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ABSTRACT

Large (128 X 128 cm ) pieces of chemically treated blotting paper were exposed to rain and both the size and
position of the drops were determined. Analyses were performed indicating that the spatial distribution is fractal.
This implies that drops cluster over all the observed scales and, hence, that backscattered microwave radiation
from weather radars will have a degree of coherent scattering and a systematic dependence on the measurement
resolution not accounted for in the standard theory. This was quantified by two scaling exponents, and a scheme
to correct radar measurements for these fractal effects was developed.

1. Introduction

Over forty years ago, Marshall and Palmer (1948)
used chemically treated blotting paper to make the first
measurements of the probability distribution of rain
drop volumes in rain of various intensities. This dis-
tribution plays an important role both in cloud physics
as well as in radar measurements of rain; in radar me-
teorology, the parameterized (exponential) form is
called a “Marshall-Palmer” distribution. However,
theories of drop formation and quantitative rain esti-
mates require more than just the relative probabilities
of drops of different sizes; they also require knowledge
of the relevant spatial distributions. Usually, the latter
are assumed homogeneous (the drops have Poisson
statistics). When applied to radar “pulse volumes”
(typically about 1 km?), these assumptions (Marshall
and Hitschfeld 1953; Wallace 1953 ) imply incoherent
scattering. In this case, the variability in the observed
“effective radar reflectivity factor” (Z,) arises from two
sources. The first is the natural variability of interest
characterized by Z (the “‘radar reflectivity factor,” pro-
portional to the sum of the squares of the drop vol-
umes), while the second (which could in principle be
statistically removed), is due to the random positions
(and hence phases) of each of the drops within the
pulse volume. Under certain additional assumptions,
Z can be related to the rain rate, volume of liquid water,
or other parameters of interest. The determination of
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Z from the observed Z, is therefore considered the
basic “observer’s problem” in radar meteorology.

However, rain is not homogeneous. Due to the ac-
tion of cascade processes concentrating energy, water
and other conserved fluxes into smaller and smaller
regions of space, rain is highly variable, displaying scal-
ing (multi)fractal structures over significant ranges in
scale (Lovejoy 1981, 1982; Lovejoy and Mandelbrot
1985; Lovejoy et al. 1987; Gabriel et al. 1988; Lovejoy
and Schertzer 1990a,b; Schertzer and Lovejoy 1987a,b,
1989, 1990). This subsensor inhomogeneity will lead
to corrections in the standard theory. The corrections
discussed here could be termed “monofractal”; they
involve only two exponents and characterize the bias
in the mean reflectivity factors. In another paper (Lo-
vejoy and Schertzer 1990a), we investigate other cor-
rections due to multifractal effects that will lead to range
dependencies in the probability distribution of the re-
flectivity factor and that requires an entire exponent
function for its specification.

2. Description of the experiment

To investigate the inhomogeneity, we followed
Marshall and Palmer who dropped carefully calibrated
drops down the four floors of the stairwell of the Mac-
donald physics building at McGill University and
found that the colored stains on chemically treated
blotting paper had radii (p) related (with little statistical
scatter) to the original drop volume (V) as V « p2.
This is the relation expected if the penetration depth
of the water into the blotting paper is constant. Qur
improvements with respect to Marshall and Palmer
included 1) use of much larger pieces of paper (128
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X 128 cm compared to the original 16 X 24 cm size),
2) digitization of the results, and 3) recording of the
positions (r;) as well as the volumes of the drops. By
exposing the blotting paper in rainfall for very short
times (~1 s), we attempted to obtain a horizontal
intersection (cross section) of the true (V;, r;) distri-
bution in three-dimensional space. The apparatus used
consisted of two square covers, one on either side of a
square hole the size of the paper. This “shutter” was
quickly pulled across the blotting paper during a mod-
erately heavy stratiform rain in Montreal. The exper-
iment was carried out by B. Miville and T. Pham as
part of a third-year physics lab project. A total of three
pieces of blotting paper were exposed, but owing to
technical problems and limited time, only the one dis-
cussed here was digitized. The other two were manually
analyzed in a different way (various multifractal char-
acteristics were analyzed; see Lovejoy and Schertzer
19900 for more details). Obviously in order to establish
the representativeness of the empirical parameter,
much more work must be done; our intention here is
to show that scaling of raindrops in space is not only
plausible theoretically, but is also consistent with the
first direct observations. All previous relevant studies
of which we are aware (such as those of the fluctuating
return of a radar signal) give only indirect information
on the homogeneity/inhomogeneity of the drops in
space, and are likely to be consistent with our findings.

One other experimental point is worth mentioning.
Since the object was to investigate the instantaneous
horizontal structure of rain, and given that rain drop
fall speeds are typically 2-5 m s~!, one second is not
as short a time as might be hoped. To put the problem
in context, consider very long exposures. In this case,
[taking the rain as an (X, y, z, t) process], the blotting
paper will record the projection of the rain on the x-y
plane. However, the properties of projections and in-
tersections are quite different. Any component of the
multifractal rain measure with dimension D = 2 will
lead to planar projections (i.e., the projection has di-
mension 2, and the blotting paper gets wet everywhere ),
whereas intersections will have dimensions less than
two (see below).

Figure 1 shows the points corresponding to the cen-
ters of the circular blobs on the blotting paper; in this
case there are 452 of them. The drop positions were
digitized along with their radius (to an accuracy of 0.5
mm ). The statistically most sensitive analysis method
is to estimate the “correlation dimension” (D,) of the
(two dimensional ) cross section. This is done by con-
sidering the function (n(L)) oc L??, which is the av-
erage number of other drops in a radius L around
each drop. Since there are 452 X 451/2 = 101 926
drop pairs, this function contains a great deal of in-
formation about the drop clustering. Figure 2 shows
that over the range 2 mm < L < 40 cm, that D, ~ 1.83.
The large L behavior deviates below the line because
many of these large circles go outside the blotting paper
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F1G. 1. Each point represented the center of a raindrop for the
128 X 128 cm piece of chemically treated blotting paper discussed
in the text. There are 452 points, the exposure was about 1 s.

and the estimate of {n(L)) is, therefore, biased down-
wards. At the small scale end, a bias obtained due to
the finite number of points; for example, clearly
{(n(L)) > 4527". We therefore take this as evidence
that rainfall is scaling over this range. Box counting
can also be used to give an (less robust) estimate of
D,; on the manually digitized cases we obtained D,
= 1.79 and D, = 1.93. Below, we continue to use the
value 1.83, although clearly much more data must be
analyzed for precise estimates.

3. Theoretical development and analysis

In order to extrapolate the (n(L)) result from the
measured (horizontal) intersection to the full x, y, z
space, the strong horizontal stratification of the rain
process due to gravity must taken into account. Intro-
ducing the “codimensions” C; =3 — D3, C, =2 — D,
(~0.17 here) and using the formalism of “‘generalized
scale invariance” (Schertzer and Lovejoy 1985a,b,
1987a,b), in x, y, z space, we expect {(n(L)) oc L3
= L3 ¢3 with

. , 3
C3 CZ del
where d,; is the “elliptical” dimension of the rain pro-
cess characterizing the stratification, estimated (Love-
joy et al. 1987) to have the value d,; = 2.22 £ 0.07 in
rain (d,; would be three if the space was isotropic, and
two if it was completely stratified into flat layers). Using
Eq. 1, and expressing 7 in terms of the volume v = L3
we obtain:

(1)

<n(v)> o p{I=Ca/de) (2)
Hence, using the above values of C,, d.; in Eq. 2 the
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FI1G. 2. This shows a log-log plot of the average number of drops

in a circle size L surrounding each drop of Fig. 1 (solid squares), as.

well as the number in equally logarithmically spaced annuli (open
squares—the sum of the latter from the smallest scale to L, gives the
former). The straight-line has a slope of 1.83, and was fitted through
the part of the graph (shown in squares) that was relatively unaffected
by the finite number of drop fall-off at small L and the large L fall-
off due to the finite size of the blotting paper.

drop density gn(v)>/ v is no longer constant but de-
creases as v~ 008,

The scaling nature of the drop distribution implies
that the drops are (hierarchically) clustered over the
range, and that when the microwaves scatter from the
drops that there will be some degree of coherence. To
quantify this, consider a radar at the origin that emits
a pulse of electromagnetic waves that fills a volume v
= [ X rf X rf where r is the range, 6 the angular width
of the radar beam, and / is the pulse length. The power
received at the radar depends on various instrumental
characteristics including the transmitter, antenna ge-
ometry etc. Putting these factors into a multiplicative
constant (ignored below) and statistically averaging
(indicated by angle brackets), the radar measures

@y o LA 3)

where

n(v)
A= 2 Ve,

J

(4)

This formula expresses the fact that each drop has a
cross section proportional to its volume (since water
is a polar molecule). The phase ¢; = 2k - r; where k is
the wave vector and the factor 2 arises because of the
round-trip distance from the radar to the drop is 27;.
It is customary to introduce the “radar reflectivity fac-
tor” (usually measured in units of mm®/m?3) whose
ensemble average (Z ) is defined by

()

If the drops are uniformly randomly distributed (i.e.,
they have Poisson statistics), the ¢; are statistically in-

(zy =200 (.
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dependent. Considering the complex sum A as a ran-
dom walk in phase space, as long as <V2> < oo the
central limit theorem applied to (4) implies (]| 4|*)
= én(v)><V2> and, hence, the classical result (Z, )

Z ). However, if the drops are distributed over a
fractal, we have partially coherent scattering and we
expect drop correlations to yield an anomalous expo-
nent:

{141%) ac {n()y*(V?) (6)

where H = 1/2 for completely incoherent scattering,
and H # 1/2 when some degree of coherent scattering
is present. Hence,

(Z,) oc {ZY{n(v))* " (7).

In order to evaluate H from the blotting paper we
used the following procedure. First, in order to reduce
statistical scatter, we take | k| fixed and averaged over
wavevectors in 19 equally spaced directions, adding
more and more terms in the sum (A4 ) by choosing drops
at random from the 452 available. Figure 3 shows that
convergence to a power law is obtained for n» = 16.
Varying |k| in 10 equal logarithmic increments
through the scaling region, from 27 /128 cm ™! to 27/
1.28 cm ™! (corresponding to distances of 1.28 to 128
cm), we obtained 2H = 1.24 = 0.09 where the error
is the standard deviation of the 2H values estimated
from each of the values of |k|.

4. The correction exponents

We can now combine this result with our previous
formula (2) for n(v) to obtain the volume (and, hence,
range) dependence of (Z), (Z.). Recalling that v
= /9%r? and keeping only the r dependence, combining

_3 ¥ T
0 1 log10n 2 3

FIG. 3. The variation of the average (nondimensionalized) effective
radar reflectivity of the distribution in Fig. 1 as a function of the
number of drops (7). The curve is calculated as indicated in the text
and involves averaging over 19 angles in Fourier space, and 10 log-
arithmically spaced wavelengths from 1-128 cm. The straightline
shows the asymptotic power law behavior that is obtained for n > 16,
with slope = 2H = 1.24 (H = 0.62). Note that white noise would
yield H = 1/2. The increase implies some degree of coherent scat-
tering.
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Egs. (2), (5), (7), and using the notation (Z ) oc 7%,
(Z.) oc r*ewe obtain

-2
E— de]
- _G\_
ge—4H(1 del) 2. (8)

Taking C; =~ 0.17, H = 0.62, d,; = 2.22 yields £
= —0.15, £, = 0.28 (recall that the standard values are
C,=0,H=1/2,d,= 3, hence £ = £, =0). To judge
the overall magnitude of these effects, consider a
weather radar such as the 10 cm wavelength radar at
McGill, with minimum range (limited by ground
echoes) of ~10 km, and maximum range ~ 240 km.
Comparing near and far range, we obtain a variation
in (Z,) of ~24°?® ~ 2.4, and a corresponding vari-
ation in (Z) of 247%!> = 0.6. These effects are some-
what larger in magnitude than those due to absorption
(by humidity, O,, and by the drops themselves) and
should be taken into account during radar calibration
from rain gages.

5. Conclusions

We have argued that although inhomogeneity in rain
is likely to extend down to millimeter scales, it can
nevertheless be simply characterized by the scaling ex-
ponents C, (the codimension of the drop distribution
in the horizontal plane) and H (the scaling exponent
of the reflectivity factor with respect to the number of
drops). The standard values, corresponding to perfectly
uniform random distributions, yield C, = 0, H = 1/2,
whereas we argue that C, > 0, H # 1/2. To support
this idea, we report on the first direct empirical esti-
mates of C,, H obtained by exposing chemically treated
blotting paper to rain, finding C; ~ 0.17, H ~ 0.62.
Furthermore, the scaling leads to straightforward cor-
rections to the standard theory in which the relationship
between the radar measurements and the rain process
involves a factor equal to the resolution of the sensor
raised to a power whose value we estimate.

Resolution dependence is a general and basic prob-
lem in the remote sensing of geophysical fields since
physical quantities should be independent of the char-
acteristics of the sensors used to measure them, and
calibration procedures typically involve comparing re-
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mote and in situ data averaged over very different time
and space scales. Quantitative uses of remotely sensed
data will require systematic development of resolution-
independent measurement techniques probably based
on the dimension function that provides a natural scale
invariant description of both weak and intense regions
of multifractal fields.
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