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Direct Evidence of Multifractal Atmospheric Cascades from Planetary
Scales down to 1 km
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We use 909 satellite images spanning the scale range 1–5000 km at both visible and infrared wave-
lengths to show that the variability at all observed scales and at all levels of intensity is very close to
that predicted for a direct multiplicative scale invariant cascade starting at planetary scales. To within
1.6%�octave in scale, the observed type of (multi)scaling is very close to that theoretically predicted for
universal multifractals, including multifractal phase transitions. Because of the strong vertical stratifica-
tion, the scaling cannot be isotropic; these findings thus give strong support to the anisotropic “unified
scaling” model of atmospheric dynamics.
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In his seminal book [1], Richardson suggested that at-
mospheric dynamics were ruled by a cascade of energy
injected by solar forcing at the largest scales cascading
scale after scale until finally dissipated. Unfortunately,
due to the theoretical focus on (local) isotropic theories of
turbulence— first in three dimensions (leading to the fa-
mous k25�3 Kolmogorov law [2]) and then in two dimen-
sions (where it led to small scale k23 and large scale k25�3

laws [3,4]), atmospheric turbulence was circumscribed to
regimes with relatively modest scale ratios. In spite of
the strong anisotropy due to gravity and the Coriolis force
the focus is still on the isotropic special cases which at
best can apply only over scale ranges much smaller or
much larger than the scale thickness of the mean pressure
(roughly 10 km).

The 3D/2D “dimensional transition” at around 10 km
was called the “mesoscale gap” and was initially given
some empirical support by estimates of wind spectra [5,6].
In spite of strong criticism [7,8] it was eventually conse-
crated in Monin’s [9] influential work. However, develop-
ments in the 1980s seriously undermined this picture and
led to a renewed interest in cascades. On the empirical
side, the first large scale campaign specifically to measure
the horizontal velocity spectrum (the GASP experiment
[10,11]) failed to find evidence of a mesoscale spectral
gap anywhere near 10 km; instead it found k25�3 behavior
extending to hundreds of kilometers; this was consistent
with analyses of cloud “perimeters” which showed excel-
lent scaling over the range 1–1000 km [12], as well as
the consistent empirical evidence from the 1960s onwards
[13–17] that the vertical spectrum of the horizontal wind
follows Bogliano-Obhukhov k211�5 scaling throughout the
troposphere.

In the 1980s, it became clear that cascades were generic
multifractal processes. The notion of scale invariance
itself was formulated as a rather general, but nonclassi-
cal, symmetry principle [13] in which isotropy (“self-
similarity”) was neither required nor expected. It was
hence more logical to postulate a scaling but anisotropic
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cascade rather than separate small and large scale isotropic
cascades (the “unified scaling model of the atmosphere”
[17,18]). This “generalized scale invariance” implies
anisotropic cascades in which the effects of anisotropy
(differential stretching, rotation, compression, etc.), yield
structures whose appearance systematically changes with
scale. Phenomenological classifications based on mor-
phologies are misleading and could conceal a common
cascade dynamics. Indeed, Refs. [19,20] showed —in
spite of appearances to the contrary —that classical
phenomenological space-time (“Stommel”) diagrams of
the atmosphere actually imply a scaling velocity which
varies with scale according to the Kolmogorov law over
the entire range of meteorologically significant scales.

Most tests of the extent and type of atmospheric scal-
ing have concentrated on the velocity field (e.g., [21,22])
with the result that there is now agreement that at least at
the small scales, it is indeed multifractal as predicted by
cascade theories; the debate (see [23]) is now primarily
on the exact type of cascade. Unfortunately, due to the
strong intermittency it is very difficult to get adequate sta-
tistics. Recently, the situation has clarified somewhat due
to spectral analyses of aircraft wind data in the troposphere
[24] and stratosphere [25] (see also [26]). Out to about
500 km there is agreement that the spectrum is roughly
k25�3; however, at larger scales, the stratospheric spec-
trum continues as k25�3 out to at least 3000 km, whereas
in the troposphere there may be a slight increase in spectral
slope. Whether this relatively small effect (which would
be eliminated with a factor of only 2–3 increase in the high
wave number energy) is real, an artifact due to the com-
mercial aircraft deviating to avoid storms [18] or a conse-
quence of strong horizontal tropospheric anisotropy is still
not clear. In contrast, in the vertical the empirical situa-
tion is much simpler since the largest relevant scales are
10–20 km which are experimentally accessible with bal-
loons. From the 1960s onwards various studies [14–17]
found Bogliano-Obhukov k211�5 scaling, supporting the
anisotropic cascade picture.
© 2001 The American Physical Society
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From the empirical evidence of the k25�3 horizontal
and k211�5 vertical scalings, an anisotropic cascade picture
emerged, as well as a corresponding anisotropic “unified
scaling” model [17,18] which combines both scalings and
has an “in between” elliptical dimension � 23�9 [17].

A straightforward way of overcoming the relative
paucity of large scale velocity data is to use remotely
sensed cloud data. For example, a single cloud scene of
1000 pixels on a side has roughly the same information
content as the entire GASP experiment. Clouds are
strongly nonlinearly coupled with the velocity field, so
that if the scale invariant symmetry is broken in the
velocity field, it will almost certainly be broken in the
cloud field (and vice versa). In addition, 2D cloud images
have the advantage that unlike 1D aircraft data, they are
largely unbiased by horizontal anisotropy.

We performed a direct check of the cascade model by us-
ing 909 satellite cloud pictures at both infrared and visible
wavelengths, from three satellites and with a year of (near)
daily data. The primary data set was obtained from the
Atmospheric Radiation Measurement archives and con-
sisted of scenes over their Oklahoma test site (“CART”)
from the sun-synchronous NOAA-12 and NOAA-14
satellites’ Advanced Very High Resolution Radiometer
(AVHRR) sensor with subscenes centered over Wichita,
Kansas. In addition, a smaller set of geostationary GMS-5
images over the central Pacific were also used. The geo-
stationary meteorological satellite (GMS) data were
taken within a month of each other and so were less
representative of the meteorological variability but had
the advantage of extending the range of scales to over
5000 km (only the central 1024 3 1024 pixel square was
used in order to minimize cartographic distortion). The
sampling was reasonably complete and unbiased even
though images were not received every day and some
winter (visible) images were rejected due to insufficient
light (see [27] for more details). Overall 284 visible and
564 IR AVHRR images were used (1.1 km resolution), as
well as 29 visible, 29 IR GMS images (5 km resolution).

To understand the analysis, recall that cascades were
originally developed to study intermittency in turbulent
energy fluxes �´� which are (on average) conserved from
scale to scale during the cascade. Starting at a large outer
scale, due to instability or nonlinear interactions, large
structures break up into smaller eddies, the flux through the
latter being multiplicatively modulated by the former. This
process repeats scale after scale until it is finally stopped
by the action of viscosity at small scales. The variability
at scale ratio l is

�´q
l� � lK�q�; l �

Leff

l
. (1)

´l is the energy flux nondimensionalized by the ensemble
mean flux, Leff is the effective outer scale of the cascade, l
is the scale of an eddy, the angular brackets indicate sta-
tistical averaging, and K�q� is a convex function which
characterizes the multiscaling. This fundamental cascade
equation describes the variability from the weak fluctua-
tions (low q) up to strong fluctuations (high q) at all scales.
When l � Leff, we have l � 1 and �´q

1� � 1 implying
that ´1 is a “sure” (nonrandom) value; Leff is therefore the
outer scale of a pure cascade which would yield all the
observed variability. Since the true cascade process has
variable input flux at the largest scale, not all the variabil-
ity is due to the cascade; hence if a true (infinite) ensemble
were used to estimate the moments, Leff would be an up-
per bound on the outer scale. At the small scales, due to
the finite cloud thickness, the inner radiance scale could be
larger than the viscous scale (see [28]).

In order to test the cascade hypothesis, it is sufficient
to estimate a (scale by scale) conservative quantity analo-
gous to the energy flux which we denote by w and to sys-
tematically degrade its resolution (by averaging, “coarse
graining,” or equivalently by using wavelets) to obtain wl.
For each moment q, we can then perform a linear regres-
sion of log�wq

l� against logl to test Eq. (1) (with w in-
stead of ´) and estimate K�q� from the slope and Leff from
the intercept.

In turbulence, the Kolmogorov law relates ´l to the cor-
responding velocity shears Dy by the linear scaling law
Dyl � ´

a
ll2H (with a � H �

1
3 ). A similar (“Corssin-

Obhukov”) scaling law holds for (passive) scalar field;
for the radiances we expect an analogous relation DIl �
w

a
ll2H . Since the linear l2H scaling can be modeled

by a fractional integration (power law filter) of order H
(the fractionally integrated flux model [19,29]), its effect
can be removed by differentiation of order .H; Ref. [30]
shows that it is sufficient to use the modulus of the finite
difference gradient vector [31] which is a numerical ap-
proximation of an isotropic differentiation of order H � 1.
Reference [27] shows that on an image by image basis H
varies between 0.2 and 0.6 and that H is the only parame-
ter that had significant scene to scene variability; it was
the only one which was systematically different over land
and ocean. Also, without loss of generality, we may take
a � 1 [19].

The result of the data analysis is shown in Fig. 1. As
predicted by the cascade model, the power law scaling
lines for the different moments point quite accurately
to the same outer scale Leff. Using linear regression of
the log(moment) against logl and using the intercept
to estimate Leff for each q value, we obtain 19 900 6

3900 km, 19 500 6 6200 km (visible, NOAA 12, 14),
24 500 6 13 700 km, 27 500 6 11 200 km (IR, NOAA
12, 14); the errors are those of the seven values of q
shown in Fig. 1. The overall mean for the four is Leff �
22 850 6 3300 km (i.e., an extrapolation by a factor of
22 850�280 � 82 in scale). The limited GMS-5 sampling
leads to an underestimate of the ensemble variability
so that the GMS-5 data have Leff � 6330 6 230 km,
3500 6 240 km (IR, visible, respectively), i.e., an overall
mean 4920 6 1420 km. Although this difference of fac-
tor l0 � 22 850�4920 � 4.6 may seem large, it actually
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FIG. 1. The multiscaling of the moments ��wq
l�� as functions of

scale ratio l � Leff�l for fields degraded to resolution l, and the
effective outer scale Leff � 20 000 km. (a) NOAA 12 infrared;
(b) NOAA 12 visible; (c) NOAA 14 infrared; (d) NOAA 14
visible; (e) GMS-5 infrared; (f ) GMS-5 visible.

implies only a very small underestimate of the variability
by the GMS-5 data: for example, using K�2� � 0.16
[Fig. 2(a)], we see that if the standard deviations were in-
creased by a factor of only �l0�K�2��2 � 1.1 then the two
Leff estimates would agree. Clearly some of this differ-
ence could be due to the different variabilities of clouds
over land (AVHRR) compared to clouds over ocean
(GMS). Note that the GMS data show that 4920 km is a
lower bound on the true outer scale. Performing regres-
sions with quadratic functions shows that the 2nd order
terms are on average small: only 1.6%�octave in scale.

Finally, in Fig. 2, we compare the K�q� functions esti-
mated from the slopes in Fig. 1. We see that the visible
and infrared data differ somewhat from each other; this
is not surprising since the variability in the two are non-
linearly related, one depends on solar reflection, the other
on blackbody emission. Note now that for both infrared
and visible data, the K�q� for the two satellites are nearly
identical (and curved) until certain critical q values. For
the visible data, they then seem to follow asymptotes tan-
gent to the curves after critical values qcr � 3.8, qcr � 4.2
(NOAA 12, 14, respectively), whereas for the infrared
data, they both seem to follow different nontangential
asymptotes after qcr � 1.9. These are apparently the sec-
ond and first order multifractal phase transitions described
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FIG. 2. (a) Visible: K�q� against q; top points are for NOAA-
12, bottom for NOAA 14, and the curve is the theory for
a � 1.93, C1 � 0.076. The straight line asymptotes show sec-
ond order multifractal phase transitions at qcr � 3.8, 4.2, re-
spectively. (b) Infrared: K�q� against q; top points are for
NOAA-12, bottom for NOAA 14, and the curve is the theory
for a � 1.94, C1 � 0.083. The straight line asymptotes show
first order multifractal phase transitions at qcr � 1.9.

in [32,33]; the different asymptotic slopes are equal to
the different maximum orders of singularities present in
each sample. In second order phase transitions, qcr is
simply the largest that can reliably be estimated with the
finite number of scenes; in first order transitions qcr is due
to the divergence of moments combined with the effect
of finite sample size. Since the data sets do not have the
same number of scenes, for q . qcr the slopes are differ-
ent, while for q , qcr, they are insensitive to sample size.

In order to make quantitative comparisons of the K�q�’s,
we have fit the latter to the functional forms theoretically
predicted on the basis of “universal multifractals” which
are stable, attractive multifractal processes (for the debate,
see [23]):

K�q� �
C1

a 2 1
�qa 2 q� , (2)

where C1 is the codimension of the mean singularity and a

is the Levy index which characterizes the degree of multi-
fractality; Fig. 2 graphically shows the excellent fits which
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are obtained up to the phase transitions. Although some
variation between NOAA and GMS is expected since the
former is mainly over land, while the latter is over ocean,
if we take the average for each wavelength, we obtain a �
1.91 6 0.02, C1 � 0.077 6 0.001, (visible) a � 1.90 6

0.03, C1 � 0.0845 6 0.004 (infrared). These can be com-
pared to values obtained from a recent study of 38 ground
based visible cloud images over the scale range 1 m–1 km
[28] which obtained (the similar) values a � 1.77, C1 �
0.061 (see also [34–36]).

Because of the ad hoc assumption of isotropic scaling,
standard turbulence approaches have great difficulty
explaining two basic empirical observations: (a) how the
vertical and horizontal scalings can be so different from
each other and (b) how the horizontal scaling can be re-
spected so well right through the mesoscale. However, we
have seen that anisotropic cascades starting at planetary
scales can easily account for the observed variability in
cloud radiance fields over the entire range 1–5000 km, for
both weak and strong fluctuations/structures. Since such
cascades generically give rise to multifractal fields with
their hierarchies of strong structures (mathematically, sin-
gularities), this picture neatly accounts for the “coherent
structures”; indeed, in the infrared we find evidence for
particularly strong self-organized critical structures pos-
sibly related to thermal “fronts” in agreement with the
earlier empirical evidence of dynamical self-organized
structures [37]. Finally, since such anisotropic scaling
generally leads to systematic changes in morphology with
scale, this wide range scaling turns out to be compatible
with standard meteorology.
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