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Abstract. The classical radar observer's problem in rain is to interpret the fluctuating radar echo
from precipitation. Contrary to the usual homogeneity assumption involving Poisson statistics
and incoherent scattering, we make a (scaling) heterogeneity assumption involving multifractal
statistics and (some) coherent scattering. We consider the simplest problem, which is to relate the
liquid water (0) statistics to the (measured) effective radar reflectivity statistics (Z,) and to the
(theoretical) radar reflectivity factor (Z; Z,=Z for incoherent scattering). We ignore polarization
effects (that is, we use the scalar wave approximation), and denote the pulse length / , wavelength
A, the inner (homogeneity) scale of the rain field (1), and the outer (largest) scale of rain (L). For
the simplest (conservative) multifractal ¢ the two main effects are 1) as in the standard theory,
Z=0?; however, because of the strong subpulse volume gradients, there is a bias of (//4,,)K0@;
(K4(2) is the scaling exponent of 6?); 2) because of partial coherence, there is an enhancement:
ZJZ ~(A,Jn)PKo@, where D is the (effective) dimension of space. For nonconservative
multifractals (parametrized by H) we obtain the overall bias in the means: <Z, >/<Z >
=(A,,/n)P-Ko@(L/A,)2H, Using available data, we estimated this as typically =10-3 which is <<1;
Z should therefore not be used as a proxy for Z,. New theories relating radar measurements to rain
must therefore be developed. Finally, we show that radar "speckle" (the drop "rearrangement"
problem) is a general consequence of multifractal liquid water/ drop correlations.

1. Introduction

The standard interpretation of the fluctuations of radar
echoes from precipitation is based on the implausible
assumption that, although interesting and significant
inhomogeneities do exist at (observed) scales larger than the
pulse volume, each realization of the rain field is statistically
homogeneous within the pulse volume. More specifically, it
is assumed that within pulse volumes the probability density
of finding a drop is uniform in space, hence that the statistics
are Poisson and that the reflected microwave phases are
independent random variables. This implies completely
incoherent scattering. Since a uniform probability still
allows for some residual variability of the size and exact
positions of drops, the radar echo will still fluctuate, leading
to a statistical description which has served for over 40 years
and which we term "the standard model" [see Lawson and
Uhlenbeck, 1950; Austin, 1952; Marshall and Hitschfeld,
1953; Wallace, 1953]. The homogeneity assumption
originated as the simplest one that would allow calculation of
"burn through" times for detecting military targets in metal
chaff or rain [Lawson and Uhlenbeck, 1950]. Until recently,
little evidence was found to contradict this model [see
Lhermitte and Kessler, 1966; Schaffner et al., 1980]. A
limited attempt to go beyond strict homogeneity was made by
Rogers, [1971] (see also [Torlaschi and Humphries, 1983])
who formulated a modification to the statistical description of
the fluctuating echo that permits rain rate gradients within an
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extended measurement or averaging volume (scale > radar
measurement or pulse volume) while retaining the assumption
that the rain field is homogeneous at scales below the
resolution of the radar. This treatment of inhomogeneity still
separates the physics of the rain field along the arbitrary line
separating subradar-resolution scales from superradar-
resolution scales. }
The development of high-speed recording and processing
has now made it possible to digitize every single pulse and
perform sophisticated analyses down to scales of milliseconds
and meters, showing that the variability is large down to these
small scales. Radar-based studies of the scaling properties of
the effective radar reflectivity go back to the early 1980s
[Lovejoy, 1981, 1983; Lovejoy and Mandelbrot, 1985;
Schertzer and Lovejoy, 1985, 1987; Lovejoy et al., 1987,
Gabriel et al., 1988; Gupta and Waymire, 1990, 1993; Tessier
et al., 1993]. Other studies based on gage data [Hubert et al.,
1993; Ladoy et al., 1993; Tessier, 1993; Tessier et al., 1993,
1995; Fraedrich and Larnder, 1993; Olsson, 1995, 1996;
Olsson and Niemczynowicz, 1996; Svensson et al, 1996]
support these findings at scales of minutes to hours, days and
weeks, whereas lidar and blotting paper experiments support
this over the range of scales =500 m down to =2-3 mm
[Lovejoy and Schertzer, 1991, 1990a] respectively; see
Lovejoy and Schertzer, [1995b] for a review. This small inner
scale was roughly equal to the mean interdrop distance over the
experimental region 128X128 cm2. These studies have
contributed to the mounting evidence in the literature that rain
and other turbulent atmospheric fields respect a symmetry
principle known as scale invariance or scaling. This is
consistent with the classical idea that turbulent cascades
concentrate energy and other conserved fluxes into smaller and
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smaller volumes. The nonclassical result of such cascades is a
special type of extreme variability associated with multifractal
statistics.

The multifractal model provides a scale invariant alternative
to the scale breaking of the physics implied by the standard
theory. This model also provides a precise form for the
description of sub-radar-resolution variability in the rain field.
Further, many of these studies reveal that the multiscaling
behaviors are well described by the universal multifractal
formalism of Schertzer and Lovejoy [1987, 1989, 1996a,b],
Schertzer et al. [1991, 1995]; Brax and Pechanski [1991];
Kida [1991] in which the multiscaling is determined by only
three parameters. A multiscaling model implies that
subresolution and superresolution variability are statistically
related only via the ratio of scales (note that the notion of
scale itself need not be isotropic; see below). We can
therefore exploit the observations of multiscaling at
superresolution scales in order to create a potentially realistic
model of the subresolution variability. Duncan et al. [1992],
Duncan [1993], and Tessier et al. [1993] showed that rain field
gradients exist down to the resolution scales of a radar, which
for these studies was approximately 40 m (which would be
subresolution for many weather radar systems). Furthermore,
they showed that the gradients are multiscaling and argue that
this behavior will extend to the smallest scales of the rain
field.

This observational evidence supporting a multiscaling
model of the rain field suggests a quite different picture than
that presented in the standard theory. Instead of the
requirement that the rain field be homogeneous below the
(arbitrary) measurement scale with significant gradients only
above that scale, we can expect the presence of large
gradients/variability at all scales but with the condition that a
priori no scales dominate. Some of the implications of the
scaling variability on effective reflectivity factors have
already been considered in the literature. For example Lovejoy
and Schertzer [1990a] showed that the observed small-scale
clustering, when modeled by a single fractal dimension (the

" "monofractal approximation"), would lead, via the implied
partial coherence effects, to systematic biases. Finally,
Lovejoy and Schertzer [1990b] showed that the observed
large-scale multifractal variability is far larger than the
standard theory's exponential variability of effective radar
reflectivity factor Z, with regard to the reflectivity factor Z.

Boiled down to its essentials (ignoring beam pattern and
other geometric effects) and assuming a scalar wave (ignoring
polarization effects) the amplitude found at the radar's receiver
is a Fourier component of the rain field within the pulse
volume. For the particularly simple case where the liquid water
density is a conserved multifractal (i.e. the direct result of a
multifractal cascade), we calculate Z, for both coherent and
incoherent models of subgrid variability. In the more
physically realistic - case where it is a nonconserved
multifractal (modeled as a fractional integral of a conserved
flux), we calculate a "bias" in the mean reflectivity factors
<Z,>/<Z>, which by using available empirical evidence, we
find <<1. This result brings into question the relevance of the
essentially theoretical quantity Z for interpreting radar data.

In section 2 we discuss the multifractal model and relate the
usual (particle based) definitions of Z and Z, to continuous
field-based definitions which are equivalent for scales larger
than the mean interdrop distances. The use of integrals over
continuous fields rather than discrete sums enables us to
directly use the conventional multifractal (codimension)
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formalism where the statistics are determined by the moment-

.scaling function (or equivalently by the codimension

function) which specifies how the cloud liquid water statistics
change with scale. The third part gives the details of the
calculation (including numerical tests) of the statistics of Z, Z,
for incoherent, coherent, and multifractal subpulse volume
variability (various calculational details are given in the
appendix). Also included is a discussion of the multifractal
origin of radar "speckle" which in this case corresponds to the
sensitivity of Z, to subpulse volume "drop rearrangement."
The origin of this effect as a singularity in the multifractal
autocorrelation functions is quite general and will probably
lead to applications in radar problems involving multifractal
surface targets (rather than just the volume-distributed targets
discussed here). Finally, section 4 compares the results with
limited liquid water and radar rain data and discusses the
significance of the results.

2. Multifractal Representation of Liquid Water
and Reflectivity

2.1. Physical Basis of Multiscaling in Rain

Rainfall is nonlinearly coupled with the wind, temperature,
and other atmospheric fields; it is therefore a turbulent
process. Multiscaling (or equivalently multifractal) models of
turbulence appeal to three aspects of turbulence: 1) their scale
invariance down to a small inner "dissipation" scale, 2) their
(scale by scale) conservation properties (e.g., of energy flux,
passive scalar variance flux; more precisely, if g, is the
conserved energy flux at scale/resolution A, then conservation
means <gj>=constant; independent of A 3) the concept of a
cascade which follows if in addition to aspects 1, and 2 there is
"locality" in Fourier space (that is the strongest interactions
occur between structures of similar sizes; this may be quite
nonlocal in real space!). The generic outcome of such cascades
is a highly intermittent/variable multifractal field with certain
rather specific properties, including the existence of fractal
structures and singularities of all orders (manifested through
structures and clustering at all scales).

The notion of the rain field modeled as a cascade is quite
different from that associated with the standard Poisson model.
For instance; a multiscaling liquid water density field o has
longrange correlations. Small scales are hierarchically
dependent on larger scales. This leads to the following
variation of the q order statistical moment with resolution 1

(O‘}) = )\Ka(a) o

where K 4(q) is the (convex) moment scaling function (in the
case where K is linear, o is monofractal, not multifractal; for
conservative processes, K4(1)=0). The angle brackets "<.>"
indicate statistical (ensemble) averaging. This picture of the
rain field can be justified by appeal to the concept of eddies in
turbulence theory. In a scaling regime there is continuity of
the physical processes across a wide range of scales. Thus
over the scaling range the division of the rain field into
different scale ranges is essentially arbitrary.

2.2. Scales and Scale Ratios, the Representation
of Radar Quantities by Continuous Fields

There are four scales which we must consider (see Table 1 for
a summary). The first two are properties of the rain field itself:
the inner and outer scale of the scaling regime. The inner
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Table 1 Summary of Length Scales and Dimensionless
Ratios used in Text

Quantity Typical Symbol Scale ratio Typical
Value ratios
Outer scale  10° - 10% L 1 1
of rain km
Inner rain = interdrop n A 108-109
scale distance =
Icm, light-
rain
Radar 100m- 1 1 A 104
pulse km
length
wave-  3-10cm Ay ok 107-108
length
scale, denoted m, is the smallest scale of

inhomogeneity/largest scale of homogeneity. The symbol
comes from the turbulence literature where it represents the
turbulent dissipation scale (which is of the order of
millimeters) and which is apparently comparable to the inner
scale of moderate rain [se¢ e.g., Lovejoy and Schertzer, 1990a;
Duncan, 1993]. Just as the turbulent dissipation scale depends
on the overall intensity of the turbulence, 1 will depend on the
rain rate; it is at least as large as the mean interdrop distance.
The outer scale, denoted L, is the largest scale in the scaling
regime; according to the global rain gage data analyzed by
Tessier et al. [1993] (in conjunction with other data such as
cloud and aircraft data [Lovejoy et al., 1993; Lovejoy and
Schertzer, 1995a]), this is apparently of the order of the size
of the Earth, although as long as it is larger than the pulse
scale, its exact value is not too important. The radar
measurement process clearly involves two further lengths: the
pulse length ! and the wavelength A,, (the subscript "w" is used
to avoid confusion with the scale ratio A introduced below).
We shall see that the results of radar measurements depend
greatly on whether the inner scale is larger or smaller than the
wavelength scale; for typical weather radars we note /=100 m-
1 km, A,=3-10 cm, so that we have L>>/>>A,. Since even
relatively low rain rates have interparticle distances of the
order of a centimeter, we also take A,,>7. Furthermore, in a
scaling regime, only scale ratios are important; we therefore
nondimensionalize all the lengths using the outer scale; this
leads to define the following scale ratios: A=L/l, k,=ntL/A,,,
A=L/n with 1<<A<<k,<A. Note that in isotropic systems, k,
is (twice) the modulus of the (non dimensional) wave vector
representing the radar pulse direction and wave number (see
below for the necessary anisotropic extensions accounting for
differential stratification and rotation of structures). The
factor of two is introduced for convenience to take into
account the round trip of the wave from the radar to rain drop
and back; see equation (2) below. It will also be convenient to
introduce the non dimensional position vector x=r/L where r
is the usual position vector with the radar at the origin. To
avoid confusion, all these ratios are inversely proportional to
the corresponding distances.

We now discuss the representation of the rain field. Even
assuming spherical drops and a scalar wave equation (i.e.,
ignoring polarization effects), a complete representation of
the rain field involves specifying the position, size, and
velocity of each drop. In this paper we will relate the drop
volume statistics to the reflectivity statistics and hence we
will not require the velocity. Since we anticipate that the
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drops will respond sensitively to their turbulent environment,
a solution of the full rain rate/reflectivity problem will of
necessity involve assumptions about the coupled
velocity/drop volume cascades (we do not make the usual but
unrealistic assumption that the drops always fall at their
asymptotic free-fall rate). The appropriate theoretical
framework for such coupled cascade processes is Lie cascades
[Schertzer and Lovejoy, 1995]; this full problem will be
developed elsewhere. Our aim is limited to relating the
statistics of liquid water with radar measured quantities.

Consider the radar scan to be composed of a large number of
pulse volumes (B,), resolution A; the notation "B," denotes a
"ball" scale ratio A. We ignore geometric radar antenna .
factors, and constant factors such as the dielectric constant,
and we neglect the variation of the 1/r? range dependence of
the wave amplitude across the pulse volume. We now recall
that the electric field due to the microwave-induced
polarization is linearly proportional to the drop volume (V).
We therefore find that the (complex) radar-scattered field is
proportional to

Ay (kr) =

A/ @
volB, ;5
where the sum is over the drops (indexed by j) in the pulse

volume. Also, as indicated earlier, we have absorbed the round

trip factor 2 into the definition of k,. Note that the actual

measured, real signal, is obtained as usual by adding the

complex conjugate to the above. The proportionality

constant depends on the dielectric constant which we assume

fixed (we do not consider tempeérature effects). Note that we

also assume that the scattered wave is in phase with the

incident wave; that is, we ignore absorption. The notation

volB; = A™P indicates the (nondimensional) volume of the

(pulse volume) set By, In usual isotropic spaces, D is the usual

dimension of space, i.e., 3 for volumes, 2 for planes, 1 for

lines. However, because of gravity, rain is an anisotropic

scaling system and we must replace D by the effective

“elliptical" dimension (Lovejoy et al. [1987] estimated this as

D=2.2240.07 in effective radar reflectivity fields; see below
for more details). Although some more details of the

formalism "generalized scale invariance" (GSI) are given

below, readers are refered to Schertzer and Lovejoy [1985,

1987], and Pecknold et al. [1993, 1995]. For those with no

familiarity with GSI, use of D=3 everywhere will suffice for

understanding the main ideas.

The basic parameter measured by a weather radar is the
intensity of the return signal from which one deduces the
effective reflectivity factor (Z, ), (we ignore polarization
effects; hence we do not consider differential reflectivity).
After removing all the geometric (antenna and distance
dependent) factors, Z, 3 is given by

Z,, Y Vet 3)

J
volB, | 3,

We also introduce the traditional radar reflectivity factor Z;:

zZ, 1 SV “)

volB, /¢ B

The standard radar theory is now recovered by assuming that
the variance of V is finite and that the scattering is totally
incoherent. In this case, the phases in equation (3) are



26,482

independent identically distributed random variables and for a
large number of drops, the cross terms cancel leading to
Z,=Z;. A more precise result taking into account the
fluctuation of Z, about the mean Z can be obtained [Marshall
and Hitschfeld, 1953; Wallace, 1953] for the conditional
probability of measuring Z,, given Z

1
p(Z)2)=—e "

However, the exponential variation of Z, about Z is much
smaller than the multifractal variability considered here and
will be ignored (see Lovejoy and Schertzer, [1990b] for more
details).

23. Liquid Water and Radar Quantities As
Densities of Continuous Fields

To express our results in terms of the usual multifractal
densities (rather than in terms of drop volumes at well-defined
positions as above), we now introduce the liquid water density
at resolution A:

1

volB, j¢ 5,

|7 &)

J

o, =

where the sum is (as above) over all the drops in Bj. If the
radar volume is covered by disjoint balls B, then oy(x) is a
(piecewise) continuous density field at scale ratio A
(size=L/A).

Now consider an inner scale A smaller than the wavelength
and small enough so that a typical volume element rarely
contains more than one drop: o,=V/volB,. We can now
express A, Z, Z, in terms of the continuous field o4(x). For
example, for a scale A<A we have

_ volB,
) =
volB,

[ o2 (x)dx 6)

B,

Similarly, the scattering amplitude field Ay is

1 i, - |
A, =—— |0, (x)e" "dx )
* volB”[ A(xe

and the effective reflectivity field Z, ; is

2
1 ik, -x
= o.e " dx ®)
“* volB, ! A

From equations (6), (7), we find the following relation
beétween the effective reflectivity factor and the scattered field
amplitude:

Z,, =volB,|A, Iz ®

Equation (7) shows that A, is essentially a (normalized)
Fourier transform of o, a fact that we will exploit below. To
make this more precise, define the normalized indicator
function:

(volB, )_l
0 otherwise

I;.(x)= xeb,
(10)
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using the fact that the fourier transform (denoted by "~") of a
product is the convolution ("*") of the transforms, we obtain

A (k)=1,(k, )G, (k,) (1
- 1 we, 1 k<4 12
I}'(k')_volB“;[e D=k ksa 2

(The right-hand side is obtained by using the approximation
elrx = 1 for | kx| <1, e’*r'® = 0 otherwise; more precise
expressions depend on the exact shape and dimension of B,;
for example, the angular part of B, is itself the Fourier
transform of the antenna shape). Equations (11) and (12) show
that A, is essentially a "running average" in fourier space over
the low frequency modes. Note that in section 3.3 we consider
Aj as a function of the position of the radar pulse, obtaining
expressions for the spectrum of spatial variability at a spatial
wavevectork.

3. The statistics of the effective radar reflectivity
factor

3.1 Factorization and the "Hidden" Reflectivity
Statistics

For a "conserved cascade," o(x) is the direct result of a
multiplicative process; hence we have the following
factorization [Schertzer and Lovejoy, 1987]:

O\ =0, (Ta O'A/A) 13)
where T} is the scale reduction operator (factor A<A; for any
function o(x) we have by definition T)0(x)=0(T; lx); see
below). In isotropic systems, Ty=A"1; more generally it is
given by T3=1"C, where G is the generator of the scale
changing group (i.e., in selfsimilar multifractals, G=I= the
identity). In this paper we consider "linear "GSI"; G is a
matrix. Since the volume of the (typically elliptical) ball B
changes by det Ty=A"P, where D=Trace G, D is called the
"elliptical dimension." The inverse scale ratio corresponding
to a vector x will be denoted by the usual notation lxl;
however now it is equal to the inverse "magnification" ratio
required to map x onto the frontier of the unit ball: the scale of
the vector x is defined as the value of A™! for which the vector
T,l“(x) is a unit vector. An equivalent, more intuitive
definition used below is |x|= (volBA )_“D where x lies on the
border of the ball B).

Since the operator T only acts on the spatial coordinates,
in terms of statistics at a fixed point, equation (13) implies the
following relation between random variables: O = 0;0,,,.
This factorization follows directly from the definition of the
multiplicativé cascade; see Figure 1 for a schematic diagram.
Alternatively, factorization will hold whenever equation (1)
holds exactly (it will hold only approximately if there are log
corrections to equation (1). In section 3.3 we consider the
nonconservative case in which o, is related to a multiplicative
process by a fractional integration.

We now apply factorization first to Zy, then to Z, ;:

5 2
Z,=0,Zm (14)

whetre Z,/pp)is the high-frequency "hidden Z;" hidden from
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Multifractal radar problem

bare cascade
_ 1 [~ 1 [~ 1
— A
-y —— _ ¥
’ S — - A
[R— —— L. A/A —
L A :-' pp— T,
Y ' ~ A =
dressed cascade :

hidden cascade

Figure 1 A schematic diagram showing the factorization equation (13). A cascade constructed down to scale
ratio A, dressed (averaged) up to ratio A. This is equivalent to a bare cascade constructed over ratio A,
multiplied by a hidden factor obtained by reducing factor A (the action of the scale changing operator T}), a

cascade constructed from 1 to A/A.

direct observation by the integration:

volB -
Zyam = vole ;JO',ZM (Tl‘x)dx (15)

(the term "hidden" is borrowed from renormalization theory
[Schertzer and Lovejoy 1994]).

Similarly, we can consider the statistical properties of Z, ;
for scales such that the wavelength is much smaller than the
pulse volume (corresponding to typical weather radar
parameters). The equations analogous to (14), (15) are:

— 2
Ze.l - AZe,AM(h) (16)

with
Z, pay = (voIB, )"
[ [oua(T3 5o (T, )t "
5,3,
an

In the appendix we show that for the physically relevant case,
D>K ,(2):

1-K,(2)/D

Z, = o, (volB, )K"(z)/D(volBA)
= G2 A Ko AP

(18)

1-K4(2)/ D

2 K;(2)/ID
Z,, = 0;(volB,) (volB,)
- O'zl_K"(z)k,_mK"(z)
We have deliberately written the result in terms of volumes

since in the stratified (anisotropic) case, we can conveniently
use the relations k,=| k| =(volB,) 12, A=(volB,)-1/D,

A=(volB4)"VP. To complete the picture, we note the

following:
<Z§ >°C A‘Kze(‘l) (19)
<Zq> oc A‘KZ (9)
A
with
K, (@)=K.(9)=K,29)-4K,(2) O

Before discussing equation (18), it is interesting to compare
it to two other more standard models of subpulse volume
variability: the perfectly incoherent and coherent scattering
models respectively (details are in the appendix). Table 2
summarizes the various relations derived above for Z, 3, Z;;
they have relatively simple interpretations. The 0% term is
simply due to the large-scale variability and represents the
(radar independent) pulse volume scale (natural) variability.
We then have a pulse volume dependent factor 1-Ko( absent in
the usual theory which is common to both Z, Z,. This is
purely statistical in origin, associated with the scaling of the
average of internal multifractal gradients. The expressions for
Z, 5 and Z, differ only in the fact that for Z, j the inner scale A
is replaced by the wavelength scale k.. Considering the effect
of the muitifractality, since D>0, this will result in a change in
the reflectivity whenever the rain variability occurs at scales
below the wavelength; namely whenever A>k,. Since A™!is of
the order of the interdrop distance, this will obviously depend
on the rain rate; however, empirical studies have shown that
even in moderate rain rates the inner scale can be of the order
of a few centimeters, which is smaller than typical
wavelengths; the difference should therefore be detectable (see
section 4; recall that due to the round trip one should in fact
compare twice the waelength to the interdrop distance).

As in the coherent scattering case, the ratio Z, j/Z; depends
on the ratio volB,/volB, (assumed >1) raised to a power (1-
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Table 2 Various expressions for Z, ; and Z
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Multifractal

Incoherent Cohérent
Z, a; (volB, ) o;(volB,) o2 (volB, )@ (volB, =
Z,, Z, Z,(volB, )(volB, )_1 Ak Z,(volB, )""**‘25/ b (volB, )-1+Ka(2)/D
Z, o;(volB, ) o7 (volB, ) Ak, ! o*(volB, )™ (volB,) @'

The results for the coherent scattering are valid only for isotropic processes, in anisotropic processes the result will depend on

the relative orientation of k,.

K (2)/D) which is >0; that is, the overall effect is for the
partial coherence to enhance the effective reflectivity.
Observations of clouds (discussed below) show that the liquid
water statistics are not so different from those expected for a
turbulent passive scalar. In this case 6 can be modeled as a
fractional integral [Schertzer and Lovejoy, 1987, 1991] of a
conserved process; see section 3.3.

3.2 Numerical Verification

Using equations (9), (18), we obtain

—1/2+K;(2)/(2D
J K@D (o1

)1/2—K,(2)/(2D)

|4,|= o, (volB,
@1
by examining the real part of the complex K,(q)

(corresponding to the modulus of Aj, denoted K4 p(q); see
Schertzer and Lovejoy [1995] for complex cascades)

KA,R(q) = Ka(‘]) + %(D" Ka(z)) 22
o8
—
E
o0
=] 043
o4
5 1 2 s . s

log,, A

Figure 2a Scaling moments for ¢ = 0.1, computed from
simulated lognormal (one dimensional, D=1) multifractals
with a=2, C; = 0.20, total range of scales, A=215, 100
stochastic realizations. The top curve js the result for (o-‘l );
the five bottom curves are for zlAqus with varying
wavelengths corresponding to (top to bottom) k=29, 210, 211,
212 213, The jump occurs for k<A, i.c., for wavelengths
comparable to pulse lengths; for k,>A the pulse length is
shorter than the wavelength, o, zIA"I, and hence the curves
merge. Detailed comparison shows that the spacing between
the curves for different wavelengths satisfies equation (21) as
expected.

We therefore sought to test the above relation numerically
using one-dimensional simulations of continuous cascades
[Schertzer and Lovejoy, 1987; Wilson et al., 1991; Pecknold
et al., 1993; Pecknold et al., 1996]. In this case we used
universal multifractals with the following K(g):

C(q°-q) ozl

a-1
Ciqlog(q)

where 0<a<2 is the Levy index of multifractality and 0<C,<D
is the codimension of the mean process. Figures 2a, 2b, 2c
show a typical result for various scales A, k,, and values of g
and o which confirms that (except for a short factor =4
transition region when k,=A) that equation (21) holds quite
accurately for k,>A. The jump which occurs for k,=A is
because for k,<A, the pulse length is shorter than the
wavelength, leading to o, =|A] and hence the curves merge
as expected. To test equation (22), we note that since K(1)=0,
we obtain K(q)=K4 r(g)-qK4 (1), thus we have

(o)
o

that is, the normalized modulus | Aj|/<| A;| > has the same
scaling properties as o). We therefore compare the two for

K,(q)= =1 (23)

o3) (24)

Iogm(lA,_ |q>

0 i 2 ) 7 s
log, 4

Figure 2b Same as previous except for ¢ = 1, and the
wavelengths (top to bottom) are here k,=2°, 210, 212 213,
214, For comparison, we have shown a line with the
theoretically predicted slope superimposed on the (bottom)
k=214 curve.
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log,o (\Az\q>

log,, A

Figure 2c Same as Figures 2a, b except for ¢ = 1, and for
universal multifractals with a=1.5, C; = 0.06, total range of
scales, A=215. The top curve is the result for <o"’>; the three
bottom curves are for @h]qs with varying wavelengths
corresponding to (top to bottom) k=210, 212, 213 For
comparison, we have shown a line with the theoretically
predicted slope superimposed on the (bottom) k=213 curve.

»various values of k, (figures 3a and 3b). More numerical
results can be found in the work of Duncan [1993].

3.3. . Nonconserved, Fractionally Integrated
Fields

In scaling systems, the energy spectrum E(k) at wave
number k is of the power law form E(k)<k™P; then B is the
spectral exponent. Aircraft measurements of cloud liquid water
[King et al., 1981; Brosamlen, 1994; Lovejoy and Schertzer,
1995a; Davis et al., 1996] indicate that the spectral exponent
of liquid water is =5/3, the value predicted for passive scalar
density fluctuations by the Corrsin [1951] and Obukhov
[1949] theory (a more precise estimate from the latter two
references is B=1.4). Since a conservative (multiplicative)
process yields B.,,=1-K(2), K(2)>0, this indicates that o
cannot be the direct result of a multiplicative process. (This
standard relation between B and K(2) can be obtained from the
spectral result equation (21) by noting that the energy

02
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o1 " "
[ 0S 1 15

q
Figure 3a K ,;(g) plotted against g along with the
corresponding curve for the normalized modulus of A: (K4 r(q)-
gK4 p(1)) for k,=210, 211 212 213 Same parameters as in
Figure 2a. The K 4(g) function for the liquid water field is offset
vertically by 0.01 to allow comparison.
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Figure 3b Same as Figure 3a but with the parameters of
Figure 2c and for £,=210, 211, 212 213,

spectrum is obtained by integrating the fourier modulus
squared over all the angles in Fourier space. This angle
integration yields an extra factor kP-1). This is not surprising
since there is no reason to expect the liquid water density to be
conserved. Indeed, passive scalar theory already involves two
coupled cascades, of energy flux (€) and of passive scalar
variance flux (x), with the density fluctuations being
determined by the product ¢=yx3/2e"1/2: g,=¢,1/3A1/3,
Schertzer and Lovejoy [1987] suggested that the extra scaling
(A13) which is responsible for the increase in B to =5/3
corresponds to a fractional integration, i.e., power law filter
by k7173 (hence B=B.on+2H). Other related models yielding
B>1 include the "bounded cascade" model [Cahalan, 1994]
(this is however asymptotically monofractal) and a wavelet-
based approach [Benzi et al., 1993]. Considering ¢, as the
conservative process for cloud liquid water, a fractionally
integrated field (order H) is

o(x)= ¢,*G, (25)

with G, the (truncated) fractional integral "Green's function"

G, (x) = —— x[/"-2 6)

T(H) M

where the subscript on the norm indicates truncation at
wavenumbers outside the interval, i.e. in real space, roughly at
a small scale A™! and a large scale 1; I'(H) is the usual gamma
function. This normalization is used since it implies the
following Fourier space filter

6$\H)(k) = 'kl{lz\]éA(k)

The aircraft results cited above were interpreted as implying
H=0.28 (near the passive scalar value). To understand the
effect of fractional integration, it is convenient to consider
Ak x), Z, 7Kk x) (=|A|2); the amplitude and effective
reflectivity factors for pulse volumes B(x) centered at the
point x

27

‘ 1
() -
wke) volB, (x) (28)
J'O_E\H)(x;)(eik,-x' +e—ik,~x’yx/
B, (x)
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where we have explicitly included the complex conjugate term.
We recognize (see equation (10)) A(H),(k,x) as the
convolution of Ij(x) with the integrand, hence using the
convolution theorem

AP (k, k) =1, (k)3 (k - k,) + 8 (k + k)|
29)

where we have also used the modulation/translation property
of fourier transforms. We now consider two cases of special
interest.

1) | k-k,| <<l k+k,| (if all the components of k and k, are
positive; this includes the high frequency case | k| =k, ).
Since generally, ¢(k) falls off (on average) algebraically with
| k| , for H>0, we have (using equations (27) and (29))

3 () - ™ Z0)

Aﬂ. (kr’k) = Ik —k"|[l,A]Al (k,,k) (30
‘This result is relevant to "speckle" and is discussed further
below.

2) The low frequency limit; | k| <<l k,|. Similarly to case
1), we have:

A(H) Ay ()

A/'I. (kr’k) - ‘krl[l,A]Al (kr’k) G
hence for the low frequencies ( kl << k,.l ), the effect of
fractional integration is simply the transformation
Ak, HA; and Z, j—k,2HZ, ; that is,
1+(2H-K,(2))/ D

Z,= o; (volBl )K’(z)/D(volBk)

K, (9) = K,(29) - 2K,(q)

The effect on the high frequencies is discussed in the next
subsection.

The problem of evaluating the statistics of Z; is much more
difficult; it is the problem of a "dressed" fractionally
integrated quantity. Essentially, as indicated by Naud et al.
[1996] (who treats a quite similar problem), the integration
smoothes out many of the low-order singularities leaving
K7(q)=0 below a critical moment gg. To see the difficulty, we
can write explicitly

7 = volB,
* " T(H)volB,

[ J [ #3000~ - e

B, B B,

(32)

(33)

Although higher-order moments are difficult to calculate,
the mean is straightforward since <¢?> is independent of x (¢
is statistically homogeneous/translationally invariant over
By). We obtain the following approximation (omitting
numerical constants such as I'(H)):

(7)= N0

which is independent of A. Taking the mean of equation (31),
we obtain the following bias in the mean:

(ng L) B ( k )K,(Z)—Dk_w

(z) \A

(34)

(35)
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Note that although the bias in the mean is independent of the
pulse volume, this will not generally be true of moments of
other orders.

3.4. Multifractal Origin of '"Speckle"
and Drop Rearrangement Sensitivity

A basic feature of radar signals of rain and surface is that

they fluctuate greatly. These fluctuations are perceived in
various ways. For example, for radar returns from the surface
(fixed targets) this sensitivity is called "speckle" and is
associated with great variations in the signal with small
changes in look angle or of small (wavelength sized)
displacements in radar location. In rain, it is usually perceived
(for fixed radars) in the time domain where it has been
associated with "drop rearrangement"; that is, the fact that
even over milliseconds the relative positions of drops change
sufficiently to give large variations of Z,. We are now in a
position to understand the origin of this effect and explain it
by using multifractals.
" "Speckle" arises because if Z, is considered a function of
position (e.g., of the center of the pulse volume), then a small
change in this position (x) will lead to a large variation in
Z, 2(x). To analyze this, recall that for multiplicative
processes, both Z and Z, can be expressed as products of low-
frequency factors (0'12) and hidden high-frequency factors. To
now, we have been concerned with the low-frequency factors
only, studying the behavior at spatial scales of the order of the
pulse volume. We now consider the high-frequency variability
by considering the hidden factors directly. Specifically, we
drop proportionality factors obtaining (cf. equation (A13)
with appropriate change of variables)

Z i@ = [Pt a 06

e [A,A]
B, (x)

where B(x) is the pulse volume centered at the point x. The
singular algebraic factor of the autocorrelation function for the
high frequency factor. The subscript [A,A] indicates the norm
band-limited to wave numbers in the interval [A,A]; for lower
frequencies (i.e. x>A1) it is near constant and very small, for
high frequencies (x<A-l) it is nearly constant and equal to
unity. The translation/modulation property of fourier
transforms shows that the effect of the exponential radar phase
factor in equation (36) is to shift the singularity from the
origin to the radar wavevector k,. Using the indicator
function of the pulse volume (equation (12)), and the same
approximation as for equation (30) we obtain the Fourier
representation of the hidden effective reflectivity factor:

Ze.l(h)(k’kr)zlk_kr| 7,1(k)

This equation shows that for D>K ;(2) for D>K (2), we
obtain a singularity near the radar wave vector k,, indicating
rapid variation in Z, 3,.5)(x) on scales near the wavelength
scale, the origin of which is precisely the singular multifractal
correlations characterized by K4(2) (note that if the sub-pulse
volume were the (monofractal) fractional Brownian motion
process, essentially the same behavior would result; see the
appendix). This effect is obviously absent in Z4/p)(x). Note
that since the fourier representation of the effective
reflectivity factor (Ze'l(k,k,)) is a (smoothing) convolution
of the low frequency and high frequency hidden factors, that

Ka (2)_D

[1.A] 37
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the effect of this spectral singularity on Z,,(k,k,) is
somewhat attentuated. However, the basic effect persists for
nonconservative processes, since it corresponds to overall
multiplication of Z,,(k.k,) by [k ~k,[”" (see section 3.3).
In practice, this latter singular factor may be more significant
for the speckle than that given in equation (37), since it is not
affected by a convolution.

For conservative multifractals we can also obtain the
equation corresponding to equation (37) for the Fourier
transform of the reflectivity factor

Zl(h)(k) = |k|[i 5\2}2) T (k)

where the exponent K ;(q,n)=Ks(gn)-9Ks(n), (.e.,
K 5(2,2)=K ;(4)-2K 45(2)) is the variance exponent of the spatial
average of 6,2. A more revealing comparison between the
variability of high-frequency factors is to compare the
corresponding energy spectra:

Epps =K ((Z, a0 )

=~k l( e A/l(h))z

(for anisotropic spaces, this is the anisotropic generalization
of the usual isotropic spectrum, D is the elliptical dimension;
see Pflug et al [1991], Marsan et al [1996]).

(38)

(39)

4, Discussion and Conclusions
4.1. Comparison with radar and aircraft data

For conservative (H=0) multifractals we have noted that
there are two main effects. The first is common to Z, Z, and is
due to the statistics of the sub pulse volume gradients. It can
be quantified by comparing the incoherent scattering Z with
the multifractal Z, the enhancement is (from Table 2) the factor
(MAKe@D=(n/))Ko®@), The second factor, attributable to partial
coherence of the scatters leads to a bias in Z, with respect to Z

ZJZ = (Alk,PKo® = (A, /m)P-Ko®

(here and below, we ignore constants of the order of 1; here the
factor 7). However, in realistic (nonconservative) ¢ fields,
considering the bias in means (equation (32)), there is an extra
factor k,'2” (also, K, ¢(2) replaces K4(2)) which is due to the
variability over the entire range of cascade scales down to the
wavelength scale. We shall see that this is quantitiatively the
largest effect and reflects the very different sensitivity of the
radar measured Z, in comparison with the theoretical quantity
Z.

We will now estimate this overall bias in the means (e.g.
equation (35)). Consider a weather radar with 4,, =10 cm.
Direct observations (although limited) [see Lovejoy and
Schertzer, 1990a] indicate that 1 is comparable to the inter
drop distance and varies inversely with the rain rate; having a
value of =1 cm in moderate rain. Our assumption (4,,/n)>1 is
therefore likely to be often justified. We now estimate the
expdnents D, K4(2). Because of the extreme rain stratification
we require elliptical dimensions in the place of the usual ones;
empirically [Lovejoy et al., 1987], it has been found that
D=2.22. Assuming that the scaling exponents of liquid water
in clouds and in rain are the same, to estimate K¢(2), we use the
values K4(2)= 0.15 (deduced from the values in Table 1 of
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Lovejoy and Schertzer, [1995a]). Finally, take n=1 cm,

A,,=10 cm, thus
k \Ke@-D
(Xr) =10°.

Finally, taking the outer scale of the rain process to be =104
km (i.e., the planetary scale), we obtain k,'ZH =
(107710°1)70:56 =~ 10°5. Combining the two factors, we obtain
the overall bias =1073.

We should note that the above calculations concentrated on
the scaling exponents and ignored constants of the order of 1.
Although the overall bias is <<1 (and is presumably quite
variable with rain rate) it would not be directly noticed because
Z is essentially a theoretical quantity and has never been
directly measured (Lovejoy and Schertzer [1990a] did however
estimate Z, and biases, in a two-dimensional cross section of
rain using blotting paper). In any case, weather radar are
rarely given absolute (electrical) calibration; rain gage
calibration, which involves empirical determination of
proportionality factors, would be insensitive to this effect.
The main significance of this bias is to underline the
inadequacy of Z as a proxy for Z, in rain meansurements:
current radar rain algorithms use theoretical arguments to
derive rain rates from Z rather than from the measured Z,; the
two quantities are not even approximately equal.

Finally, we consider the compatibility of equation (32) with
the radar multifractal exponents estimated by Tessier et al.
[1993] and Lovejoy and Schertzer [1995b]. First, for
universal multifractals, equation (32) predicts that
C12.=2%C, 4, where C is the codimension of the mean and o is
the index of multifractality which should be equal for Z,, o (see
Tessier et al. [1993] for more discussion). Using the radar
values -a=1.4, C12,=0.12, we obtain C;s=0.05, which is close
to the observed value 0.07 [Lovejoy and Schertzer, 1995a;
Davis et al., 1996]. (It was argued by Lovejoy and Schertzer
[1995a] that the value of « estimated for cloud liquid water (=2)
was an artifact of the measuring device specifically, because of
the difficulty of estimating very low liquid water densities.
The estimates of C; and higher-order moments are less
sensitive to this problem). Another check is afforded by the
spectral exponent. From equation (32), we see that the
autocorrelation exponent of Z, ; will be K¢(4)-2K¢(2) (.e.,
necessarily >0); we therefore obtain (using the same aircraft
estimates of exponents) fz,=1- K¢(4)+2K¢(2) =(0.5. Indeed,
equation (28) shows that Z, j is conservative since ¢1 is a
multiplicative process. This indicates that radar measurements
should generally yield spectral exponents <1, a finding
consistent with recent radar measurements of ice [Falco et al.,
1996]. Empirically, however, the situation is not clear since
rather different values of PBz. have been obtained. For
example, Lovejoy and Schertzer [1995b] show analyses
yielding B7,~0.3 in the tropics, Marsan et al [this issue] find
Bz.~0.9, in midlatitudes, and Tessier et al. [1993] find Bz~
1.45 in midlatitudes. Only the former values are <1 and are
more or less compatible with the aircraft/theory estimate
=0.5.

4.2, Conclusions

Growing evidence indicates that rain has structures down to
the smallest observed scales which are of the order of the mean
interdrop distance which is frequently smaller than radar
wavelengths. The simplest hypothesis about the variability
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is that the dynamics respect a symmetry principle known as
scale invariance. Physically, we are lead to hypothesize a
nonlinear mechanism repeating scale after scale (in a
stratified/anisotropic manner), building up larger and larger
variability from large to small scales. A substantial body of
evidence now exists supporting such a view. Other
hypotheses are necessarily more complicated because they
involve more than one fundamental mechanism (depending on
the scale); they should not be adopted unless the simpler
scaling hypothesis can be first shown to be inadequate. The
standard theory of radar measurements of rain is in fact an
extreme example of a nonscaling approach since it assumes
that the variability/structures/clustering exist only at scales
above the radar resolution becoming homogeneous at subradar
scales.

In this paper we have addressed the simplest multifractal
radar problem: the relation between the statistics of a
multifractal liquid water field and the effective scalar wave
reflectivity. We first expressed the problem in terms of a
continuous liquid water density field with fixed inner scale of
the order of the inter drop distance. The fundamental aspect of
the problem is that the radar measures the modulus of a Fourier
component of the density; essentially, we need only determine
the spectrum of a multifractal. This is quite straightforward.
To understand the results, we first considered the simplest case
of conservative multifractals and compared three cases for
both the reflectivity factor Z and the effective reflectivity
factor Z,: incoherent, coherent, and multifractal sub pulse
volume liquid water distributions. The basic results are simple
to understand; we obtain, essentially, three effects. The first
is the natural pulse volume scale variability (012) which (to
within small exponential fluctuations) is the standard result.
The second effect is purely statistical (that is, it equally affects
Z,Z,) and is due to the internal pulse-volume gradients; it
depends on the pulse volume and the liquid water variance
scaling exponent. The final factor is an enhancement of Z,
with respect to Z and depends on the ratio of the wavelength to
the inner scale and is the result of partial coherence. We then
considered the more realistic case of nonconservative
multifractals modeled by fractional integration (order H) of a
conservative process. This yielded an additional factor of
k,“2H for <Z,> (but not <Z>), where k, is the ratio of the large
external scale to the wavelength scale. Using empirical
estimates of exponents and scales, we estimate the overall
bias as =1073. Although this is <<I, it would not be noticed
since Z is essentially a theoretical quantity. However, this
result does indicate that existing theories which relate rain rate
to Z may have little relevance to real radars which measure Z,.
Finally, we examined the high-frequency behavior and showed
how multifractals can explain "speckle"/"raindrop
rearrangement” variability.

We have stressed that we have only considered the simplest
relevant multifractal radar observer's problem: the relation of
liquid water and radar statistics. Even in its present scalar
wave form, it should apply to a number of systems with
volume distributed targets other than rain, such as the radar
study of the turbulent dispersion of reflecting chaff.
Furthermore, in various surface target problems (such as
certain problems connected with the interpretation of
synthetic aperture radar images) the problem can be reduced to
a distributed target problem of the type solved here; hence our
multifractal explanation of "speckle", a consequence of the
singular multifractal autocorrelation function, is expected to
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be quite general. As far as rain is concerned, the major aspect
which is missing is the coupling with the velocity field.
Without specific assumptions about the velocity/liquid water
coupling (presumably via a coupled cascade process as
discussed by Schertzer and Lovejoy [1987]), no direct
conclusions about rain rate measurements can be made. Other
extensions include the study of space-time properties (see
Duncan [1993] for such models of reflectivity, also Marsan et
al. [this issue), Tessier et al. [this issue], and Over and Gupta
[this issue] for space-time multifractal processes). Finally,
extensions of this work to polarization effects in rain and
elsewhere require the use of vector waves and tensor
dielectrics; the latter to be modeled as tensor multifractals.
Such extensions may, for example, explain the observation of
multifractal statistics in synthetic aperture radar data of sea ice
[Falco et al., 1996].

Appendix
Preliminaries

In this appendix we give details on the calculation of
reflectivity statistics for conservative multifractals as well as
for pure incoherent and coherent sub pulse models of
variability. Starting with equation (15), changing variables
(x=T)x"), and recalling that the Jacobian of the
transformation is detTj= A" =volB;, we obtain

Zy 12 = VOIB, J.O'IZ\/A (x")dx’

B,

(A1)

As long as this integral converges (see Schertzer and
Lovejoy [1987; Schertzer and Lovejoy [1996] for the
divergence of moments; empirically, Lovejoy and Schertzer
[1995a] find convergence of moments of ¢ less than about
2.3), and for A>>A, the above spatial average is
approximately equal to the ensemble average:

) (A K;(2)
Zyjam = VOIBA<O-AM> = VOIBA(I) (A2)

Combining this with equation (14), we obtain:

Ko(2)
zZ, = ofvolBA(%)

= 0, volB, (volB, volB

)K(,(Z)/D( X

)—K,,(Z)ID

(A3)

We now consider the statistical properties of Z, j for scales
such that the wavelength is much smaller than the pulse
volume (corresponding to typical weather radar parameters).
Starting with equations (16) and (17) and by again changing
variables (x=Tx;', x,=T)x,"), introducing Ax=x;-x,', and
using the fact that (T;7k)-x=k -(Tjx), (T;Tis the transpose of
T;) and recalling that vol(B;)=1, we obtain

Z, n1aw = VOB, j J op ()
B, B,

0, (x] = Ax)e ™ dAxdx] Al

We recognize the integral over Ax as the Fourier transform
of the covariance but with the integral over x;' implying
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spatial rather than ensemble averaging. For A>>A, we expect
the spatial and ensemble averages to be nearly equal (once
again, as long as the second order moment of o converges);
this approximation will be used below. Note that the
exponent involves the reduced wave vector T;Tk,; for
isotropic systems this is simply division by A.

Incoherent and Coherent Subpulse Volume
Scattering

In the case of incoherent scattering we assume the statistics
to be multifractal only down to a scale ratio A; a (finite
variance) white noise is assumed below this. To make this
explicit, introduce a unit white noise with resolution A with
density u4. This normalization means that (for all A)

(G

B

(A5)

If the field is multifractal down to scale A, then equation
(13) is replaced by

Oy =0, (TA uA/l) (A6)

The correlation structure of the (subpulse volume) noise u 4
is that of a "§ correlated" field with homogeneity scale A,
having the following autocorrelation function:

(uy(x = Ax)u, (x))volB, =1  0<|Ax|<A™

=0 ATS|AST g

7 We therefore obtain (replacing the ensemble average by a =
sign)

Z

e, AIA(h)

= volBAJ' J‘uAM (x; )e'le “dAxdx! (A8)

By By

This follows since by equation (A7) the inner integral is
nonzero only over B,y. For A>>k,, over the ball B,/ we

have ¢+%"%* <1 and hence
[ ety = YO8 (A9)
B, volB,
We therefore obtain
. 2 ’ ’
Z, \awy = VOIBAJ-”M (x")dx
B, (A10)
=Z,3n = VOB,

which is the usual result (a more refined calculation could be
made here to demonstrate that the probability distribution of
the fluctuations of the spatial integral about the ensemble
mean are in fact exponential, which is the usual radar
observer's problem result).

We now perform the calculation for a case of multifractal
statistics down to scale A, coherent scattering involving
deterministic homogeneous scatterers with constant density
(rather than only stochastic Poisson-distributed scatterers),
below this scale (obviously, there is no unique type of
coherence which can be considered; this is merely the
simplest). In this case for Z,/,) we obtain essentially the
same result as before (i.e., ZA/uh)—VOIB note the "="
instead of "="), whereas for Z, ;/3n), we use the same
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autocorrelation equation (A7) but with A=1. The rest of the
calculation is the same as the above except that the integral
over B, ; in equations (A8), (A9), (A10) is replaced by an
integral over By. However, over much of this volume the
contribution is negligible, in fact, the significant
contribution comes only from the region where T73k,*Ax<1.
In fact (see equation (12)), since k,>A, for isotropic spaces, we

obtain
J‘eir,{k,-Ax dAx = _)v_
k

B, r

(A11)

so that for Z, ,, the ratio of the coherent to incoherent
scattering is (A/k,)PA/k,.

Multifractal correlations

To obtain the multifractal result corresponding to equation
(A10), it suffices to use the following estimate of the
multifractal covariance [see e.g. Monin and Yaglom, 1975]:

(0, (x — Ax)o, (%)) = |Ax] %<

A (A12)

(the subscript indicates the cutoffs) using this autocorrelation
in equation (A4), and replacing ensemble by spatial

averaging, we obtain

o(2) iTTk,
Z, niaany = VOIB; _“Ax|[| A/(l] T dAx

e

(A13)

(the use of spatial rather than ensemble averages in the above
is a key step; although multifractals are not ergodic, this step
is nevertheless justified when the corresponding averages
converge, i.e. for moments less than a critical value gp which
we assume; in accord with limited data analyses is >2).
Finally, for D>K 4(2), we find using an anisotropic version of
standard "Tauberian" theorems [e.g. Feller, 1971] relating real
and spectral space scaling [see also Pflug et al. 1993]

1B, 1-K4(2)/D
VO
Z, n1agny = VOLB,
VOIB (A14)
1=K, (2)/D
volB,
AJA(R) voIB,

This is the basic result required in section 3.1. Note that the
covariance of the (monofractal) fractional Brownian motion
(obtained by fractionally integrating gaussian white noise by
an amount H) is essentially the same as equation (A12) but
with K5(2)=2H. All the hidden factor multifractal results carry
over to fractional Brownian motion sub-pulse statistics with
this substitution. Note however that the overall model
involving a multiplicative cascade down to pulse volume
scales but with an additive sub-pulse structure is physically
quite artificial.
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