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ABSTRACT

The standard picture of atmospheric dynamics is that of an isotropic two-dimensional large scale and an
isotropic three-dimensional small scale, the two separated by a dimensional transition called the “mesoscale
gap.” Evidence now suggests that, on the contrary, atmospheric fields, while strongly anisotropic, are nonetheless
scale invariant right through the mesoscale. Using visible and infrared satellite cloud images and the formalism
of generalized scale invariance ( GSI), the authors attempt to quantify the anisotropy for cloud radiance fields
in the range 1-1000 km. To do this, the statistical translational invariance of the fields is exploited by studying
the anisotropic scaling of lines of constant Fourier amplitude. This allows the investigation of the change in
shape and orientation of average structures with scale.

For the three texturally—and meteorologically—very different images analyzed, three different generators of
anisotropy are found that generally reproduce well the Fourier space anisotropy. Although three cases are a
small number from which to infer ensemble-averaged properties, the authors conclude that while cloud radiances
are not isotropic (self-similar), they are nonetheless scaling. Since elsewhere (with the help of simulations) it
is shown that the generator of the anisotropy is related to the texture, it is argued here that GSI could potentially

provide a quantitative basis for cloud classification and modeling.

1. Introduction

In the standard picture of atmospheric dynamics,
the atmosphere consists of two isotropic regimes—a
two-dimensional large-scale turbulence and a three-di-
mensional small-scale turbulence—separated by a
“mesoscale gap”” (Monin 1972; Van der Hoven 1957).
According to this view, the two isotropic regimes should
be dynamically quite different (for a review, see Lesieur
1987). This is because of the conservation of vorticity
in two but not three dimensions, hence the existence—
for the velocity field—of two quadratic invariants (en-
strophy and energy fluxes) in two dimensions, but only
one in three dimensions (the energy flux). This differ-
ent physics leads to different spectral power laws for
the corresponding velocity fields (Kraichnan 1967). If
the two regimes were to coexist, then they ought to be
separated by a drastic dimensional transition (Schertzer
and Lovejoy 1985a). For associated fields for which
only one conserved quantity exists in either two or
three dimensions, this will be quite abrupt. In the case
of passive scalars, it leads to algebraic behavior in three
dimensions but to exponential behavior in two (Lar-
chevesque and Lesieur 1981). On the contrary, there
is now considerable experimental evidence indicating
that the (power law) energy spectra of horizontal fluc-
tuations of the horizontal wind continue through the
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mesoscale unchanged for scales ranging from about 1|
mm to at least several hundred kilometers in the hor-
izontal. In a recent paper (Lovejoy et al. 1992b), a
systematic spectral analysis of a large number of satellite
pictures (GOES, NOAA, and Landsat satellites were
used over visible, thermal infrared, and near-infrared
wavelengths) spanning the range 160 m to 4000 km
(the entire mesoscale ) confirms the scaling down to at
least 300 m, For reviews see Lilly (1983 ) and Schertzer
and Lovejoy (1985a), and for evidence, see Pinus
(1968), Vinnichenko (1970), Brown and Robinson
(1979), Gage (1979), Atkinson (1981), Balsley and
Carter (1982), Van Zandt (1982), and Nastrom and
Gage (1983). In the vertical, in spite of the exponential
falloff in the mean pressure, the fluctuations in the hor-
izontal wind also seem to be scaling (Endlich et al.
1969; Adelfang 1971; Schertzer and Lovejoy 1985a)
from scales for shears over layers as thin as 100 m to
about 15-18 km thick. In addition, several scaling
analyses of the more readily accessible radar rain re-
flectivities and cloud radiance data have recently been
published (Lovejoy 1982; Rhys and Waldvogel 1986;
Lovejoy et al. 1987; Gabriel et al. 1988; Welch et al.
1988; Cahalan and Joseph 1989; Detwiller 1990;
Lovejoy and Schertzer 1990a, 1991; Cahalan 1991;
Yano and Takeuchi 1991; Tessier et al. 1992) sug-
gesting that scale invariance is indeed a basic symmetry
of the atmosphere. [See Lovejoy and Schertzer
(1990a), appendix A, for a discussion of the limitations
and problems of using (early) monofractal analysis
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techniques on multifractal data. The use of inappro-
priate analysis techniques is one source of claims of
breaks in the scaling.]

Based on these observations a new unified scaling
model of atmospheric turbulence has been proposed
as a simpler alternative to the standard model
(Schertzer and Lovejoy 1983, 1985a,b, 1989a,b; Love-
joy and Schertzer 1985, 1986; Lovejoy et al. 1992b).
In contrast to the 2D /3D dichotomy, this model is
based on generalized scale invariance (GSI) and posits
scale invariance as the fundamental assumption. Iso-
tropy is not required nor expected; hence, there is no
need for separate dynamical regimes at small and large
scales. Instead, one anisotropic, scale-invariant regime
covers most of the meteorologically significant range
of scales. Rather than distinct large- and small-scale
isotropic cascades, the dynamics are ruled by nonlin-
early coupled anisotropic cascades with no mesoscale
break. Theoretically, this unified scaling model is jus-
tified because, over the corresponding ranges, the
equations governing the dynamics have no character-
istic length; hence, they admit scaling solutions (e.g.,
see Schertzer and Lovejoy 1987b). This also appears
to be true of many of the relevant boundary conditions,
such as surface topography (e.g., Venig-Meinesz 1951,
Bills and Kobrick 1985; Lovejoy and Schertzer 1990c;
Lavallée et al. 1992).

The aim of the research described in this paper is to
develop some analysis techniques for studying GSI in
satellite cloud images and then, using these techniques,
try to quantify the observed anisotropy. Since the full
nonlinear GSI is so general (see examples in Schertzer
and Lovejoy 1985b, 1988, 1991), it would be extremely
difficult to investigate all possibilities without studying
the symmetries restricting the Lie algebra of the an-
isotropy generator (Schertzer and Lovejoy 1991). A
study of such “Lie cascades™ will be developed else-
where. To make the problem more easily tractable, we
focus on the linear approximation (e.g., the generators
of the anisotropy G are matrices), basing our analysis
techniques on this approximation. Linear approxi-
mations to nonlinear GSI will always be valid over
small enough ranges of scale, and the full nonlinear
generator may be inferred from a series of linearizations
(tangent planes).

To investigate linear GSI in the atmosphere, satellite
cloud images are analyzed to determine parameters of
the linear generalized scaling transformations under
which the radiance field is scaling. To do this, contours
of the amplitude in Fourier space are used to separate
the structures with different scales. By analyzing sat-
ellite images with the new “Monte Carlo differential
rotation” technique, linear GSI is studied in the two
horizontal dimensions. This enables us, for the first
time, to study the rotation produced by the Coriolis
force in a scaling framework.

The research described here is the outcome of work
undertaken for a master’s thesis and is described more
fully in Pflug (1991). [ Preliminary results are reported
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in Pflug et al. (1991) and a brief summary in Lovejoy
et al. (1992a).]

2. Generalized scale invariance
a. Discussion

Scale invariance is a symmetry respected by systems
whose large- and small-scale features statistically re-
semble each other in some way. For such systems, there
exists a transformation, which is a function only of the
scale ratio, that relates the physical properties (struc-
tures) at different scales through power-law relations
(we will ignore any log corrections). In isotropic sys-
tems, the relevant scale-changing transformation is an
isotropic magnification by a scale ratio (\). Systems
invariant under such isotropic transformations are self-
similar and inhomogeneous sets that possess this sym-
metry are self-similar fractals.

It is now known, however, that in scaling fields (more
precisely, in scaling mathematical measures in contrast
to scaling geometric sets) we generally obtain multiple
rather than “mono” scaling; they are multifractals
(Grassberger 1983; Hentschel and Procaccia 1983;
Schertzer and Lovejoy 1983, 1984, 1987a,b, 1989a,
1991, 1992; Parisi and Frisch 1985; Halsey et al. 1986).
In contrast to monoscaling, in multiple scaling different
statistical moments ( different powers of the field ) have
different scaling exponents. Such fields also have infi-
nitely many fractal dimensions,! each of which de-
scribes the distribution of regions of a different inten-
sity. In this work, however, the multifractal nature of
the atmospheric radiance field (Gabriel et al. 1988; Lo-
vejoy and Schertzer 1990d; Tessier et al. 1993) is not
considered;? we focus instead on the anisotropy and
only study a second-order moment, the energy spec-
trum.

For concreteness, consider the structure function
S(x) of the field f(x):

S(x) = {(f(x) ~ f(x + x))?) (1a)

where ( ) means statistical or ensemble averaging.
We will now assume statistical translational invariance
of f(x); this implies S(x) is independent of x’ as in-
dicated. This is appropriate for the cloud radiances ex-
amined here since the fundamental physics of the cloud
processes are likely to be independent of position. We
therefore obtain:

S(x) = 2({f(x')*) = (S f(x)))
S(x) = 2({f(0)*) = {f10)f(x))).

(1b)
(1c)

! 1t has recently been shown (Schertzer and Lovejoy 1987a, 1989,
1991) that multifractals have stable, attractive universality classes
depending on only three exponents, which considerably simplify their
analysis and simulation.

2 The last two papers not only test the multifractal nature of the
radiances, they also estimate the universal exponents, which were
found to be very close to those of the velocity field (Schmitt et al.
1992).
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If the field is scale invariant, the structure function has
the following additional property:

S(Thx) = A7278(x) (2)

where T, is the scale reduction operator that reduces
the scale of the vector x by the factor A (in self-similar,
isotropic scale invariance, T, = A 'l where I is the iden-
tity operator), X is a scale ratio, and H is the scaling
exponent of the second moment.

Since all real systems possess finite inner and outer
scales, the relationship expressed by Eq. (2) will hold
only within these limits. The region between these lim-
its is the scale-invariant regime. The extent of the scale-
invariant regime for the atmospheric velocity field was
discussed briefly in the Introduction. The inner limit
for the radiation fields is still not known (and is likely
to vary from one realization /synoptic situation to an-
other). It seems likely that it is typically quite small
since radiances are not obviously uniform even at scales
as small as a meter.

b. The elements of generalized scale invariance

In order to go beyond isotropic scale invariance, it
1s necessary to generalize the notion of scale and scale
change such that anisotropic systems satisfy Eq. (2)
but with T, no longer an isotropic reduction. This gen-
eral definition consists of the following three ingredients
(Schertzer and Lovejoy 1985b, 1987b, 1988):

1) an initial “ball,” B,, defining the unit scale (A
= 1), from which all other scales are generated;

2) agenerator, G, which defines the one parameter
(semi) group of scale transformations, T, = A%, In
the isotropic case, the generator is the identity and a
scale change is simply A7l

3) some measure of scale, ¢.

In generalized scale invariance, the information that
defines the nature of scale changes (the anisotropy) is
contained in the generator G, the trace of which (de-
noted TrQ) defines the overall contraction of space with
scale changes and is called the elliptical dimension da.
When structures are differentially stratified (e.g., by
the action of gravity), d,, is reduced from its isotropic
value [(=3 in (x, y, z) space], and quantifies the degree
of stratification. For example, based on theoretical ar-
guments and empirical analyses, Schertzer and Lovejoy
(1985a) estimated that d,, for the horizontal wind was
23/9 =~ 2.555 - « - which falls between the completely
stratified value 2 and the isotropic value 3. Similarly,
using “elliptical dimensional sampling,” Lovejoy et al.
(1987) empirically estimated that d; for radar reflec-
tivities from rain was 2.22 + 0.07.

In the isotropic case in dimension D, the measure
of scale, ¢, is conveniently taken as the 1 /D power
of the D-dimensional volume and satisfies ¢(B;)
= | and ¢(B,) = A~!. In general, the anisotropic
measure of scale, ¢ (“el” signifies “elliptical” for
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anisotropy), satisfies ¢%(B,) = ¢2(B)) = ¢%(T\B))
= N%p%(B,), where d, is the elliptical dimension
mentioned above, that is, ¢q(B,) = A~!'. The defi-
nition of ¢ is, to some extent, arbitrary. Any positive
power of the chosen definition would be suitable
since G would only change by an cverall constant
factor to compensate.

In order that the definition of scale be unambiguous,
we must impose a restriction on G so the balls are
strictly decreasing with A\; whenever A\, > A\ the set By,
must be completely contained within the set B,,. This
is necessary so that each vector can be uniquely asso-
ciated with a given scale ratio. In general, if the real
parts of the (generalized) eigenvalues of G are positive
(Schertzer and Lovejoy 1985b), then it is possible to
choose some B, so that a GSI system may be defined.
However, it is often convenient to use an isotropic unit
ball—a spheroscale (Schertzer and Lovejoy 1983)—
which leads to the more restrictive condition that the
eigenvalues of the symmetric part of G be positive. The
existence of a spheroscale, however, is a simplifying
assumption that depends on the existence of at least
one scale at which all directions are equivalent, and is
not necessary. Although this assumption may seem
reasonable for horizontal sections in the atmosphere,
it is empirically confirmed for only two of the cases
analyzed here, and in general, we will see that the as-
sumption must be dropped.

Because the scale-changing operators depend only
on the scale ratio, they form a semigroup and take the
form:

T, =6 3)
When the generator G is linear (a matrix), we may
interpret the exponentiation by the serics expansion of
exp(—G log)). When G is nonlinear, however, we may
consider it as defining a local infinitesimal scale change.
This is exactly analogous to the use of locally flat space—
time in general relativity. [ Indeed, astrophysicists have
recently started to incorporate anisotropic scaling ideas
into formulations of relativity (Carter and Henrickson
1992), and Schertzer and Lovejoy (1989b) have used
GSI to model barred and spiral galaxies.] Introducing
u = logA, we find:

Tdu=1—-duG, 1=dT,. (4)
For specific nonlinear G, this relation may be integrated
(in general, numerically) to yield the finite scale
changing operator T,.

We do not anticipate that linear GSI is better than
a local approximation in the atmosphere, if only be-
cause the Coriolis force depends on latitude. For ex-
amples of nonlinear (and random) GSI, see Schertzer
and Lovejoy (1985b, 1989a, 1991). The exact range
of scales over which this approximation is valid in the
atmosphere is not yet known, although it seems to be
fairly good in the cases examined here, which cover
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ranges of scale of factors of about 500. However, even
linear GSI allows for quite rich textures and structures
as shown by the fractal cloud simulations in Lovejoy
and Schertzer (1985, 1986). A matrix G contains tex-
tural information and can quantify simulated cloud
textures and types. If the atmosphere respects GSI, then
we expect that cloud texture is an anisotropic scale-
invariant phenomenon that can be properly defined
by a technique based on these fundamental character-
istics. [A somewhat similar idea with respect to self-
similar images was used by Pentland (1984) for image
classification.] Even when considering linear GSI, the
analysis is complicated by the statistical nature of the
symmetry, that is, it is not respected exactly by indi-
vidual images, only by ensemble averages. Further-
more, because this symmetry relates properties at dif-
ferent scales, large images with a wide range of repre-
sented scales are necessary to properly estimate G.

¢. Linear GSI in two dimensions with a spheroscale

The images analyzed here are two-dimensional. With
the simplifying assumptions that G is a position-in-
dependent matrix (linear GSI), and the unit scale is a
spheroscale,? the contours defining various scales will
be ellipses.

In linear GSI in two dimensions, G can be repre-
sented as a linear combination of four independent 2
X 2 matrices (quaternions) (Lovejoy and Schertzer
1985; Schertzer and Lovejoy 1985b) with the result

that
d+c f—-e
G= 5
(f+ e d- c) (5)
and, from Eq. (3):
T, = A%l cosh(au) — (G — |d) sinh(au)/a)
cosh(au) — < sinh (au)
= A_d a
~ L2 Ginh(au)
S sinh(au)
c (6)
cosh(au) + p sinh (au)
where ¢, d, f, and e are four real parameters and
at=c2+f?-e. (7)

3 Although the existence of a spheroscale appears to be an overly
restrictive assumption, spheroscales were observed in most of the
images examined throughout the course of this research (see Pflug
1991 for more examples). Thus, it is worthwhile to examine this
case in detail.
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In this representation, the “elliptical dimension” is
dgy=TrG =2d; d,>0 d>0

and the condition on the eigenvalues of the symmetric
part of G (which ensures that scales are uniquely de-
fined; see above) implies

d*>c?+ 1 (8)

When the operator in Eq. (6) is applied to a circle
at A = 1 (a spheroscale), it yields a series of concentric
ellipses. If the off-diagonal elements are nonzero, the
ellipses rotate relative to one another. The values of
the parameters ¢, ¢, and fdetermine how elliptical the
contours may get and how much they rotate. In par-
ticular, two broad classes of behavior can be distin-
guished by the sign of the parameter a? (Schertzer and
Lovejoy 1985b; Lovejoy and Schertzer 1985). The
properties of scale changes within each of these classes
can be determined by referring to the equations for the
ellipticity (e = B/A4 — 1, where B/A is the axis ratio
of elliptical contours) and angle of orientation (8)
of elliptical contours, which are developed in appen-
dix A.

In the first case, a® > 0, a is real and the amount of
rotation is limited. Only one spheroscale is encountered
over the entire range of scales (# = —o0 t0 ), since
there is only one zero of Egs. (24) and (25). The max-
imum amount of rotation possible is

| A8| max = 6(c0) — 6(—c0) = tan""(e/a). (9)

Note that since the major and minor axes switch at the
spheroscale, the total apparent rotation will be = /2
greater. Unlike the rotation, however, the ellipticity is
unlimited when @2 > 0. This is the stratification-dom-
inated case.

For the case a? < 0, g is imaginary, the amount of
rotation is unlimited (rotation dominates), and there
are infinitely many spheroscales* located between u
= —oo and u = oo. The ellipticity, however, is limited
and the maximum ellipse axis ratio is

(2Tl

where 4 and B are the ratios of the ellipse semiaxes to
the spheroscale radius.

In both of the above cases, the scale ratio is defined
to be

implies

A = (4B)'2. (11)

d. GSI in Fourier space

In this paper, the investigation of GSI is carried out
in Fourier space. Fourier space operators that corre-

4 Equations (27) and (28) have infinitely many zeros; see appendix
A for more details.
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spond to the real space scaling operators are determined
by analyzing contours of constant log{| F(k)|*),
where F(k) is the Fourier transform of the radiance
field and k is the wavenumber. The reason for working
in Fourier space is that for the images studied here,
clouds are approximately statistically translationally
invariant, which amounts to random phases in Fourier
space. Since we are not interested in the location of
structures in real space, only in their average aspect
ratios and orientations as functions of scale, we need
only consider the amplitude, | F(k)|, in Fourier space.

To obtain the Fourier space analog to the real space-
scaling operator, we define T, = A® to be the Fourier
space-scaling operator defined by the requirement of
invariance of the scalar product (k-x) under scale
changes (see appendix B for details). We thus obtain
the following result:

(12)

G=GT=(d+C f+e)

f—e d-c

Assuming that the structure function satisfies Eq.
(2), we obtain the Fourier space analog (appendix B):

P(T\k) = \~(2H+4 p(k), (13)
or
P, = \"°P,, (14)

where P(k) = (| F(k)|?), s = 2H + dy, P, = P(T\k,)
(k; is on the unit ball E,) and P, = P(k,). Taking the
natural logarithm of Eq. (14), we obtain:

logP, = —slog\ + logP;. (15)

Typically, atmospheric energy spectra are defined
within an isotropic framework, that is, with T, = AL
The usual method involves integrating P(k) over angles
in Fourier space to obtain the energy E(k), k = |k|.
The usual spectral exponent is denoted as 8. These
quantities are related to those used in this paper [ P(k)
and s] as follows (dropping any constant integration
factors):

E(k) oc kP7'P(k) oc k75, (16)

where D is the dimension of space (D = d). Since
P(k) oc k7 in the isotropic case [Eq. (14)], we have

s=8—-1+D, (17)
and, using s = 2H + d (see above):
s=2H+D; B=2H+1. (18)

From Egs. (14) and (18) and the definitions of s
and B3, we can define the anisotropic analog to E(k)
by integrating P, over generalized contours in Fourier
space:

E, oc NP, (19)

Finally, it should be emphasized that, although Eq.
(14) applies to ensemble averages, we study single im-
ages in this paper. Since the | F(k)|? values for a single
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image will contain (occasionally large) fluctuations
about the ensemble mean, individual images will not
satisfy Eq. (14) exactly. Even so, we will still be able
to obtain reasonable estimates of the parameters defin-
ing the anisotropy.

3. Data analysis

a. The Monte Carlo differential rotation technique

Quantifying the anisotropy in satellite cloud images
using GSI amounts to estimating the parameters of
both the unit ball and the generator. To do so, we use
an approximate least-squares method, called the
“Monte Carlo differential rotation” technique. The
basic idea behind this technique is to fit the scaling
parameters (s, P;) and the generator parameters (c,
e, and f; due to our definition of A—our choice of p—
we have d = 1), as well as the various parameters
needed to define the unit ball. To define the latter, it
is convenient to parameterize the unit vectors by their
polar coordinate equation: k; = [k,(6), 8)]. Since the
Fourier radius k,(8) is periodic in the polar angle 8, it
is natural to parameterize it using the first few terms
in a Fourier series. Since the field f(x) is real, P(k)
must respect the symmetry P(k) = P(—k), hence, we
must have k,(8) = k;(w + ). We need therefore only
consider an expansion in even multiples of 6. In all the
cases examined, it was found that the following trun-
cation was adequate:

k,(8) = ro + a, cos26 + b, sin28

+ a; cosdf + b, sindf.  (20)

In principle, any isoline of P(k) could be used to define
a unit scale. However, as will be seen below, in many
cases visual inspection shows that roughly circular iso-
lines exist. In these cases, the a, b parameters were set
to zero and the best fit 7o for a spheroscale was esti-
mated. [Pflug (1991) visually examines the Fourier
spaces of six other images; most of these show plausible
spheroscales.]

Once the unit ball has been parameterized, the re-
maining parameters were estimated by minimizing the
following approximate error function:

(P — Mk, G) Pr(k;))?,

K

E;= (21)

1
m

I

i=1

where the sum is over m randomly chosen Fourier pix-
els k;. Equation (21) is based on a rearrangement of
Eq. (14) (i.e., P, — A°Py = 0). [An error function
based on Eq. (15) (i.e., using log P) was tested on one
of the images analyzed and it was found that Eq. (21)
produced slightly better results (see Pflug 1991 for de-
tails).] The error function is approximated by Monte
Carlo techniques (the random selection of points) since
an exact calculation (involving summing over each of
the N X N Fourier pixels) would require solving the
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FiG. 1. Image 1 (see text for description).

following transcendental equation N X N times to de-
termine A(k;, G):

k, = T5'k, (22)

(i.e., for a given Fourier pixel k;, one must deduce the
ratio A~! necessary to map the vector onto the unit
ball). Since it is much simpler to calculate k, = k(,
G, k,) = T.k,, (i.e., to calculate k, given G and k),
we choose instead to approximate the error function.
This is done by selecting A and 6 randomly (see ap-
pendix C). We then calculate k, = T,k, and determine
P(k,) from the data. [Strictly speaking, we determine
| F(k)|? from the data since P(Kk) is an ensemble-av-
erage quantity and we are working with single images. |
In Eq. (21) all of the parameters to be estimated enter
through the calculation of k, (except P, which enters
explicitly). The number of points in the subset is chosen
so that the fluctuations in E, due to the random selec-
tion of points in the sum are small relative to the vari-
ations in E, with changes in the parameters. (For an
image of size 256 X 256 pixels, typically 10 000 to
50 000 points are required, while, for an image of size
512 X 512 pixels, about 100 000 points are typically
required.) Equation (21) is minimized by searching
through a five- or six-dimensional parameter space (s,
Py, c, e, f, and perhaps ry), varying each parameter
successively, until a minimum is found. This mini-
mization is then repeated to refine the parameter es-
timates and to ensure that the minima have not shifted
significantly as each successive parameter is fit.> The

* This method will work as long as the minimum is quite pro-
nounced and there is no problem with multiple local minima. Due
to our Monte Carlo estimates of the error, most standard minimi-
zation methods will not work: they require estimates of local deriv-
atives in parameter space.
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parameter values and their errors are computed by fit-
ting quadratics to E, close to the minima.

Even with these shortcuts, the method can still be
time consuming, involving many calculations of the
“error” unless at least some of the parameters can be
estimated or constrained beforehand. In practice, this
can be done for at least some of the parameters. The
spectral slope and intercept (s and P,) can be approx-
imated by computing the usual isotropic energy spec-
trum of an image [integrating P(k) around circular
annuli]. To obtain s and P, from 8 and E; (the cor-
responding isotropic parameters), we use s = 3 + 1
[Eq. (17) with D = 2] and P; = E,/2x [2= comes
from the angular integration factor in Fourier space
that was ignored in Eq. (16)]; ¢ and f, on the other
hand, are constrained by Eq. (8) to lie between —1 and
1 (since d = 1). However, the parameter ¢ is not con-
strained (from Egs. (7) and (8) d? > a* + €? but a?
may be negative) and there is no obvious way of esti-
mating it beforehand. The best way we found to locate
its value is to begin searching within a large but rea-
sonable range about e = 0 (say, —5 < e < 5), initially
taking coarse steps to reduce the computation time.

b. Results

Image 1: Image 1 was the first image analyzed with
the Monte Carlo differential rotation technique. This
image is a 256 X 256 pixel NOAA-9 Advanced Very
High-Resolution Radiometer (AVHRR ) IR image east
of Labrador, Canada, with a resolution of about 1.1
km at nadir. (For convenience, in this analysis, dis-
tances will usually be measured in pixels, wavenumbers

FI1G. 2. Smoothed Fourier transform of image 1. Smoothing em-
phasizes the Fourier space contours but was not used for the “Monte
Carlo differential rotation” analysis.
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FIG. 3. E, as a function of the parameters s, logPy = s logr,
+ logPy, U, = logry, ¢, f, and e for image 1. The symbols are data
points and the solid lines are the fitted quadratics (note: logPy = s
logry + logPy).

in inverse image pixels.) The cloud picture and
smoothed Fourier transform for image 1 are shown in
Figs. 1 and 2. This image was chosen by colleagues for
a study on marine stratocumulus. A “typical” strato-
cumulus part of a much larger image was isolated for
analysis. Since all parameters were previously estimated
by a less sophisticated rotating ellipse method® (see
Pflug 1991), applying the Monte Carlo differential ro-
tation technique was straightforward. For each param-
eter, two minimizations were performed. In the first
succession of minimizations, E, was calculated over a
range of values near the previous estimate for each
parameter. In the second set of minimizations, 10 000
points were used for all parameters except e for which
30 000 points were required. In both stages, the pa-
rameters were determined in the following order: s,
logP,, U, (=logry), ¢, f, and e. After the second set of
minimizations, quadratics were fit to the E, versus pa-

¢ This method was an early approximate technique that fit each
isoline of P(k) to an ellipse and attempted to estimate G from the
series of ellipses deduced from many isolines.
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TABLE 1. Results from the “Monte Carlo differential rotation”
analysis. When a spheroscale exists (images 1, 2), ry is its scale in
units of Fourier space pixels. To obtain the spheroscale in km, 1/r,
(km) = NA/r, (pixels) was used, where N is the image dimension (in
pixels) and A is the image resolution (in km). For image 3 s and
log P, were estimated from the isotropic spectrum.

Image 1 Image 2 Image 3

s 1.92 + .06 1.41 = .04 2.10 £.01
logP, 11.6 £.6 188 +.3 18.02 + .08
logro 44 + 2 50 £.2 no spheroscale
1
- (km) 35 £.8 39 £ .6 no spheroscale
0
c 043 + .08 —0.32 = .05 —0.18 = .03
f 00 =.1 —-0.01 £ .02 0.00 + .02
e —04 .2 0.17 £.04 0.04 + .05
a 02 =3 0.28 + .07 0.18 + .03
§ o8] 0 o0

A max ‘

| Aa ! max

(rad) 1.0 £.6 0.5 +.1 02 +.2

rameter data to obtain the parameter values. Parameter
error estimates were obtained from the concavity of
the parabolae fit at the minima.

The data and fitted quadratics for this image are
shown in Fig. 3 and the results are listed in Table 1.
From this table, we see that a = 0.2 for image 1. Since
a is real, stratification dominates in this case and the
maximum possible rotation is, from Eq. (9), | A8 max
= 1.0 rad (60 deg). The ellipticity, however, is unlim-
ited.

Image 2: Image 2 is an image of clouds associated
with a midlatitude cyclone northeast of Iceland. It is a
512 X 512 pixel NOAA-9 AVHRR visible image with

FIG. 4. Image 2 (see text for description).
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FIG. 5. Smoothed Fourier transform of image 2.
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FiG. 6. E, as a function of the parameters s, log Py s logr, + log Py,
U, = logr, ¢, f, and e for image 2. The symbols are data points and
the solid lines are the fitted quadratics. See Fig. 3 for note about
lOgPOA

545

FIG. 7. Image 3 (see text for description).

a resolution of about 1.1 km at nadir. Image 2 is shown
in Fig. 4 and its smoothed Fourier transform is shown
in Fig. 5. As in the previous case, image 2 was analyzed
with the rotating ellipse method (see Pflug 1991) so
that good initial estimates of all the parameters were
available before starting the Monte Carlo differential
rotation analysis. The procedure followed for this image
was much the same as that for image 1, except that the
number of points in the sum in Eq. (21) was greater
as the image is larger. In the second round of mini-

F1G. 8. Smoothed Fourier transform of image 3.
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mizations, 100 000 points were required to produce
acceptably smooth curves of E, versus parameter. The
results are shown in Fig. 6 and listed in Table 1.

With the values in Table 1, the value of g in this
case is 0.28 and a? > 0. Again, stratification dominates
and the maximum total rotation will be | Af| s = 0.5
rad (30 deg).

Image 3: This image of a midlatitude cyclone south-
west of Iceland and its smoothed Fourier transform are
shown in Figs. 7 and 8, respectively. [tisa 512 X 512
pixel NOAA-9 AVHRR visible image with a resolution
of about 2.2 km at nadir obtained by sampling every
second pixel of a larger 1024 X 1024 pixel image. This
image, as compared to images 1 and 2, does not display
elliptical isolines in Fourier space. This is to be expected
since it has been known since at least Guldberg and
Mohn (1877) that cyclones are approximately (scale
invariant) log spirals and, hence, are not isotropic at
any scale. This 1s therefore a case in which no sphero-
scale exists. To define the unit scale, we therefore used
the parameterization defined in Eq. (20), which was
fit to the second largest level set (see Fig. 12). The
number of terms in this series is sufficient to reasonably
approximate the shape of the chosen unit ball. The
results of this fit are listed in Table 2.

Since the isotropic spectrum for image 3 is already
quite straight (Pflug 1991), the spectral slope and in-
tercept (s and log P, ) were estimated from this spectrum
and were not reevaluated using the Monte Carlo dif-
ferential rotation technique. Thus, only ¢, f, and e were
estimated by minimizing Eq. (21), using Eq. (20) and
the results in Table 2 to define the unit ball. Two series
of minimizations were performed. The initial param-
eter limits were taken to be —1 and 1 for all three pa-
rameters due to the constraints on ¢ and fmentioned
earlier and because the isolines in Fig. 8 do not appear
to rotate much (larger values of e correspond to more
rotation of the Fourier space contours). For all param-
eters, 100 000 points were included in the sum in Eq.
(21) during the second round of minimizations. The
E, versus parameter data and the fitted quadratics for
image 3 are shown in Fig. 9 and the parameter estimates
are listed in Table 1.

From the results in Table 1, the value of g for this
case is 0.18 and a? > 0. Therefore, stratification dom-
inates and the maximum possible rotation is 0.2 radians
(about 11 deg). From Fig. 7, one might have expected
that rotation dominates since we naturally associate

TABLE 2. Results of fitting Eq. (20) to the second-largest level set
in Fig. 12 to define the unit “ball” for image 3. All parameters are
measured in Fourier space pixels.

7o 108.25 + .02
a -20.50 = .02
b, —22.74 £ .02
a 16.64 = .02
b, =570 = .02
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FIG. 9. E, as a function of the parameters ¢, f, and e for image 3.
The symbols are data points and the solid lines are the fitted qua-
dratics.

cyclones with rotation. However, we must not confuse
the rotating (spiral) motion of a particle caught in a
vortex with the differential rotation of structures as
functions of their scales. Indeed, these results show that
cyclones are generally not associated with large values
of e (or imaginary a); the differential rotation of struc-
tures with scale may indeed be small.

Using the results of the Monte Carlo differential ro-
tation analyses of images 1, 2, and 3 (Tables | and 2),
a series of Fourier space contours for each image was
generated by computing k, = T,k at various scales as
indicated above. For comparison, these theoretical
contours have been superimposed on the actual Fourier
space images and level sets from the Fourier space im-
ages in Figs. 10, 11, 12, 13, 14, and 15. As these figures
show, the anisotropy appears to have been reasonably
well estimated since the fitted contours follow the actual
contours quite well.

Clearly, we are at a very early stage in devising em-
pirical tests of scale invariance. We are mostly inter-
ested in trying to find GSI systems that are compatible
with the observed radiances. Currently, no proper
goodness of fit statistics exist, nor will they be trivial
to construct. The quality of the fits must, for the mo-
ment, be judged mainly by the narrowness of the min-
ima found in parameter space and in the comparison
of the theoretical contours with the true Fourier energy
surfaces. In the future, anisotropic multifractal simu-
lations with the corresponding generators will be used
and the simulations compared with the data. This
should provide considerable insight into the preceding
results.
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FIG. 10. Level sets (points) and theoretical contours (solid lines) for image 1 at scales ratios:
A =0.25 x=042, X =0.70, and N = 1.25. The theoretical contours were produced using the

results in Table 1.

4. Conclusions

The aim of this research has been to develop analysis
techniques for studying linear GSI in satellite cloud
(and other two-dimensional ) images and, using these
techniques, to quantify the anisotropy in three different
cloud pictures. In so doing, we can determine if linear
GSlI is a workable approximation for the atmosphere.
The full nonlinear GSI, being extremely general, is too
difficult to investigate directly. In any case, such
knowledge can in principle be obtained by systemati-
cally investigating all the tangent spaces (i.e., using lin-
ear GSI locally and inferring the global G from a series
of linearizations). To quantify the anisotropy we have
estimated, for each image, the parameters of the gen-
eralized scaling operator and the unit ball (the sphero-
scale where applicable) such that the series of Fourier
space contours at all observed scales can be predicted
from the estimated generator and unit ball.

Figures 10-15 suggest that the anisotropy has been
well estimated for all three images. For all cases, we
find that stratification dominates with a maximum
possible rotation of 1.0 radians for image 1, 0.5 rad for
image 2, and 0.2 rad for image 3. The fact that strati-

fication dominates and rotation is limited for image 3
is interesting because this cyclone image is intuitively
associated with rotation. However, such overall rota-
tion is not associated with much differential rotation
of structures with scale, and hence, contrary to the in-
tuitive expectation, it only involves small rotation pa-
rameters e, and real a (i.e., stratification dominance).
We also find spheroscales at 3.5 km in image 1 and
3.9 km in image 2, which fall not too far from 10 km,
which is the thickness of the atmosphere based on the
falloff in mean pressure. This may in fact be the only
way that the thickness of the atmosphere influences
the horizontal statistics. There is no spheroscale for
image 3; thus, although most of the images examined
during the course of this research displayed plausible
spheroscales, this is clearly not a requirement for hor-
izontal sections in the atmosphere.

Theoretically, if the radiance field is scaling but an-
isotropic, the spectra for each image should not be
computed isotropically (by integrating around annuli
in Fourier space) but rather anisotropically by inte-
grating around the corresponding anisotropic isolines.
Indeed, if the energy density isolines (P(k)) are very
elongated and exhibit substantial rotation as functions
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FI1G. 11. Level sets (points) and theoretical contours (solid lines) for image 2 at scale ratios: A
=0.14, A = 0.36, A = 0.79, and X = 1.54. The theoretical contours were produced using the

results in Table 1.

e

of scale (a imaginary ), then the isotropic spectrum will
exhibit logarithmically periodic oscillations due to this
effect. In the present cases, however, 4 is real, and the
stratification not too extreme (see the contours in Figs.
2, 5, and 8); hence, there is little difference when the
spectra are computed anisotropically (Pflug 1991). The
angle averaging in Fourier space performed in the
computation of the spectrum has washed out most of
the manifestations of anisotropy. Our results therefore
show how to reconcile reports of power law energy
spectra (e.g., Tessier et al. 1993; Lovejoy et al. 1992),
with the manifest anisotropy of the cloud radiances.
We have found definite anisotropy and have been
able to estimate the corresponding parameters. As ex-
pected, we obtain different generators for all three im-
ages whose textures (meteorological situations) also
differ considerably. The robustness of the parameters
was confirmed (details in Pflug 1991) for image 1 by
comparing two different methods that were biased more
toward the small wavenumbers and more toward the
large wavenumbers, respectively, both yielding nearly
the same G. Although many questions remain, our re-
sults are consistent with GSI and suggest that linear

GSI is a workable approximation. Since the scaling
relationship applies to ensemble averages whereas we
have analyzed single images, it is quite possible that
the remaining discrepancies between the observed and
fitted spectra can be readily accounted for; we antici-
pate a fair amount of statistical scatter. We have, there-
fore, a reasonably robust, computationally efficient
analysis technique. Many more cases must now be an-
alyzed to answer the many outstanding questions, in-
cluding absolute statistical accuracy of the technique
as well as the statistical properties of the linearized G.

Since there is now growing evidence that cloud ra-
diances are universal multifractals (Lovejoy and
Schertzer 1990a, 1991; Tessier et al. 1993), it is inter-
esting to put the present results in this larger multifrac-
tal framework. Recall that G was determined from
Fourier space (the Fourier transform of the structure
function, a second-order moment). In multifractals,
there is a one-to-one correspondence between moments
and singularities; we have, in fact, characterized the
anisotropy of a single order of singularities. A priori,
each different order of singularity will have different
anisotropy and, hence, a different generator G. Al-
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FIG. 12. Level sets (points) and theoretical contours (solid lines) for image 3 at scale ratios: A
=0.18, A = 0.38, A = 1, and X\ = 1.58. The theoretical contours were produced using the results
in Tables | and 2.

FIG. 13. Smoothed Fourier transform of image 1 with theoretical FiG. 14. Smoothed Fourier transform of image 2 with theoretical
contours determined from the results in Table I. contours determined from the results in Table 1.
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FiG. 15. Smoothed Fourier transform of image 3 with theoretical
contours determined from the results in Tables 1 and 2.

though preliminary experimentation did not reveal a
rapid variation, it will be interesting to systematically
estimate G for different powers (and hence for different
orders of singularity) of the field. All of these results
would then benefit by being compared to multifractal
simulations. As pointed out in Schertzer and Lovejoy
(1991), this work can be extended in a systematic
manner by studying the Lie algebra of the coupled gen-
erators of the multifractal dynamical cascades and the
anisotropy. This may open new perspectives for un-
derstanding and analyzing meteorological fields.

APPENDIX A
Linear GSI with Spheroscale

In linear GSI, T, is a matrix that depends on four
real parameters (c, d, e, f) and is therefore equivalent
to a rotation, followed by a stretch, followed by a second
rotation. By equating T, to this series of rotations and
stretches, we obtain the following relations describing
the change in shape and orientation of elliptical con-
tours with scale (Pflug 1991)7

e 271/2 )
¢ = 2[1 + (;) } sinh(au), (23)

7 Recall that we make the simplifying assumption that T, is linear
and a spheroscale exists in section 2¢ so contours of S(x) will be
elliptical. We use the Fourier space analog (section 2d) to T, here
since it is more appropriate for our purposes. The results are the same
except that A\ becomes 1/ and e becomes —e.
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FIG. 16. ¢ = ¢/[1 + (e/a)?]'/? as a function of scale in linear GSI
with a spheroscale when a? > 0 [see Eq. (23)].

e=2[1+(5rT”
a
e\2 172
X sinh(au)<{[1 + (Z) ] sinh?(au) + 1]
. e 271/2
+ [1 + (Z) ] sinh(au)> , (24)

LY I A NS ST
4 2‘tan (c) 2tan (atanh(au)), (25)

where u = logh, 4 and B are the ratios of the ellipse
semiaxes to the spheroscale radius, e = B/ A4 — 1 is the
ellipticity, { = Ve/(e + 1) = (B/A)"* — (4/B)'/?,
and 6 is the angle of orientation of the ellipses. At the
same time, we find the definition of the scale ratio to
be that given in Eq. (11) if the parameter 4 is set equal
to 1 according to the convention in Schertzer and
Lovejoy (1987b). The freedom to choose d comes from
the arbitrariness to the definition of scale (section 2b).
The only restriction is that & be positive. With d = 1,
dag = 2d = 2 in the horizontal. The behavior deter-
mined by Eqgs. (23), (24), and (25) is shown in Figs.
16-18, respectively.

110
efa=.
80\l s
cla=1
W 50r~lefa=2

20 —

.10 -
5 3

lala

FIG. 17. “Ellipticity” as a function of scale in linear GSI with a
spheroscale when a2 > 0 [see Eq. (24)].
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FIG. 18. Angle of orientation (in degrees) as a function of scale in
linear GSI with a spheroscale when @ > 0 [see Eq. (25)]. Only
curves with e > 0 are shown; if e < 0, the curves are flipped about
the vertical axis.

In section 2c, two classes of behavior determined by
the sign of a? are discussed. These results are obtained
by examining the {, ¢, and # equations. When a*>0,
these equations are as they appear in Eqs. (23), (24),
and (25). If a® < 0, however, these equations can be
rewritten in terms of |a| as follows:

e 2 1/2
§=2[(—> — 1] sin( |alu), (26)

lal

AT
la|
e 2 1/2
Xsin(lalu)<H(|—a) - l]sinz(lalu)+ 1]
e 2 1/2
+[(——) —1] sin(lalu)>, (27)
lal

D ST A B Y A
B—Ztan l(c) 2tam 1(laltan(lalu)). (28)

The behavior determined by Egs. (26), (27), and (28)
is shown in Figs. (19), (20), and (21), respectively.
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FiG. 19. {' = ¢/[(e/|a])? — 1]1"/* as a function of scale in linear
GSI with a spheroscale when a? < 0 [see Eq. (26)].

FIG. 20. Ellipticity as a function of scale in linear GSI with a
spheroscale when a? < 0 [see Eq. (27)].

APPENDIX B
Real and Fourier Space GSI

To relate Fourier space and real space scaling, we
start with the structure function S(x) of the radiance
field f(x) [Eq. (1)]. If f(x) is scale invariant, then the
structure function satisfies Eq. (2).

If F(k) is the Fourier transform of f(x), then

D
F(k) = (517;) ff(x) exp(—ik-x)dx, (29)

where D is the dimension of space. From the relation
(e.g., Monin and Yaglom 1975):

D
P(k) = (2—1_7r) JR(X) exp(—ik+x)dx, (30)

where R(x) = (f(x)f(x + x')) = {f(0)f(x)) and
P(k) = (| F(k)|?), the structure function can be re-
written as

S(x)=2 f P(k)(1 — exp(ik-x))dk, (31)

by inverting Eq. (30) and substituting into Eq. (1).

eflal=1 |p
~y [eflal=2

9 - (1/2)tan'(f/c)

lalu

FIG. 21. Angle of orientation, in degrees, as a function of scale in
linear GSI with a spheroscale when a* < 0 [see Eq. (28)]. Only
curves with e > 0 are shown; if e < 0, the curves are flipped on the
vertical axis. In this case, |e/a| = 1.
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If we let x = T)x' and k = T,k/, where T, is the
Fourier space-scaling operator that corresponds to T,
and define T, = A%, then, by requiring invariance of
the scalar product under scale changes (k- x = k' -x’'),
we obtain Eq. (12) defining the Fourier space genera-
tor G.

APPENDIX C
Choosing Random Vectors

The m random points in the sum in Eq. (21) are
chosen to be uniformly distributed in logA based on
the linear relationship between logA and log P, in Eq.
(15). To choose the points in two dimensions, an angle
is chosen at the unit scale from a uniform distribution
between 0 and 27 and a radius is chosen uniformly in
log A as follows:

logh = ((logAmax)*én,) '/ (32)
0 = 2wk, (33)

where £y, and £y, are random numbers uniformly dis-
tributed between 0 and 1. In effect, we choose a vector
with magnitude A and angle §. We proceed this way,
that is, selecting # (the angle of k,) rather than the
angle of k, since we need to know k; in order to com-
pute k, = k(A, G, k,) as desired. The maximum scale
in Eq. (32) is taken as logAna = logN/(2)'? + 1
— log (area of the unit scale contour/ = )!/? as explained
in Pflug (1991). [ Note that (area of the unit scale con-
tour/x)'/? is just ry. In the case of a spheroscale, see
Eq. (20).]

In developing the Monte Carlo differential rotation
method, a variation of the technique was tested on one
of the images analyzed (image ‘1) in which the m points
in the sum in Eq. (21) were distributed uniformly in
M. There was no significant difference, however, in the
results obtained using the two different distributions
even though the first distribution is highly concentrated
at small wavenumbers while the second is evenly dis-
tributed over all wavenumbers. This robustness of the
parameter estimates with respect to the distribution of
points in the sum is a good indication that the linear
approximation to G holds over the entire range of
scales. [ For more details and a comparison of the vari-
ations, see Pflug (1991)].
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