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Abstract. Building on earlier cascade models of rainfall, we propose a model

of space-time rain fields based on scaling dynamics. These dynamics are indeed

related to the space-time symmetries of the turbulent medium within which rainfall
occurs: the underlying phenomenology corresponds to a cascade of structures with
lifetimes depending only on the scale of the structures. In this paper we clarify

two major issues: the scaling anisotropy between space and time, and the need to
respect causality, i.e., a fundamental asymmetry between past and future. We detail
how this ”arrow of time” breaks the mirror symmetry with respect to the spatial
hyperplane, and how it can be introduced in continuous multiplicative cascade

models so as to remove the artificial temporal mirror symmetry of earlier models.
We show that such a causal multifractal field can be understood as the result of an
anomalous diffusion acting on the singularities of the field. Finally we will exploit
and test these models through (1) a succinct analysis of rainfall data, (2) numerical
simulations of the temporal decorrelation of two initially similar fields (accounting

for the loss of predictability of the process), and (3) a forecasting method for

multifractal rain fields.

1. Introduction

In recent years, there has been considerable develop-
ment of multifractal techniques for treating rain fields
in a multifractal framework (see Lovejoy and Schertzer
[1995] for a recent review). Indeed, they allow one to
overcome the severe limitations of the two primary ap-
proaches to rainfall modeling: the phenomenological
stochastic modeling favored by the hydrologists, and
the deterministic dynamical modeling favored by the
meteorologists.

The stochastic approaches were largely ad hoc; they
were designed to mimic the rain phenomenology [Austin
and Houze, 1972] and were based on the assumption
that rain processes are qualitatively different over ev-
ery factor of 2 or so in scale. The scientific outcome
of relying on this phenomenology has been a series of
very complex cluster processes whose hierarchies of time
scales and space scales are each assigned plausible vari-
ations in rain rate and statistical fluctuations. For
instance, the well-known Waymire-Gupta-Rodriguez-
Iturbe (WGR) model [Waymire et al., 1984] involves
a dozen or so empirical parameters and is at best suc-
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cessful only within the narrow range of time scales and
space scales for which it was calibrated.

In contrast, the deterministic models were developed
following the usual methods of geophysical fluid dy-
namics and largely based on various truncations of
the Navier-Stokes equations. They are predicated on
the integration of nonlinear partial differential equa-
tions which attempt to represent the complex nonlinear
dynamics hopefully including appropriate parametriza-
tions of the physics. Because of the limited number
of degrees of freedom which can be explicitly modeled,
this approach makes drastic scale truncations, typically
studying one scale independently of the others, trans-
forming partial differential equations (PDE), into ordi-
nary differential equations (ODE), arbitrarily hypothe-
sizing the homogeneity of subgrid-scale fields, and per-
forming ad hoc parameterizations. Even if one ignores
these oversimplifying assumptions, the consequences of
such choices, which have increasingly weak links with
the real world, are ultimately complex and unwieldy
numerical codes.

In order to overcome the limitations of both conven-
tional approaches and to bridge the gap between them,
it was argued [Schertzer and Lovejoy, 1987a] that physi-
cally based models involving huge ratios of scale and in-
tensity could be developed, with the help of multiplica-
tive cascade models [Yaglom, 1966; Mandelbrot, 1974,
Schertzer and Lovejoy, 1984; Kahane, 1985; Pietronero
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and Siebesma, 1986; Meneveau and Sreenivasan, 1987].
Indeed, by avoiding truncations of the dynamical equa-
tions, cascades preserve the fundamental dynamical
scaling symmetries. With a unique exception, the so-
called 8 model [Novikov and Stewart, 1964; Frisch et
al., 1978], these cascades yield fields with infinite hi-
erarchies of singularities [Schertzer and Lovejoy, 1984;
Benzi et al., 1984; Parisi and Frisch, 1985; Halsey et al.,
1986] and associated dimensions [Hentschel and Procca-
cia, 1983; Grassberger, 1983], and therefore multifractal
fields rather than fractal sets [Mandelbrot, 1982].
However, most of the applications to rain were un-
fortunately perceived as dealing either with one-dimen-
sional (1-D) time series of rain rates estimated by rain
gauges, especially for data analysis, or two-dimensional
(2-D) and three-dimensional (3-D) radar images. So
far, very limited attention has been devoted to scaling

space and time rain processes (see, however, Lovejoy -

and Schertzer [1991], Brenier et al. [1991] and Tessier
et al. [1993]; see also Lovejoy and Mandelbrot [1985]
and Lovejoy and Schertzer [1985] for monofractal mod-
eling); this strong limitation leads to incomplete and
inadequate analyses, especially when considering im-
portant issues such as forecasting, which need to be
formulated in a space-time framework, or space-time
sampling strategies.

In Schertzer and Lovejoy [1987a] it was argued that,
although rain fields are certainly non passively advected
by atmospheric turbulence, to investigate the case of a
passive scalar undergoing advection corresponding to
the Navier-Stokes equations is already a fundamental
and yet not trivial issue. Moreover it is expected, as
shown by numerous analyses [Schertzer and Lovejoy,
1985; Lovejoy and Schertzer, 1991; Pflug et al., 1993;
Tessier et al., 1993], that the scaling symmetries in
space and time arising from the Navier-Stokes equa-
tions at large Reynolds numbers, thus characterizing
atmospheric turbulence, should lead to a similar scaling
behavior for active scalar fields such as rain (or clouds,
for a related example).

2. The Anisotropic Space-Time Scaling
of Turbulence

We first recall the formal argument for scaling based
directly on the scaling properties of the incompressible
Navier-Stokes equations:

Ou+ (uV)u = —pinwL vAu; Vu=0 (1)
1

where u is the velocity, p; the fluid density, p the pres-
sure and v the kinematic viscosity. At large Reynolds
numbers the scaling symmetries can be deduced from
the action of the ”scale changing” operator T
z/); the invariance of the Navier-Stokes equation (1)
under this operation leads to the following scaling laws:

Pz

t o— t/AH

(2)
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u — /M
vV = l///\l+H

®3)
(4)
and the pressure has been removed by projection on

the divergence-free plane. The associated equation for
a passive scalar (of concentration p),

(5)

where « is the molecular diffusivity, gives, following the
same argument,

Oip+uNp=rlp

p = p/A
Kk — K,/)\1+H

(6)
(7)
(8)

Here, we are mainly interested in the resulting sym-
metries for space, | — I/), and time, t — t/A17H.
It must be noted that the exponent H is unknown a
priori, H # 0 resulting in a scaling anisotropy between
space and time. This anisotropy will be discussed below
in more details, using the generalized scale invariance
(GSI) framework (see below for references on GSI).
The Kolmogorov scaling for the velocity field [Kol-
mogorov, 1941; Obukhov, 1941] and the Corrsin-Obu-
khov scaling for the passive scalar [Qbukhov, 1949; Corr-
sin, 1951] are classically obtained by considering homo-
geneous fluxes of energy € (the relevant quantity being
thus the spatially averaged energy flux €), or scalar vari-
ance in the case of a passive scalar. These dimensional
arguments lead to the scaling relation for the character-

istic lifetime (turnover time) 7; of an eddy or a scalar
blob at scale I,

1 € €
—— — g
T 6u,2 E%l% ( )
and thus,
1 1 2
— ~€3]73 10
. (10)

For inhomogeneous turbulence ’[Kolmogorov, 1962; Obu-
khov, 1962] the same arguments lead to the multiscaling
relation:

l =
—~ el
Ui

(11)

where we now consider the inhomogeneous energy flux
field ¢ at all scales I. The scaling anisotropy exponent
H such that 1 — H = % = H = % is thus expected to
characterize atmospheric turbulence. As argued above,
we claim that these symmetries will hold for rain fields,
though not necesserily with the same exponents; how-
ever, even if most of the further developments will be
derived using an a priori unknown H, we will test the
theory, for illustrative purposes, taking H = L. Note
that Lovejoy and Schertzer [1991] directly estimated
H = 0.5 £ 0.3 for raindrops.

- It is important to stress that a direct consequence
of this scaling relation between space and time is the
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absence of a global characteristic time for the system
(since there is no characteristic length in a process
possessing scaling properties); we thus expect an alge-
braic decorrelation in time for the singularities of the
field. This is a very distinctive feature of stochastic
cascade models when compared to deterministic chaos,
which instead predicts an exponential decorrelation:
for low-dimensional, nonlinear systems, two initially
nearby phase-space trajectories diverge exponentially
with time, this divergence being characterized by the
Liapunov exponent, which is the inverse characteristic
time, of the system. This difference between these two
types of system arises from the fact that detérministic
chaotic systems possess only a few degrees of freedom,
contrary to stochastic systems with many degrees of
freedom, involving a wide range of dynamically signifi-
cant scales. _

In developing multiplicative cascades both in time
and space, two main difficulties arise, with respect to
isotropic, plane-symmetrical multifractal processes: (1)
the scaling anisotropy due to the exponent H which is
a priori different from 0, and (2) the need for the pro-
cess to be causal, i.e., the symmetry breaking along the
time axis, necessary in order to allow one to distinguish
between past and future (whereas statistical isotropy in
space is legitimately considered).

In section 3 we study the rather pedagogical case
of discrete multiplicative cascade models as a natu-
ral consequence of the phenomenology underlying the
Kolmogorov and Corrsin-Obukhov scaling. The scaling
anisotropy is introduced, and we derive a (generalized)
correlation furction for these models, showing clearly
the algebraic decorrelation both in space and time. The
main part of this article is devoted, in section 4, to
the transformation of the more sophisticated continu-
ous cascade models to account for the ”time arrow”,
or causality. It is shown that causality is respected as
soon as one considers the dynamics of the singulari-
ties of the field; more precisely, a causal multifractal
field corresponds to the result of an anomalous diffu-
sion process acting on the singularities. In section 5 we
present and discuss the preliminary results of an anal-
ysis performed on the U.S. composite rainfall data sets
derived from National Weather Service (NWS) Radars
data (NOWrad, registered trademark of WSI Corpora-
tion). This analysis indicates that the observed rain-
fall field is indeed the result of a space-time multiplica-
tive cascade. Finally, in section 6, we investigate how
these models can provide a pertinent framework in or-
der to simulate the decorrelation of a perturbed field
with its nonperturbed image; we then propose a phys-
ically based forecast method for multifractal processes,
this application being one of the basic motivations of
this work.

3. Discrete Cascades

The simplest multifractal models are multiplicative
discrete cascades. We first recall how such cascades are
generated, and we determine a generalized correlation
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function. We first restrict ourselves to an exclusively
spatial model, i.e., without a time coordinate, by con-
sidering an isotropic 2-D space. We denote by L the
length of our square domain where the cascade will be
developed; the first step of the cascade is done by di-
viding this square into A x A () is an integer) structures
of equal size l; = LA~!. We consider a random variable
pe such that Pr(ue < 0) = 0 (Pr indicates ” probabil-
ity”) and (pe?) = AK(D; we use realizations pe;(z) of
pe that are all statistically independent of each other
(i.e. with respect. to scale index 7 and spatial coordi-
nate z). The structures at scale [; are given intensity
values €;(z) = pei(z) (since we have X x A structures,
only A x X independent realizations are used). At each
following step of the cascade we divide the structures
at scale [, = LA™" into A X A new structures at scale
lny1 = LA=(+1) and give them intensities such that

€nt+1(2) = peny1(z) - €n(z) (12)

In this cascading process, we thus see that neighbor-
ing structures at any given scale are indeed offspring of
a common ancestor at the previous scale.

‘Now, in order to generate cascades in a space-time do-
main, and due to the scaling anisotropy between space
and time; we need to proceed to a slightly different
kind of construction, the simplest case treated in the
GSI framework, or self-affine instead of self-similar cas-
cades. We consider that one axis corresponds to the
spatial coordinate, while the other is for the time co-
ordinate; in order to introduce the scaling anisotropy
between space and time (given by the exponent H),
we change each cascade step by dividing the struc-
tures at scale [, = LA™ into A (along the spatial
axis) xA!7H# (along the temporal axis) new structures
at scale l,4; = LA~("*1) still with A and A!=¥ inte-
gers. For H = %, the smallest allowable A is A = §,
which gives A3 = 4. Note that A = 3 and A=H = 2
gives H = 0.37, which is an acceptable approximation
of H = %

Figure 1 shows such a discrete cascade developed on
a set of seven scales, with A = 3 and H = 0.37, the
horizontal and the vertical axis corresponding to ¢ and
z, respectively. Here we took pe lognormal. Figure
2 shows three sections of this field along the tempo-
ral axis, at different spatial locations. We see that the
three sections are stationarily correlated to each other,
and that this correlation decreases as the interval |Az|
between the sections increases. o

These models of self-affine discrete cascades already
reproduce the phenomenology of turbulent cascades; in
this scheme, each spatial structure, or eddy, confined
at a given scale [ is given a lifetime 7; depending only
on its scale: m ~ I!~H. When this time has expired,
a new structure is created as the direct offspring of its
parent structure. This time scale also corresponds to
the time necessary for all the offspring structures from
scale | down to the smallest scale to be replaced by new
structures.

At this point, it is interesting to determine a gener-
alized (involving moments of arbitrary order ¢; and ¢3)
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Figure 1. Realization of a discrete cascade developed
on seven generating steps. Parameters are A =3, H =
0.37, and pe is a lognormal random variable of mean
1 and covariance 0.1. The z coordinate is along the
vertical axis, the ¢ coordinate is along the horizontal
axis. We display here the logarithm of the field; the
intensity scale is linear. '

correlation function for our process:

TA)(|Agl, Al) = (e (z,1) e (2+ Az, t+AL)) (13)

We first derive it in the simple case of a 2-D cut of an
isotropic spatial cascade. Two structures (at scale ,)
separated by |Ag| (with |Ag| > I,) are offspring of the
same parent structure at scale [, such that

b = |Az| (14)

(this equality is generally true, i.e., a small discrepancy
can appear owing to the arbitrary discreteness of the set
of cascading steps; however, this discrepancy disappears
in the more general framework of continuous cascades).
Thus the intensities of these two structures correspond
to the same cascade developed from L down to [, and
afterwards to independent cascades from l,;, to [,,. Then

en(z) = en(@ [] weil) (15)
i=m+1

e(z+Az) = em(@ ] pealz+Az) (16)
i=m+1

where all pe are independent of each other. Thus
T\ (| Az) ~ (bt ()

CTT per@) ( I sebe+az) an

i=m+1 t=m+1
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gives

T (|A]) ~ (e +)™ (uet )" et (18)
and finally,

J,Sq"“)(mg) = l;[K(ql)'i-K(qz)]
|Ag|H(0)+K (92)-K (g1 +42)

(19)
We refer the reader to papers devoted to such two-
point correlation functions (see, for example, Cates and
Deutsch [1987], O’Neil and Meneveau [1993], or the
derivation in Monin and Yaglom, [1975, vol. 2, pp. 618-
620], in the case of lognormal multifractals).

We now extend the generalized correlation function
to space-time intervals (Agz, At). For spatial intervals
(Az,0), one recovers the results detailed above. For
temporal intervals (0, At), the same derivation can be
developed simply by changing equation (14) into

I = |At|T=H (20)
After some algebra, we obtain
T4 (At) ~ [- 1K (q)+K(g2)]
|At| =R (@) +K (22) - K (91+42)] (21)
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Figure 2. Three sections along the ¢ axis of the cascade
displayed in Figure 1. The three sections corréspond
(from top to bottom) to ¢ = 10, z = 14, and z = 30.
For comparison, the last two are shown along with the
section at = 10 (dashed lines).
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Defining a scale function in the 2-D space-time domain
by ||(z, t)|| :max{[§|,tr—1?}, where z and t have been
non-dimensionalized by dividing them with the integral
scale/time, respectively, we finally obtain

TL0e) (Ag, At) ~ 171K (@)+K(2)]

(A2, AQ[K@+K@-Klates)  (29)
which clearly shows that the correlation is algebraic
both in the spatial and temporal directions, with an
anisotropy exponent H.

One can easily perceive some limitations in this kind
of model; the causal properties are not explicitly de-
tailed, though the corresponding phenomenology seems
indeed to be appropriate in that respect. The temporal
modulations of the structures at a given scale occur at
the same time for all of them; this limits the possible
exploitation of these models, especially for forecasting.
We thus need to reformulate the problem by consid-
ering the more sophisticated framework of continuous
cascades, where ” continuous” refers to a continuous en-
semble of scales (and not only a crude discrete set as
above). Instead of generating a cascade by multiply-
ing independent factors at each step, one can define a
multifractal field starting from a white noise field reg-
ular/homogeneous at the smallest scale. By doing this,
we will be able to define a cascade process giving birth
to a causal multifractal field.

4. Continuous Cascades

Continuous cascade models have the major advan-
tage of developing cascades over a continuous interval
of scales instead of only a discrete set [Schertzer and
Lovejoy, 1987b, 1991, 1992; Wilson et al., 1991; Pec-
knold et al., 1993]. Moreover, as can be clearly observed
in Figure 1, discrete cascades have the disadvantage of
creating artificial rectangles, this being due to the pro-
cess that divides a rectangular structure into smaller
rectangular structures, following a self-affine process.
We will briefly present here the basic ingredients of
this improved method, first, for the specific and sim-
plest case of spatial isotropic multifractal fields; then we
will devote a short section to (still spatial) anisotropic
fields, giving a succinct summary of important GSI no-
tions. Then we will consider the original case of causal
anisotropic processes. Note that anisotropic space-
time multifractals were already evoked by Brenier et
al. [1991] and Lovejoy and Schertzer [1991] and briefly
discussed by Tessier et al. [1993] using the GSI frame-
work; moreover, in the latter papers, analyses of the
anisotropy between time and a spatial coordinate for a
set of lidar and radar scans were performed.

Construction of a Spatial Isotropic Field

Instead of considering multiplications of random fields,
it is simpler to generate continuous cascades by consid-
ering an additive process for the logarithm of the field.
We thus define the generator I'y at resolution A = L/l of
the multifractal field €): € = el (the notation ¢, used
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for the discrete cascades is here changed into €y where
the resolution X is a continuous parameter). In order
for €y to be multifractal, we need its ¢g-order moments
to follow an algebraic law with respect to scale:

(63‘) ~ /\K(Q) = (eqFx> ~ eK(q)Iog)\ (23)

We thus see that the (second) Laplace characteristic
function of Ty, i.e. log{exp(qI'y)), should diverge loga-
rithmically with the resolution.

From here on we will consider universal multifractal
fields, i.e. such that the moment scaling function K(q)
verifies K(g) = “2;(¢*—q) where C} is the codimension
of the mean singularity, and « is the Lévy index char-
acteristic of the field; the generator is thus the infinite
limit of the sum of independent stable (Lévy) random
variables. We compute the generator starting from a
white Lévy noise vy, the subgenerator, of Lévy index «
smoothed at resolution A, by a fractional integration of
order h:

Ta(2) = ga(z) * m(2) (24)
where gy (z) ~ |z|~" is band-limited to |k| € [1/L; A/L]
(and % is the convolution product). The derivation
given in Appendix A shows that

L
(™) = explg® / dz |2 + g70]

L

A

(25)

where vg is a recentering term constrained by K(1) =0
(seePecknold et al. [1993] for numerical implementa-
tion). In order to get the expected logarithmic diver-
gence in A,

L
[dzlel ~ 10g (26)
L
A
we need
lz|=* ~ 2| (27)
where d is the dimension of space; we thus get
d
h=— 2
: (28)

We then see that, by taking the exponential of a Lévy
white noise of Lévy index « integrated fractionally (of
order d/a) on the range [1/L; A\/L], we generate a log-
Lévy multifractal field resulting from a continuous cas-
cade process from scale L down to scale [. Again, for a
more detailed and algorithmic description of this con-

struction, we refer the reader to, for example, Pecknold
et al. [1993].

Self- Affinity

Anisotropy arises when the scale changing operator
T acts differently in different directions. The simplest
case corresponds to self-affinity, and since we predict
our cascade process to be self-affine with space and time
coordinates, we will limit ourselves to this. However
more involved cases can be equivalently treated [Lovejoy
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and Schertzer, 1985; Schertzer and Lovejoy, 1985, 1989;
Lovejoy et al., 1992; Pflug et al., 1993; Pecknold et al.,
1996].

Consider the scale changing operator T acting on a
two-dimensional spatial domain:

n (5 ) (3)
o= (412

The ﬁeld €y is then anisotropic with ”elliptical dimen-
sion” dey = Tr G = 2— H if it follows scaling laws under
the action of T):

(29)

with

(30)

ex = ex(Tafearya]) (31)

where = denotes statistical identity, and Ty[f(z)] =
F(Tx[z]). Tt then follows that the iso-correlation curves
of the field define a family globally invariant under 7.
Their exact shape does not matter; only their scale is
of importance. '

In order to generate such an anisotropic field, we thus
need an anisotropic filter g (z), such that

g(Talz]) ~ A7" gx(2) (32)
This can be achieved by defining the scale function ||z||:

ga(z) ~ llzlI ™" (33)

and ||z|| has the property
I Zala]ll = A~ |l (34)
For example, given the diagonal matrix G introduced
above, we can choose either ||z|| = |z| + |y|1 7, |z =

(% +(32) =)V, or [l2]] =max{e], [y/=7} as already
seen above. This arbitrariness in the choice of this scale
function is a consequence of the arbitrariness on the
shape of the isocorrelation curves. Note that the band
limitation of gy corresponds now to ||z|| € [L/A; L].

Causality

In order to define a causal process in space and time,

we need to perform a causal filtering of the subgenerator
Y, 1.e., to work with g as a retarded Green function,
whereas, in the preceding sections, we were consider-
ing only noncausal fields, i.e., with a mirror symmetry
with respect to the spatlal hyperplane Equation (24),
rewritten as a differential equation,

g5 V(12,0 * Dz 1) =

A (£1 t) (35)

(where the Fourier transform of g(~1) is the inverse of
the Fourier transform of g) is now expected to corre-
spond to a diffusion equation (which might be anoma-
lous; see below), with the subgenerator v, providing the
forcmg A causal 'y will result if the temporal part of
¢=1) involves operators such as d; or the causal frac-
tional derivative of order (: ;.

MARSAN ET AL.: CAUSAL MULTIFRACTAL RAIN FIELDS

By inverting the action of g in equation (35), equation
(24) is then changed to

. t +oo
La(z,t) = / dt’/dz’ oz =2/t —t") m(z', 1)
—00 -0

(36)
which is obviously causal since the convolution is per-
formed only on the part of the subgenerator correspond-
ing to the past (¢’ < ¢). This can be rewritten, intro-
ducing the Heaviside distribution ©(t), as

Ia(z, 1) = [ga(lz],?) ©@)] x (2, 1) 37)

We thus define the retarded Green function gx (|z],t)
by

gx (Izl,t) = ga(lz],t) ©() (38)
or equivalently,
93 (kl,w) = ga(|k],w) *O(w) (39)
where
A 1 i 1
O(w) = —2—6(w) + L B (40)

p.v. stands for the Cauchy principal value and § is
the Dirac distribution. This corresponds to using the
Kramers-Kronig theorem [e.g., Roddier, 1971].

As we have seen in the last section, the Green function
gx 1s of the form

oz, ) ~ Iz, I~ (41)

the scale function ||.|| acting now on the anisotropic
space-time domain. A 'simple derivation (see Appendlx
B) confirms that the elliptical dimension d.; is indeed
the effective dimension of the space-time domain for our
process, and therefore

iak,w) ~ ||k w)[| 7%

where d.) is now:

(42)

dg = d + 1 - H (43)
(d is the spatial dimension). The problem of render-
ing this Green function causal can indeed be solved by
exploiting the arbitrariness of the choice of the scale
function ||.||. Consider
do—h 1 .

Iz, = (Jal® =" + =)= (44)
with the constraint dej > h, and z and ¢ are, again,
non-dimensionalized (z +— z/L, t — /T with L and T
the integral scale and time); we assume L = T =1 to
simplify the notations. We indeed have

I3[z O] = 1A~

We then obtain

tz, A = A2, 1)) (45)
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1
gk(!i’w) ~ i (46)
|5+ |
where
1 1 de
LI = 4
@ + X d+1 (47)

Note that, in the isotropic case dej = d + 1 we obtain
x = o', where o' is the usual notation in the universal
multifractal litterature (1/a 4+ 1/a’ = 1). This function
can easily be rendered causal, to finally give

i (k) !
A& ~ 1 1
| 5 — (iw) O

(48)

and the corresponding equation of diffusion is thus

[Ores + (=A)2]Ta(z, 1) = 1a(z, 1) (49)

where |k|? and (—A)% are a Fourier transform pair,
& = 3 ‘i_IH ,and & = %,i'x—l. This equation can be in-
terpreted as the diffusion of particles (having fractional
Lévy flights, a generalization of the fractional Brown-
ian motion to Lévy flights) on a Lévy potential (see
Appendix C).

For a purely temporal domain d = 0 (no dependence
on spatial coordinates), one finds the retarded Green
function

9x (W) ~ (i)™= (50)

Note that 5~ is indeed a restriction of the distribution
p.v. (iw)” a7 +6(w) to the range w € [1/L; A/L)). In this
1-D temporal case, the generator is indeed a fractional
Lévy flight.

Figure 3. Isocorrelation contours in the Fourier space
for the z-t section. The spectrum has been averaged
along the y direction. The contours are plotted on a
linear scale for the logarithm of the spectrum. They
have been shifted so that the center of the figure is
indeed the origin.
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Figure 4. Isocorrelation contours in the Fourier space
for the y-t section. The spectrum has been averaged
along the x direction. The contours are plotted on a
linear scale for the logarithm of the spectrum. They
have been shifted so that the center of the figure is
indeed the origin.

5. Rainfall Data Analysis

We present here the preliminary results of the analy-
sis of the U.S. composite rainfall data sets derived from
NWS radars. We performed this analysis on a portion
of the data set, corresponding to a 100 X 100 square
domain in space, for 64 consecutive scans in time. The
resolution is 8 km in space and 15 min in time. The
mean advecting velocity for this portion was found to
be of the order of one pixel for a time step (8 km for
15 min). The rain rates (R) were estimated from the
radar reflectivity (Z) using the Marshall-Palmer rela-
tion [Marshall and Palmer, 1948] with parameters es-
timated by Woodley et al. [1975]: Z = 300R'*, and
7 = Z, where Z, is the measured ”effective” reflectiv-
ity (see Lovejoy et al. [this issue] for discussion).

We looked at the energy spectra in the Fourier space,
for the two 2-D sections z-t and y-1. Following equation
(22), we should obtain in the physical space

TED(Az, At) ~ [|(Az, A||7KE (51)

since by conservation K (1) = 0. Note that this conser-
vation is indeed due to the nature of the data analyzed, |
i.e., "effective” reflectivity instead of actual rain rates
(see Lovejoy et al. [this issue] for discussion). Thus, in
the Fourier space, as shown in Appendix B, we obtain

P(k,w) = FO(Ekw) ~ (W)~ (52)
Figures 3 and 4 show the isocorrelation contours in
the Fourier space for these two spectra. We can see that
the contours have undergone a global ”rotation” (indeed
a linear transform of coordinates) compared to their
expected shape, this transform being due to a trivial
anisotropy induced by the overall advection.
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Figures 5 and 6 display the 1-D sections P(k;) for
w = 0 and P(w) for k, = 0, and P(ky) at w = 0 and
P(w) at ky = 0, respectively.

It is indeed clear that the algebraic decay in both the
space and time directions is observed, in accord with
the existence of a scaling space-time cascade process
generating the rain field. Moreover, a rough estimate
of the scaling anisotropy parameter H is possible us-
ing the estimates of the spectral slopes given in fig-
ures 5 and 6. Indeed, equation (52) gives, for w = 0,

P(k) ~ k=% +K@2) and, for k = 0, P(w) ~ w#il:r_;;gl.
Thus the spectral slopes s; and s, estimated, such that
P(k) ~ k~** and P(w) ~w™%«, lead to H = —0.11 for
the z-tsection and H = —0.09 for the y-tsection. These
estimated values of H show a departure from the value
1/3 expected for fully developed turbulence, and also
from the estimated H = 0.5 4 0.3 given in Lovejoy and
Schertzer [1991] for raindrops. Presumably this discrep-
ancy is related to the the rather small ratio of scale of
the data; nevertheless, analyzing techniques were found
to be robust, for example when applied to simulated
fields involving much larger scale ratios. A more com-
plete and detailed analysis of rainfall data for the de-
termination of this scaling anisotropy parameter is thus
needed.

10
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Energy spectrum
o
(2]

10

1040 4,.,..11 — —
10 10

omega or kx

Figure 5. Spectra corresponding to 1-D cut of the k,-w
density of energy P(k;,w). The two cuts are along the
k direction at w = 0 (top) and along the w direction at
ky = 0 (bottom). The estimates of the algebraic slopes,
given by the slopes of the dashed lines, are —1.69 for
the k; spectrum, and —1.52 for the w spectrum.
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omega or ky
Figure 6. Spectra corresponding to 1-D cut of the ky-w
density of energy P(ky,w). The two cuts are along the
ky direction at w = 0 (top) and along the w direction at

"ky = 0 (bottom). The estimates of the algebraic slopes,

given by the slopes of the dashed lines, are —1.8 for the
ky spectrum, and —1.66 for the w spectrum.

6. Limit of Predictability and Forecast

A practical application of our space-time model is
rainfall forecasts, especially immediate forecasts based
on radar maps. But before discussing this central issue,
we first have to clarify how much and by how long we
can forecast, i.e., what the limits of predictability of our
processes are.

Limits of Predictability

Nonlinear systems typically have intrinsic limits of
predictability due to their ”sensitive dependence on ini-
tial conditions”. In the case of finite, and especially
low-dimensional systems of ODEs, theory (determinis-
tic chaos) has reached a high level of sophistication. In
the case of systems with an infinite number of degrees
of freedom (nonlinear PDE systems), some similar fea-
tures are observed or assumed. However, the major
difference is that there is a priori no overall character-
istic time for these systems, but only for structures of
a given spatial scale; therefore the correlation should
decay algebraically rather than exponentially. We thus
claim that the predictability time 7; of space-time cas-
cades should increase with scale, following the relation
7 ~ '~ and that the decorrelation follows the al-
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gebraic law (22). This specificity of our model indeed
recalls the celebrated ”butterfly effect” (although usu-
ally discussed in the framework of deterministic chaos),
classically expected for atmospheric turbulence, and,
following our assumptions, for rainfall fields as active
scalar fields advected by such a turbulence.

A simple way to discuss this issue more accurately is
to simulate two fields initially identical, and decorrelat-
ing themselves after a time ¢y, as for example a conse-
quence of a perturbation at small scale. Former stud-
ies concerning this process have mainly, to our knowl-
edge, dealt with turbulent flows, and, by using closure
methods, have obtained similar simulations all giving
a typical decorrelation time scaling like 77 ~ I3, not
surprisingly following a dimensional argument in every
case [Lorenz, 1969; Leith and Kraichnan, 1972; Métais
and Lesieur, 1986].

Figure 7 displays the cross-correlation spectra at dif-
ferent times ¢ corresponding to the following simulation:
we took two fields €3, and €5, having subgenerator fields
~1a and 2y such that :

Yia(z, 1) = var(z,t) VYt < o (53)
Y1a(z,t) and 72 (z,t) independent Vt > ¢,

For this simulation the exponent H is taken equal to
—1, « = 1.8, d = 1, and the size of the grid is 256 x 256.
The value of K(2) is 0.26 (C1, i.e., the codimension of
the mean singularity, is equal to 0.14). We compute the
spectra

Ew (k,t) = [(é1a(k,t)éan(k, 1))

for different times t — g

(54)

= n7m where 7, is the

min)

Ew
10° . —~— — ——
10' i
100 (=0, =07 i
1=10, B 165
1-20,@2-2.06
-1
‘0 " 4 A A s asald A A Addaasal A i Ad A
10° 10' 10° 10’

Figure 7. Cross-correlation spectra for two diverging
fields. Parameters are o = 1.8, d = 1, K(2) = 0.26. See
text for more details.
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turn-over time at the minimalscale, and n = {0, 10,20}.
The ensemble average is performed on 32 realizations.
We indicate on the graph the estimates of the algebraic
slopes 3 (depending on t) of the spectra, so that

Ew(k,t) ~ kP (55)

in the inertial range (decreasing in length with t). It
can be observed that the phenomenology of the cascade,
i.e,. with smaller structures possessing shorter lifetimes
compared to bigger structures, is indeed retrieved here,
with a stronger decorrelation rate at smaller scales.
Also, we observe the apparition of a cut-off wavenum-
ber k.(t), scaling like k.(t) ~ 7=7 | and corresponding
to the smallest predictable scale at time t. We detail in
Appendix D the expectations for such spectra, i.e., the
changes in the inertial range and in the algebraic slope.

Forecast

As stated earlier, to define a multifractal forecast
method is one of the major goals of this paper. The
understanding of rainfall fields as ensembles of interwo-
ven structures at all scales, characterized dynamically
by lifetimes scaling like 71 ~ I*=H  leads to an intuitive
picture of an optimally (in the sense of not creating
artificial information, i.e., not generating structures at
scales smaller than the smallest predictable scale) pre-
dicted rain field knowing its states in the past. Clearly,
since all information about a given structure after a pe-
riod longer than its lifetime is lost, we should predict
that this structure completely vanish. In the mean-
time, the predicted states should consider this struc-
ture to undergo a relatively constant modulation. We
thus see that there is a clear link between the limits
of predictability and the behavior of this predictor (see
Appendix D for a more formal discussion). This is a
natural link, since the limit of predictability acts like
a boundary mark for the predictor, i.e., past the pre-
dictability time associated with the structures at a given
scale, these structures are simply ”erased” for the pre-
dictor, since nothing is known about them. This con-
firms that one needs to know the field on larger and
larger scales in order to predict its future at longer and
longer intervals.

In the preceding sections, the construction of €y (z,t)
was built up starting from a white noise field, the sub-
generator v(z,t). The whole construction can be sum-
marized by the action of a transform €, depending on
the parameters d, o, H and A, on the subgenerator:

(56)

By inverting this transform, one can determine the
subgenerator associated with a given multifractal field.
Note however that rather complex and interesting ef-
fects can appear, since the direct transform involves a
construction going from the large scales down to the
small scales, thus without any divergence problems (i.e.,
generating a ”bare” quantity) while the inverse trans-
form on €y requires some spatial average of an intermit-
tent field, thus possessing divergent moments of large

ex = Q[
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Figure 8. Optlmal predlctor compared to the actual future states for a realization with parame-

ters a = 1.8, H=1

= 2, and Cy = 0.08. We display the optimal predictor on the left column,

and the actual ﬁel(i3 on the right. The scans shown correspond thus to 2-D spatial scans taken at
times n = 0, 2, 10, 20 (from top to bottom). See text for more details.

enough order due to the presence of extremely strong
singularities (i.e., a ”dressed” quantity). See Schertzer
and Lovejoy [1987a] for a more detailed discussion.
Knowing the process ¢, (z,t) for times ¢ < to, we are
thus able to compute the field yx(z,t) up to this time
to. The requirements for our predictor are that (1) the
predicted field, at any given time, should satisfy the

same normalization conditions as the ones verified by -

the known physical field, (2) it should respect the lim-

its of predictability described above, therefore it should
be truncated in the Fourier space around the cut-off
wavenumber k(t), and (3) it should obviously result
from a causal process. This predictor is obtained by
choosing a subgenerator 4’ such that

7 (2, 1) = a(z, t) VE <to

without expliciting the normalization condition. This

(57)
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choice for 4’ can also be understood by recalling that
v is a white noise field (by definition), and since no
information is available for the subgenerator at times
t > to, to take 4/ = 0 in the future is natural.

The last step is then to apply Q) on this new sub-
generator, to finally obtain the predicted €)(z,t) such
that

e(2,1) = exlz,t) VE < to

€\ (z,t) predicted YVt > tg (58)

It is important to note that this procedure is made
possible only because the causality of 2y, and thus of
our model, is respected, so that the future does not
interfere with the known field € (z,t) (for t < to); oth-
erwise, a noncausal Q) would lead to a field €)(z,t)
different from €, (z,t) for ¢ < to.

We have simulated this procedure for the parameters
d = 2 (two spatial coordinates, one temporal coordi-
nate), « = 1.8, H = 1/3, C; = 0.08, on a cubic grid of
size 643. We display our results in Figure 8, compar-
ing the predictor (left column) with the actual future
states (right column), for times ¢t — tq = nm,_,, with
n = {2,10,20}. We have brought all the negative sin-
gularities to —oo, since small enough, negative singu-
larities lead, for A >> 1, to “holes” in the field, giving
zero values for the rainfall field as seen by a measuring
apparatus. k

7. Conclusions

We follow in this paper the natural link widely used
in earlier cascade models of rainfall: the scaling of the
turbulent medium leads to similar symmetries for the
advected scalar field. By looklng at the scaling in both
space and time, we claim that rain fields are indeed the
result of space-time multiplicative cascades. This leads
us to propose a model of continuous cascades respect-
ing causal properties. The process corresponds thus to
scaling dynamics and, phenomenologically, to a cascade
of structures at all scales characterized by scaling life-
times. We propose a very straightforward approach to
the understanding of the loss of predictability for this
process and, correspondmgly, a method to predict its
future states.

A complete and intensive analysis of rainfall data is
the next step in our work, the preliminary results being
rather promising.

Appendix A

In this appendix we summarize an important prop-
erty of universal continuous cascade processes (see also
Schertzer and Lovejoy [1991]). Equation (24) with the
choice of a scaling filter band-limited to |k| € [1/L; A/ L]
leads to

n@= [ a et ne-g) @

where the integration domain Dy : {|z’| € [L/A; L]} is
the consequence of the band limitation constraint ion
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the filter. T')(z) is then a sum of independent stable
random variables; recalling the stability property of a
Lévy random varlable 7 of index «,

n

Zai%’ = (Z la;|*) =y + by
i=1

i=1

(A2)

where all the 4; and v are identically distributed (and
the v; are all independent), and b, is a recentering term,
we then have

D@=(f I+

with 7y an a-stable random variable and 70 a recentering
term. This finally gives

(A3)

@) = (exlle” [ da' 7)1 +an) (A9

and

(@) = explg® / (A5)

dz’ |z'|™*" + g0
Da ’

Appendix B

We give here some technical details concerning the
Fourier transform of the scale function ||.|| introduced in
GSI (see equation (34)), and involved in the calculation
of the Green function of equation (41) (see also Pflug
et al. [1993]). Consider the function

fp(X) ~ N1XN7° (B1)

where X is the vector in the space time domain X =
(z,t). We determine its Fourier transform:

fold) = [ ax )Pk
The change of coordinate X = T\[Y] gives

fo(B) = (470 dy) B0 eS8

(B2)

Given that A=9dY = X~9dy \~(-H)gt = \~dady
(A=% is thus the Jacobian of the transformation), we
obtain

fﬁ(__}-_‘:) - /d}_/_ A—delAﬁ “}_/-”"ﬁeiK'T)\m (B4)

It is easy to check that K -T)\[Y] = Th[K]-Y, where *T)
is the transpose of the scale changing operator (*T) =
T) in our self-affine case), and thus

F K) = \P—da dy. Y_—ﬁeiTA[ﬂ'X. B5
B

= Xty (T[K)) (B6)
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which finally gives

—del +ﬁ

fo(K) ~ |

K|

(B7)

Appendix C

Using the same arguments as those detailed by Chech-
kin et al. [1995], we can show that the equation of
diffusion

[0 + (=A)%] Talz, ) = (a2, 1) (C1)

is the Fokker-Planck equation with corresponding Lan-
gevin equation of the form:

(C2)

where ((t) is a vectorial, symmetrical Lévy white noise
(since the spatial operator is symmetrical) of Lévy index
&o = (d+ 1)/2x; the constraint de] > h ensures &2 > 0,
and taking H = 1/3 and « > 1 ensures & < 2,Vd.
Note that « has been estimated to 1.35 for rainfall data
[Tessier et al., 1993]. Equation (C1) corresponds thus
to the diffusion of particles with fractional Lévy motions
undergoing the action of the ”source” v, (z,t) (or ”sink”
when 7x(z,t) < 0). We can then write a very formal
solution in terms of path integrals:

T(z,t) = /d@ Ta(z - L(t—7),t—7)

T

/dt’w(gg - L(t"),t—t")

0

(C3)

where £ is a fractional Lévy flight of dimension d veri-
fying equation (C2) starting at z = 0 at ¢t = 0, the inte-
gration [ dL then corresponds to a renormalized sum on
all the paths. The propagator giving the generator at a
time ¢ knowing its state at time ¢ — 7 (and knowing also
the subgenerator form ¢ — 7 until ¢) thus corresponds
to an infinite number of particles undergoing fractional
Lévy flights on a Lévy potential (the subgenerator).

Appendix D

In this appendix we look at the links between dif-
ferent correlation functions corresponding to different
schemes; the theoretical development for determining
the exact correlated energy spectrum is given in Marsan
et al. [1996] and D. Schertzer et al., Multifractal cas-
cade dynamics and turbulent intermittency, submitted
to Fractals, 1996. We show here that the three correla-
tion functions, '

Yi(Az, At) = (ex(z, 1) ex(z + Az, t + At))

for a given causal field €x(z,t),

(D1)

Yo(Az, At) = (é\(z,to+ At) €\ (z+ Az, to+At)) (D2)
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for a field €} (z,t) corresponding to a subgenerator v}
verifying (57), i.e., with 44 (z,¢) = 0 for t > t;, and

Ya(Az, At) = (e1x(z,to + At) ean(z + Az, to + A(t)) )
D3
for two fields-such that their subgenerators y; and y2)
verify (53) (i.e. yia(z,t) = var(z,t) for t < to) all
have identical behaviors in time, and we predict the
temporal evolution of the shape of their spatial Fourier
transforms.
Y} is simply given by equation (22) which can be sim-
plified to

Yi(Az, At) ~ [|(Az, At)||=K® (D4)

In order to determine Y5, we single out the scale [
such that At = 7; thus | = AtTE (again, we non-
dimensionalize ¢ and ¢ using the integral scale/time).
Then for all the structures at scales |Agz| > I, the corre-
lation function Y3 is still unchanged, since the lifetimes
of these structures are longer than the interval At con-
sidered. The correlation is thus simply

Ya(Az, At) ~ |Az| @ v|Ag] > AtFE (D5)

On the contrary, the scales |Az| < I have been spoiled
by the null values, since all the structures at those scales
have been changed, and have thus undergone the influ-
ence of the null part of the subgenerator; we then have

K(2)
=

7, V]|Az| < AtTH

Yo(Az, At) ~ |AL]” (D6)

We then find the same result as for Y7, by using the
proper scale function ||.|| (for example, ||(z,1)|| = max
{lz|, tﬁ}) Finally, the same handwaving argumenta-
tion can be used for Y3, and we find Y; ~ Yy ~ Y3. The
spatial Fourier transform of Y7 gives

(ex(k,t) ex(—k,t + AL)) = //dgdAg

eTERZ ey (z,1) ex(z + Az, t + At)) (D7)
~ / dAz k22 [|(Ag, ADTK®  (D8)

For At = 0, we thus find
Vi(k,1) ~ [|-H+KO) (D9)

For At > 0, the breaking of scaling in the integral in
(D8) at |Az| ~ AtTF leads to an equivalent breaking
in the Fourier space around |k| = k.(At) ~ At"TH
thus reducing the inertial range. In the limit case At —
oo the function to be integrated in (D8) tends to zero,

and the correlation is thus found to be null at every
wavenumber.
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