3 matrix, the simplest of which is 
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o= R s (D2) 
$R 

In section 2 we consider this DA(2, 6) system analytically, 
and it is exploited numerically in section 4. Note that since the 
eigenvalues of the above matrix are R-S, R-S, l-A, the latter will 
be nearly one when A = 1-R-2S • 0, R = 1 yielding smooth 
intensity fields and good numerical approximations to the 
corresponding DA radiative transfer equation (but not necessarily 
with positively-valued phase functions!). 
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