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Generalised Scale Invariance and Multiplicative Processes 
in the Atmosphere 

D.  SCHERTZER 1 and S. LOVEJOY 2 

Abstract--Many geophysical fields show highly intermittent fractal structures spanning wide ranges 
of scale. However, few are isotropic: "texture", stratification, as well as variable (scale dependent) 
orientation of structures is far more common. To deal with such fractals, we must generalise the idea of 
scale invariance beyond the familiar self-similar (or even self-affine) notions. Taking the atmosphere as 
Our primary example (however, we also model galaxies), we outline the necessary formalism (generalised 
scale invariance), and show how it can be used to deal with the strongly intermittent structures which result 
from multiplicative (cascade type) processes concentrating matter or energy into smaller and smaller scales. 

We illustrate these ideas with rain data from blotting paper and radar, showing first haw to directly 
estimate the elliptical dimension characterising the stratification, and second, how to determine universal 
scale-independent (invariant) codimension functions that characterise the distribution of the intense rain 
regions. 

Key words: Scale invariance (scaling), (multi-) fractal, nonlinear variability, turbulence, geophysics, 
atmosphere, multiplicative processes. 

1. Introduction 

Scaling notions are associated with power-law spectra, lack of characteristic 
scales over wide ranges, and the appearance of fractal dimensions and structures. 
More precisely, a system may be said to be scaling (or scale invariant) over a range 
if the small and large scale structures are related by a scale changing operation 
involving only the scale ratio. The above characteristics are common in many areas 
of geophysics, and if considered under the general rubric of nonlinear variability, 
constitute a central, and indeed unifying aspect of geophysical systems. 

In recent years, there has been a series of new developments in our understand- 
ing of scaling, particularly of scaling fields (measures) including several that were 
specifically stimulated by geophysical applications. These new ideas involve both the 
possibility of very general anisotropic types of scaling (necessary, for example to 
deal with rotation, stratification or "texture"), as well as "multiple scaling" 
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have different scaling behaviour. These results are important since in geophysics, we 
are immediately faced with the problem of extremely variable fields rather than with 
sets of points. While the development of geometrical fractal notions (MANDEL- 
BROW, 1982) is often suggestive and has been important, the development of 
concrete analytical methods has tended to show that geometrical frameworks can 
often be misleading. Indeed, it seems increasingly clear that fractal notions have 
been most fruitful when divorced from geometry. Particularly important in this 
regard has been the abandonment of the dogma of the unicity of fractal dimension 
in favour of hierarchies of dimensions and singularities defined by nongeometric 
generators. 

Mushrooming interest in geophysical applications of such nonlinear variability 
has lead to two workshops on the theme "Scaling, fractals and Non-linear 
VAriability in Geophysics 1" (NVAG1) in August 1986 at McGill University 
(LOvEJOY and SCHERTZER, 1988a; SCHERTZER and LOVEJOY, 1988a), and at the 
former Ecole Polytechnique in Paris France, (NVAG2, June 1988) 9 There has also 
been a session on fractals in geophysics at the December 1986 AGU meeting (see 
some of the papers in a forthcoming special issue of PAGEOPH).  

Below, we outline a number of relevant theoretical developments and give 
examples of the applications to atmospheric phenomena 9 Section 2 gives a fairly 
nonmathematical overview, and sections 3 and 4 outline the geophysical motivation 
for generalising scale invariance to anisotropic situations, concentrating on the 
example of the atmosphere 9 Sections 5 and 6 give a more precise mathematical 
formulation, including relations to intermittency, singularities and divergence of 
high order statistical moments 9 Section 7 discusses some applications to radar rain 
data and includes two new data analysis techniques, functional box-counting and 
elliptical dimensional sampling 9 More detailed developments of the formalism can 
be found in SCHERTZER and LOVEJOY (1987a,b) and other geophysical applications 
will be found in the references 9 

2. Multiple vs Simple Scaling 

Perhaps the simplest illustration of scaling and scale invariance is to consider the 
("metric" or more exactly "measure") idea of dimension of a set of points. The 
intuitive (and essentially correct) definition is that the "content" of the set n(L) at 
scale L is given by: 

n(L) oc L D (1) 

where D is the dimension (e.g., the length of a line oc L, the area of a plane, oc L 2, 
the number of in situ meteorological measuring stations on the earth in a circle 
radius L ocL 1"75 (LovEJOY et al., 1986a,b) or the distribution of raindrops on a 
piece of blotting paper ocL ~83 (see Figures la,b and LOVEJOu and SCHERTZER, 
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Figure la 
An empirical illustration of  eq. (I)  obtained by exposing chemically treated blotting paper (128 • 128 cm 
in size) for ~ 1 s in rain. The (452) points represent the drop centres. For a complete analysis, see 

LOVEJOY and SCHER'rZER (1988b). 
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The function (n(L)) measured by determining the average number of drops within a radius L of each 
drop (this involves 452 • 451/2= 101,926 drop pairs). The log L-log(n(L)) plot shows D (the 
slope) ~ 1.83. At scales -< 2 mm, the finite number of drops leads to deviations, while at scales -> 40 cm, 

the finite size of the paper is important. 

1988b). The  " v o l u m e "  (ac tua l ly  the measure  o f  the set) is therefore  a s imple (power  
law) funct ion,  and  the d imens ion  is i m p o r t a n t  precisely because it is scale invar ian t  
( i ndependen t  o f  L). 

In  geophysica l  fluid dynamics  the existence o f  scaling regimes can  of ten be 
a rgued  direct ly  f rom the dynamica l  equat ions  themselves:  the only  scales associa ted  
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with the Navier-Stokes equations are a large-scale involving energy injection, and a 
small viscous scale where the dissipation occurs. In the atmosphere these scales are 
roughly the order of thousands of  kilometers and several mm respectively, allowing 
the possibility of a scaling regime spanning over nine orders of magnitude in scale.1 
Furthermore, the notion of scaling regimes in the atmosphere can be traced back to 
Richardson (the father of  numerical weather prediction), who, in the 1920's, 
suggested a model of atmospheric dynamics involving a self-similar cascade of 
energy from large to small scales. Since then, scaling ideas have been central to 
studies of turbulence, a fact that is most notably expressed by the ubiquity of  the 
scaling k -5/3 Kolmogorov spectrum of velocity fluctuations in geophysical flows. 

The turbulent velocity field (v) affords a convenient example with which to 
develop the basic scaling ideas. The first scaling of interest, might best be called 
"simple scaling" since it occurs when only one parameter is sufficient to specify the 
scaling of all the statistical properties. Assuming statistical invariance and isotropy 
(including reflectional symmetry), the fluctuation of the velocity depends only on 
the d i s t ance / (= l t l )  between the points x and x + 1: 

Av(Z)  = Iv(x + 0 - v ( x )  l  9 

In this case, dividing the scale by the scale ratio 2, we reduce the fluctuation by the 
factor  j H 

= 2u (2) 

(where, A,v,(2l!,= [v(x + 2 / ) -  v(x)l, and H is the (single) scaling parameter2). The 
equality (' d ) is understood in the sense of probability distributions, hence the 
scaling of  the various high order statistical moments follows: 

(Av(l/2)h) = 2-~(h)(Av(l)h) (3) 

with ~(h) = hH, and " ( .  ) "  means "ensemble average". Since the energy spectrum 
is the Fourier transform of  the covariance, we have a spectrum k ~ with 
/3 = 2H + 1. If one assumes a scale invariant flux of energy to small scales (the 
nonlinear terms in the Navier Stokes equations conserve this flux, while breaking up 
large eddies into smaller and smaller sub-eddies), then dimensional analysis gives 
Av(l) oc ~ 1/3p/3, hence, H = 1/3,/3 = 5/3. Note that such a behaviour for the velocity 
field already leads to velocity fields with interesting properties such as singular 

i It is worth noting that from the perspective of dynamics, our system is far from equilibrium: it 
conserves energy fluxes rather than energy. 

2 It is perhaps worth noting that KEDDEM and Cmu (1987) discuss an even simpler kind of scaling 
in which the function rather than the differences obey eq. (2) i.e., v(l/2) d 2 -'Vv(1)--hence such processes 
are not statistically translationaUy invariant. As pointed out in LOVEJOV and SCrtERTZER (1988C) this 
"very simple scaling" is so simple (and restrictive) that it is unlikely to have geophysical applications. 
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shears (since t3v/dx ,~ Av/l ,~ 1 2/3 which diverges as l ~ 0 ) .  The problem of such 
singular behaviour was first discussed by Leray and Von Neumann in the 1930's 
and 1940's. As we shall see below, that it is indeed central to our current 
understanding of scaling fields (more precisely, of fractal measures). 

In the 1960's, KOLMOGOROV (1962) and OBUHKOV (1962) pointed out that 
scaling generally involves an infinite number of parameters (e.g. r is not generally 
linear in h, see the discussion in YAGLOM and MONIN, 1975). This is a richer and 
more interesting behaviour called multiple scaling. The simplest way of expressing 
this is to consider a scale invariant quantity such as the energy flux e whose 
ensemble spatial average is fixed (independent of scale), but, is nonetheless (in a 
given realisation of the cascade process), highly intermittent. This extreme variabil- 
ity or intermittency can be built up step by step in the cascade process in which 
large eddies modulate multiplicatively the flux to smaller and smaller scales: see 
schematic diagrams Figures 2a,b and Figures 3a,b,c,d,e. Denote by e~, the flux 
smoothed over a region A (e.g., eA is the spatial average over a set A, dimension 
D(A), divided by the volume of A). In this case, we obtain 

h (~ T~A ) = 20-l)c(h)(e~) (4) 

where T~ is a scale changing operator, that "reduces" by a factor 2. When eq. (4) 
holds and e is isotropic, then the required scale change is simply T~A = 2 -  ~A (e.g., 
a simple reduction by factor 2), and we have a self-similar field (see section 5 for 
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Figure 2a 
A schematic diagram showing two steps of an isotropic homogeneous cascade (left), and an inhomoge- 

neous (intermittent) cascade (right). 
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Figure 2b 
Same as 2a but for anisotropic case (see section 3). 
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anisotropy). C(h) is a convex function which for each moment h, can be inter- 
preted as the codimension associated with the h th moment. (The codimension is 
simply the difference between the fractal dimension of a set and the space in which 
it is embedded--in the meteorological observing network on the earth's surface 
C = 2 - 1 . 7 5 = 0 . 2 5 . )  We have recently shown (SCHERTZER and LOVEJOY, 
1987a,b), that in such multiplicative cascades, singularities of all order (V) are built 
up progressively as the cascade proceeds to smaller scales, hence as l ~ 0 ,  et ,~ l - r  
with each order of singularity itself, distributed over a set with (different) codi- 
mensions c(7) (see section 6 for more details) 3. Both families of  codimensions 
(C(h) and c(7)) are related by a simple (Legendre) transformation (FRISCH and 
PARISI, 1985). 

These surprising mathematical properties of multiplicative processes are them- 
selves associated with a number of interesting phenomenon (notably the divergence 
of high order statistical moments, itself related to the existence of statistical 
"outliers" in the data), and involve fields that are extremely intermittent with 
statistical properties depending not only on the scale, but also on the dimension 
(e.g., line, plane or fractal set) over which they are averaged (SCHERTZER and 
LOVEJOY, 1984, 1985b; LOVEJOY and SCHERTZER, 1988d). This leads to interesting 

3 An exception to this hierarchy is the monodimensional "beta model" discussed in NoviKov and 
STEWART (1964), MANDELBROT (1974) and FRlSCH et al. (1978). 
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Figure 3 
We show a function which starts of homogeneous (constant) over the entire interval shown in a), whose 
scale of homogeneity is then systematically reduced by successive factors of 4 in b,c,d,e. This is an 
example of a cascade "'e model" (see SCHE~,TZER and LoveJoy, 1985b), which is constructed by 
multiplying randomly chosen weights over smaller and smaller scales in such a way that on average, the 
area under the curve (representing the energy flux to smaller scales) is conserved. Because of this 
constraint, the increasingly high peaks must become more and more sparse. In the limit of the scale of 
homogeneity going to zero, the function is dominated by singularities distributed over sparse fractal sets. 

app l ica t ions  to the p rob l em of  measurement  and  ca l ib ra t ion  o f  geophysica l  da t a  
(LOVEJOY et al., 1986a,b; MONTARIOL and GIRAUD, 1986; MARQUET and  PIRIOU, 
1987; LAVALLt~E et al., 1988; LOVEJOY and SCHERTZER, 1988b; GABRIEL et al., 
1988a,b; HUBERT and CARBONNEL, 1988). 

3. Scale Invariance as a Geophysical  Invariance Principle 

We have cons idered  in detai l  the example  o f  scal ing o f  geophysical  fluid systems 
where scal ing ideas have been developed  over  a cons iderable  per iod  o f  time. W h a t  
a b o u t  o ther  geophysica l  fields such as the d i s t r ibu t ion  o f  minerals  in the ear th ' s  
crust ,  gravi ty  anomal ies ,  etc.? Even when the dynamica l  equat ions  are  unknown,  we 
can still ( fo l lowing an a p p r o a c h  famil iar  to physicists)  a rgue  that  a t  least over  
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Figure 4a 
Schematic illustration of the scaling (semi-) group T~ = 2 - a  showing both isotropic (self-similar) and 
anisotropic cases. The basic properties are that if 2 = 21~. 2, then T a = T,z,T,~ 2. Furthermore,  the "volume" 

of  the ellipsoids is oc 2 a-t where d~t = Trace G. 
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Figure 4b 
Linear, self-affine balls with stratification dominant.  
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Figure 4c 
Nonlinear examples of balls. 
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Figure 4d 
A phenomenological galaxy model generated by 50,000 points (each representing a star) with positions 
_r = T~r' where r '  is an isotropic vector in the plane with Pr(]_r'] > R) ~ R -~ with ~ = 0.10 and T~ = 2 - a  
with G = (81 -6) (linear GSI). Here, G was chosen so that rotation dominates yielding a (logarithmic) spiral 
galaxy. (For the decomposition of G into elementary basic matrices, see SCHERXZER and LOVEJOY, 1985a.) 
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Figure 4e 
Same as in Figure 4d except for 20,000 points, e = 0.25, G = (2.~8 -0.o8 o.2s ), ( implying that stratification 

dominates),  yielding a " b a r "  galaxy 9 

certain ranges, that these fields are likely to be symmetric with respect to scale changing 
operations. This view is all the more compelling when it is realised that the requisite 
scale changes T~ can be far more general than simple magnifications or reductions. 
In fact, it turns out that practically the only restriction on T;. is that it had group 
properties, viz: T;. = 2 a where G is a the generator of the group of scale changing 
operations. In this"Generalised Scale Invariance" ( "GSI" ,  see Figures 4a and section 
5 below), G can be either a matrix ("linear GSI",  self-similarity means G = identity), 
or a more general nonlinear function (see Figures 4b,c). Figures 4d,e show how 
knowledge of this symmetry principle can produce simple models of galaxy structure 
(see section 5). In fact, it turns out that scale invariance allows for such a tremendous 
variety of behaviour (i.e., it is only a very weak constraint on the dynamics), tha t  
very little can be said apriori about scaling systems. Detailed data analysis and fractal 
models will doubtless be required to gain more insight into the relevant dynamics. 

4. The Need for a General Formalism for Anisotropic Scale Invariance, the Example 
of the Atmosphere 

A self-similar model of atmospheric turbulence could not hope to cover more 
than a very limited range of scales. This is obvious when one considers extrapola- 
ting using self-similarity, a roughly cubic cloud 1 km in size to a cloud a thousand 
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kilometers long--i t  would also be a thousand kilometers high, a possibility pre- 
cluded by the strong atmospheric stratification. The classical schema of atmospheric 
motions (e.g., MONIN, 1972), attempts to overcome this difficulty by considering 
that atmospheric turbulence is three-dimensional at small scales but (a very 
different) two-dimensional turbulence at large enough scales. Due to numerous 
advances in remote and in situ measurements (see e.g., LILLY, 1983 or SCHERTZER 
and LOVEJOY, 1985b for reviews), it is now clear that single scaling regimes exist 
over most of the range of  meteorologically significant scales in both the horizontal 
and vertical directions, although with very different scaling exponents (e.g., the 
horizontal wind has spectral exponents flh ~ 5/3, fl,, ~ 11/5 in the horizontal and 
vertical directions, respectively. 

To avoid this untenable 2D/3D dichotomy, we have proposed an alternative 
scaling model of  atmospheric dynamics (SCHERTZER and LOVEJOY, 1983a,b, 1984, 
1985a,b,c 1986; see also LOVEJOY and SCHERTZER, 1986 for a nonmathematical 
review). In this model, the anisotropy introduced by gravity via the buoyancy force 
results in a differential stratification and a consequent modification of the effective 
dimension of space, involving a new elliptical dimension (det), with resulting 
anisotropic shears. In isotropy, de1 = 3, while in completely flat (stratified) flows, 
det = 2. Empirical and theoretical evidence were given indicating de/is rather the 
intermediate value dd = 2 + (/~ -- 1/(3,, -- 1) ~ 23/9 = 2.5555. 

In order to take into account this and other effects such as the differential 
rotation introduced by the Coriolis force, a general formalism of scaling is required. 
The fundamental problem is that of finding a family of  "balls" representing the 
statistical properties of  the eddies at different scales via (mathematical) random 
measures, such as the flux of energy through structures of  a given scale. The first 
step is to generalise the notion of Hausdorff measures and the related (Hausdorff, 
fractal) dimensions in an anisotropic framework. We recall that such measures are 
rather straightforward extensions to noninteger D of the Lebesgue measure (defined 
for integer d), thus we use the notation SA dDx for the D-dimensional Hausdorff 
measure of a (compact) set A. The Hausdorff dimension D(A) of  A is still defined 

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 D(A) 
D 

HAUSDORFF MEASURE 

Figure 5 
Divergence rule for Hausdorff measures. 
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by a divergence rule ("the length of a surface is infinite, the volume of it z e r o . . .  ", 
see Figure 5): 

~A dDX = 0% for D < D(A); fA dDx = O for D > D(A) . (5) 

It turns out that the divergence of statistical moments are derived from a slightly 
more complex (twin) divergence rule (see section 6). 

5. Generalised Scale Invariance (GSI) 

Close examination of the phenomenology of turbulent cascades reveals the basic 
properties associated with the notion of scale: the (intermittent) concentration of 
the flux on sparser and sparser regions as the scale of homogeneity goes to zero. 
Thus scale changing is related to measurable properties of the flow, i.e., how the 
measure of the energy-flux becomes more and more intermittent (less and less 
homogeneous). We are lead to the following abstract definition in terms of a (semi-) 
group (the "scaling group") of operators T~ which reduce the scale by ratio 2 (see 
Figure 3 for a schematic illustration) 

T~ = 2 -G = exp( - G  log 2). (6) 

If G is not the identity, Tx is no longer a mere contraction; and the eddies are 
no longer self-similar (when G is linear, and has no off-diagonal elements, the Tx is 
self-affine). The consequence of this kind of transformation is that the energy flux 
is no longer evenly distributed on subsets with equal topological, and (isotropic) 
Hausdorff dimensions. For example, as soon as we anisotropically distribute the 
activity of turbulence (such as in Figure 2b), a vertical line is no longer equivalent 
to a horizontal one, etc. 

In isotropy, scaling is based on three essential ingredients: 
- - A  unit sphere 
- -The identity 1 as the generator of the self-similar scale changing transformation, 

ratio 2, (T;. = 2 -1) 
- -The resulting scale notion q~ (which is simply the radius of the sphere S~ = 2 -  ~S,, 

and at the same time, ~b(Sx) = 2-1~b(S0 = 2 - l  
Anisotropic scaling is based on the same ingredients, but with Tx = 2 - a  with 

G # 1, and c~r 2 ~bd(Sl ). The subscript "el" is used in the following to 
refer to the fact that in anisotropy, the scale-defining spheres are typically flattened 
ellipsoids (see Figure 4b). In fact much more general shapes are possible as soon as 
we use nonlinear generators: the balls need not even be convex (Figure 4c). Figures 
4d,e give an example of linear GSI used as a phenomenological model for the 
structure of galaxies. The physical justification of such models rests on the fact that 
the electromagnetic and gravitational forces presumably responsible for galactic 
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structure, are scaling (power law), hence the resulting structure ought to respect the 
same scale invariant symmetries. Note that the natural classification of  linear GSI 
into rotation or stratification dominant (SCHERTZER and LOVEJOY, 1985a) corre- 
sponds (at least visually) to spiral and "bar" galaxies, respectively. 

The method of getting from the isotropic triple {S1, 1, ~b} with ~ = (~A d ax) 1/a t o  
the anisotropic {S~, G, ~el) is to test whether the generator G has the required 
properties for the self-affine ellipsoids E~ = T~(S~) rather than the self-similar 
spheres. In particular, are the E~ decreasing with 2, and how can one define ~befl The 
answers to both these questions turn out to be simple (see SCHERTZER and 
LOVEJOY, 1985a), on condition that every (generalised) eigenvalue of G has a 
nonnegative real part, i.e. 

inf Re ~(G) _> 0 
o-(G) = {~t ~C I G - # 1  noninvertible on CX~R a} (7) 

o-(G) being the (generalised) spectrum of G, and Jet is simply defined as 

c~d~'(E~) = dpd(E~) = 2 del~)d(Sl) ~--- 2 --del(~d~'(Sl) (8) 

with det = Tr(G). Anisotropic Hausdorff measures of dimension De~ are simply 
defined as 

fAdDe~x = lim inf (a~et(Ei) 2 (9) 
~ 0  ~ E i ~ A  i 

<bel(E 9 < 6 

since (due to eq. 8) c~'(TaSI) = (~D(T~SI), with D = (d/d~l)Det, ~A d~ is similar to 
~A dDx notwithstanding the difference that the former case, involves a covering by 
ellipsoids (E~) rather than spheres (Si) as in the latter. Nevertheless, if A is not 
"strange" (pathological), a near optimum covering (i.e., nearly equal to the 
infimum above) of  ellipsoids can be associated with a near optimum covering of  
spheres (each of  the ellipsoids is itself covered nearly optimally by smaller spheres). 
We can therefore expect the divergence rule for ~ dD~x and ~A dDx to be the same. 
We have thus the following rule 

Dr = D(A)/d. (10) 

Nevertheless, it is important to point out exceptions of particular importance: if 
A is restricted to a (generalised) eigenspace Ei of G, then the preceding rule must be 
rewritten: 

D~(A)/de,~ = D(A)/d~ (11) 

where d~ is the topological dimension of E~, de~i its anisotropic dimension i.e., 
det~ = Tr(G]E); G]E, being the restriction of G on Ei. 

Using anisotropic scale changing operators rather than isotropic ones, it is 
straightforward to transform self-similar stochastic processes into their anisotropic 
counterparts. Figure 6 gives an example of  vertical cloud cross-section obtained by 
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Figure 6 
A cross-section of an anisotropic, fractal sums of pulses process with det = 2.555. 

modifying the fractal sums of pulses p/'ocess (LOVEJOY and MANDELBROT, 1985) so 
as to simulate a cross-section of a 2.555 dimensional cloud (see LOVEJOY and 
SCHERTZER, 1985). More elaborate processes (such as those discussed below) can 
be rendered anisotropic by using similar techniques. 

6. GSI and Multiple Singularities 

Instead of adding random increments of finer and finer resolution along the 
cascade (as in Figure 6), one may multiply by random increments of finer and finer 
resolution. This multiplicative procedure corresponds to the nonlinear break-up of  
eddies into sub-eddies, and is the na.tural process to study in turbulence, since the 
scale changing operator that transforms large eddies into small eddies, itself forms 
a multiplicative group. 

Unlike additive processes where the limit as the cascade scale approaches zero 
is a function, the corresponding limit of multiplicative processes (also called 
"multiplicative chaos") is very singular. This limit is no longer a function, but an 
operator converting one measure into another (e.g., the D(A)- "volume" of  A into 
the energy flux through A). The situation can be imagined as follows: as we 
introduce finer and finer scale (l, = Io/2") multiplicative perturbations, the density 
(e,) of the energy flux becomes increasingly dominated by singularities (positive 7,): 

Pr (e~ >~ ~o 2~") ~ ~-,.(~n) (12) 

(see examples, Figures 3,7) where "Pr"  means "probability". In the limit n ~ oo 
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Figure 7 
Multiplicative process on a 128 x 128 square grid. 

(writing 7n--'7 and c,,---, c) we can interpret this equation as indicating that those 
singularities of order higher than a given level 7, being distributed over a fractal set 
of codimension c(7), which becomes sparser with increasing 7 since c(7) is an 
increasing function. These singularities prevent convergence in the usual sense. 
However, by "integrating" the result over a set A with dimension D(A) (to obtain 
the flux through A), the resulting smoothing may be sufficient so that convergence 
is obtained at least for low order statistics. Convergence of statistical moments of 
order h (h > 1) is assured by the convergence of the " h  th trace moment" 
(SCHERTZER and LOVEJOY, 1987a,b) may be defined as: 

= ~ a~dhD(A) x (TrA e,h) 
dA n (13) 

(TrAe h) = lim (TrAnce) 

where A n is A with a resolution In (i.e., we compute the Hausdorff measure (Eq. 5) 
by covering only with balls of size greater than that of the inhomogeneity). Since the 
latter quantity is of the same type as a Hausdorff measure (SCHERTZER and 
LOVE JOY, 1987a,b), it is not surprising that it follows a twin divergence rule 
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(represented in Figure 8), implying the convergence of statistics of order h, for 
C(h) < D(A) (h > 1) and divergence otherwise, where C(h) is the codimension 
function defined by the trace moments. Conversely, for h < 1, we obtain 
C(h) > D(A) implying degeneracy of the flux (it is almost surely zero). 

Since a multiplicative group (parameter 2, the generalised ratio of scales) is 
involved, the characterisation of its intermittency generator y is fundamental. It 
results that it should be " l / f  noise" (its spectrum being proportional to the inverse 
of the wave-number) in order to assure a logarithmic divergence of its "free energy" 
(or its second characteristic functional) which is required to obtain scaling of the 
resulting field. The codimension functions c(y), C(h) are thus related to each other 
by a Laplace transformation (which may reduce to a Legendre transformation in 
certain, but not all cases). Figure 7 results from a simulation using a gaussian " l / f  
noise", but Levy noise could also be used. Using this type of continuous cascade 
construction of a "multifractal measure", it was further shown (SCHERTZER and 
LOVEJOY, 1987a,b; 1988b) that continuous cascade processes define universality 
classes in which c(y) is of the form 

c(7) = c0(1 + y/yo) ~ (14) 

where e > 2, with the value e = 2 corresponding to the case of gaussian cascade 
generator, and Co, Yo are parameters characterising respectively the intermittency 
and smoothness of the process. 

The codimension functions c(y) and C(h) (determining the fraction of the (sub-) 
space where singularities or divergences occur) are directly connected to the 
generator Y of intermittency. Hence, when the latter is expressed in a given 
framework, defined by the anisotropic generator G with corresponding det (i.e., 
and G commute), these two functions remain the same for any restriction of the 
process on a (generalised) eigenspace of G (this is analogous to the isotropic case). 
This remark is of particular importance for data anlysis of anistropic fields: one 
seeks to determine the anisotropy generator yielding such an invariance of the 
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Figure 8 
Twin divergence rule of the trace moments. 
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codimension functions or at least the corresponding elliptical dimension. For other 
relevant references to singularities and multiplicative processes, see KAHANE (1985), 
PIETRONERO and SIEBESMA (1986), HALSEY et al. (1986) and LEVICH and SHT~L- 
MAN (1988) as well as the minireview by STANLEY and MEAKIN (1988). 

7. Elliptical Dimensional Sampling and the Empirical Evaluation of  det in Rain 

7.1 The Data 

In this section we estimate det and c(~) for radar rain reflectivities. These 
reflectivities are probably the geophysical data of highest quality available for this 
purpose. The rain drops act as efficient natural tracers, allowing the 3-D rain 
structure to be quickly and nonperturbatively sampled. At the McGill weather 
radar observatory, archives contain data spanning over two orders of magnitude in 
each horizontal direction, one in the vertical, five in time, and six in intensity 
(reflectivity, denoted Z). The actual data analysed here were resampled in (r, 0, z) 
(range, azimuth and height above the earth's surface), from the original polar 
(r, 0, q~) coordinates, with (200 • 375 • 8) resolution elements, with intensities in 16 
logarithmic levels, 4 dBZ apart (factor ~ 2.5). The whole scale therefore spans a 
range of 15 • 4 = 60 dBZ = factor of 106. It is not uncommon for reflectivity levels 
in rain to exceed 105 times the minimum detectable signal. 

Physically, the reflectivity is simply the integrated backscatter of the rain drops. 
The microwave reflectivity for each drop (here at 10 cm wavelength) is proportional 
to V 2 (where V is the rain drop volume). At l0 cm, the absorption is sufficiently 
small that the beam is nearly unattenuated. The reflectivity Z measured in this way 
is the integral over an entire "pulse" volume (roughly 1 km 3) of V 2 of each drop 
modulated by its phase. Operational (meteorological) use of radar data is limited 
primarily by the fact that the rain rate (R) is a different integral: that the product 
of V and the fall speed. The standard semi-empirical (and very rough) relationship 
between R and Z is called the Marshall-Palmer formula: Z = 200 R 16 with Z in 
(mm)6m -3, and R in mm/hr. It is important to note that by directly studying 
re}ative reflectivities rather than R, we avoid the traditional radar calibration 
problem. Noise and instrumental biases are small. 

7.2 Functional Box-Counting 

Since we expect multiple dimensions (or dimension functions, rather than single 
values), we have to generalise the usual "box-counting" algorithm (designed to 
estimate the dimension of a set of points, e.g., HENTSCHEL and PROCCACIA (1983)) 
SO as to apply it to fields ("functional box-counting", LOVEJOY et al., 1987). This 
is achieved (as shown in Figure 9) by thresholding the fields (with various threshold 
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Figure 9 
Schematic illustration of functional box-counting. In the first step (upper left), the initial field f(r.) is 
threshold to yield the exceedance set (upper right). On the line below, reduced versions of this figure are 
covered with boxes of decreasing scale (size, left to right, one half, one quarter and one eight of the scale 

of the original). 

T~) and determining the corresponding hierarchy of dimensions D(Ti) (approximat- 
ing them by N(L) ,~ L-~ N(L) being the number of boxes, of  size L, needed to 
cover the set (defined by those regions exceeding the threshold). 

When Nr(L) ~ L-D(T) with D(T) < d, the fraction of the image exceeding T 
decreases with increasing resolution as LaL -D(r) = L c(r) ~ 0  as L ~ 0. This is the 
counterpart of eq. (12) which shows that the field values corresponding to a given 
dimension diverge at a rate depending on the order of their associated singularity. 
In order to estimate the scale invariant (resolution independent) function c(7) and 
hence to test the prediction that is has universal form (eq. 14), for each field value, 
at scale L (denoted Tt) we associate a singularity of  order y as follows 

7~,Jro = (L/r,o) ~. (15) 

To is the field value at a reference scale. Now, taking Tt  as the intrinsic resolution 
of the detector and To as the mean field over the entire image, we obtain 

= -- 1og(TL / To)/log(L/Lo) (16) 
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where L/Lo is the ratio of scales between the intrinsic resolution and the scale of the 
entire image. Eliminating T, in terms of 7 using (eq. 16), we thus obtain the entirely 
resolution independent function c(7). 

When such a functional box-counting is applied to the radar reflectivity data for 
a single radar scan, we obtain the results shown in Figures 10a,b. In the horizontal, 
we have used sectorial (pie-shaped) boxes, increasing the angular and downrange 

1r 

10 3 L 

Z 
10 2 

101 I I I 
2 22 24 26 

L 

Figure 10a 
N(L) vs L for the nine radar reflectivity thresholds described in the text, for a single radar volume scan, 
analysed with horizontal boxes increasing by factors of  two in linear scale (data corresponding to a 
Montreal summer, convective shower). All correlation coefficients of log N vs log L were > 0.99. For 
clarity, only every second threshold symbol is shown at left, with values representing the ratio of  the 

reftectivities to the minimum detectable signal. The negative slope, D, decreases from 1.24 to 0.40. 

1 0 4 ~  _ 

101 I I I 
2 ~ 21 22 23 

L 
Figure 10b 

Same as Figure 10a, except that the boxes used are cubical (three-dimensional, rather than squares). 
Here D decreases from 2.18 to 0.81. Only 8 different vertical levels were available. 
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box sizes by factors of 2, starting with the highest resolution available (the use of 
pie-shaped boxes eliminates all range-dependent effects due to beam spreading, 
etc.). The straightness of the lines shows that scaling is accurately followed in both 
horizontal and vertical directions. Note the systematic decrease in the absolute slope 
(=D(7)) as 7 is increased (here through 9 values with corresponding thresholds 
separated by 4 dBZ spanning a total range of reflectivity of 10(9-1)0"4 ,~ 40,001)--- 7 
varies from 0 to ~ 2). Of twenty radar volume scans studied, all the horizontal D(7) 
values calculated by regressions of log N(7 ) vs log 3, resulted in correlation 
coefficients > 0.99, when 7 was in the range (for the lowest 6 thresholds, where 
N(L) was fairly large, the correlation coefficient was > 0.999). For even higher 
values of 7, N(L) was too small to give reliable estimates of D(7). 

Recently, (GABRmL et al., 1986, 1988) have applied this technique to visible and 
infra-red satellite pictures of both clouds and surface features in the range 8 to 
512 km. Their results clearly show the scaling of both fields and have important 
consequences for satellite remote sensing, since scaling generally implies strong (and 
undesirable) resolution dependencies in quantities (such as fractional cloud cover) 
estimated from the satellite. The finding of multiple scaling in visible albedoes and 
IR emission from (cloud-free) land surfaces confirms that scaling is likely to a 
property of many geophysical surface features. 

7.3 Elliptical Dimensional Sampling 

We can now apply functional box-counting to horizontal cross-sections and 
volumes (Figures 10a,b), determining the functions D2(7) and D3(7) respectively, 
and use the difference between the two to obtain a characterisation of the degree of 
horizontal stratification in rain. If the rain field was isotropic, then D2(7), D3(7) can 
be simply related to each other by the identity of their corresponding codimensions: 

C3(7) = C2(7) (17) 
Ca(y) = d - Da(y) 

We have already noted the generalisation of these relations in anisotropy, so 
that the correct elliptical dimension det of the rain field should satisfy 

c~,(7) = G(7) (18) 
Cd,#(7) = de! - -  Del(7 ) 

We thus sample (see illustration in Figure l l) the data using a family of 
self-affine boxes--with corresponding generators G's and associate elliptical dimen- 
sions De~'s--seeking the zero of the following function 

k 
f(D~,) = ~ (CD,,,(7,) -- C2(7,)) (19) 

i 

with the empirical C's determined by the functional box-counting, and the sum is 
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Figure 11 
Elliptical dimensional sampling. Showing the shapes of the "elliptical" boxes used in box counting at 

increasing scales with det = 2, 3, 2.5. 

over the k thresholds ( =  9 here). Fur thermore ,  due to the l inearity of eq. (10), f(Det ) 
is l inear in Det. 

Figure 12 shows the result as De! is varied through 15 values between 3 and  2.13, 
which was roughly the lowest value accessible with the data  set (cor responding to 
boxes of 1 x 1 x 1 pixel and boxes 190 x 190 x 2 pixels, twice the anisotropic scale, 
where 2.13 = 2 + log 2/log 190). The same nine thresholds were used as before. 
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Figure 12 
The function f(D~t ) described in the text which is the average of data taken from 20 scans, using 15 
different values of DCt, and 9 reflectivity thresholds ( = 9 x 15 • 20 = 2700 dimensions). The least squares 

linear regression (correlation coefficient = 0.98), is shown, cutting the axis at D~t = det = 2.22. 
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f(Del) was determined separately on 20 radar rain fields: Figure 12 shows the 
averages and standard deviations (indicated by the error bars). The linear regression 
shown, yields de1 = 2.22 _+ 0.07. The error is the standard deviation of del estimated 
from each of the 20 images separately (see LOVEJOY et al., 1987 for more details). 
It is interesting to note that this value is considerably smaller than the value 
det = 23/9 = 2.555 found for the horizontal wind field. 

7.4 The Universality o f  c(7) 

We now show that the empirical c(7) functions fit into the universality classes 
(eq. 14). For the radar data used here (the same data set discussed in 7.1), the 
empirically accessible range of 7's is quite small (the maximum is ,,~ 2.0). This makes 
it difficult to accurately estimate ~ since the latter measures the concavity of c(7) 
which is only pronounced for large 7. The difficulty is that if eq. (14) is considered 
to define a multiparameter regression problem for the coefficients Co, 7o, ~, as 
determined from the various empirical values c(7), then all three parameters are 
highly Correlated with each other and the optimum values are ill-defined. To obtain 
well-defined estimates, we therefore made the plausible assumption that generators 
were in the gaussian domain of attraction (i.e., ~ = 2), and for each radar image, we 
empirically estimated the parameter 70 via a least squares regression using the 
formula 

e,(7) = c(7)/c(0) = (1 + 7/70) 2 (20) 

where c,(7) is the codimension "normalised" by c(0) which is the empirically 
determined codimension of the field at average brightness (since T = T0=>7 = 0). 
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Figure 13 
The mean normalised codimension, <e,(7)) for the radar data, analysed in Figure 10 (with one standard 
deviation error bars) plotted against the mean (( 1 + %'/7o) 2) to test whether the empirical c(7) functions 
belong to the universality class defined by ~ = 2 (c(0)) is measured directly, and 70 is determined by 
regression for each image separately). A perfect fit (corresponding to the line x =y)  is shown for 

reference. 
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The standard error of the fit (of c( j )  in all 20 cases, over the entire range of c( j ,  
was + 0.062 which is comparable to the errors in determining c ( j  from the 
box-counting algorithm. We then plot the curves <cn(7)> vs <( 1 + 7/70) 2> in Figure 
13 where the angle brackets indicate ensemble averaging (here all available cases). 
As predicted by eq. (20), the curves all closely follow the line x = y (shown for 
reference). This shows that the main difference between the various radar images 
cases were in the values of the parameters. Similar results (also for ~ = 2) for visible 
and IR satellite images can be found in GABRIEL et al. (1988a). 

8. Conclusions 

We have argued that highly intermittent anisotropic atmospheric fields can be 
best understood and quantitatively studied in the framework of Generalised Scale 
Invariance (GSI). This formalism is a development of phenomenological models of 
anisotropic turbulent cascades, but applies generally to anisotropic scale invariant 
geophysical fields. Within GSI, singularities of the fields of interest are generated 
(or analysed in terms of) two multiplicative one-parameter semi-groups. The first 
defines the anisotropy from scale to scale, and the second, the concentration of the 
field into sparser and sparser regions, for higher and higher order singularities. The 
resulting stratification and intermittency have no characteristic scale. 

These groups define two (dual) "elliptical" codimension functions C(h) and c(j .  
The former prescribes the divergence of the h th order statistical moments of the flux 
over regions A of dimension D(A) < C(h) (h > 1) or its degeneracy (h < 1), while 
the latter describes the distribution of the (multiple) singularities exponents 7. The 
admissible generators of these semi-groups are a) all those operators G having 
eigenvalues with nonnegative real parts and b) all intermittency generators ~ with 
logarithmic divergence of the free energy (second characteristic functional) with the 
scale of homogeneity. Whereas standard statistical mechanics involves stationary 
(conserved) energy, these multiplicative processes involve stationary energy fluxes. 
We have shown that flux dynamics differs radically from normal dynamics because 
of the singular nature of the small scale limiting properties. In particular, in flux 
dynamics, observables are expected to have extremely intermittent behaviour char- 
acterised by the divergence of high order statistical moments. 

To illustrate these ideas, we described how multiplicative processes can be 
modelled numerically. We discussed anisotropic scale invariant models of clouds 
and galaxies. 

Empirically, we showed evidence obtained from blotting paper analyses of 
raindrop distributions showing that scaling holds at very small scales. At scales of 
kilometers, we used radar reflectivities to obtain a direct estimate of the elliptical 
dimension characterising the degree of stratification the rain field: det = 2.22 __+ 0.07. 
In the latter case, we also determine empirical codimension functions that were 
described by two-parameter universality classes. 
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