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ABSTRACT :

Many geophysical fluid dynamical systems are highly anisotropic and
intermittent over a wide range of scales. In the following, we develope a formalism
called generalised scale invariance (GSI) which is necessary when the statistical
properties are no longer symmetric with respect to rotation, but remain symmetric
under general scale changing operators which can no longer correspond
toself-similar dilations. The physically significant invariants are densities of
scaling measures which are symmetric under these generalised scale changes. By
relating GSI to existing cascade models, we show that scaling measures are
characterised in general by multiple fractal dimensions, and are associated with
the interesting phenomena of the divergence of high order statistical moments.
Finally, we analyse radar rain fields showing not only scaling but also dimensional
dependence of statistical averages.

7. Introduction :

Scale invariance is a notion widely used in isotrapic systems with many scales
such as turbulence. However, many natural flows, exhibit strong anisotropy which
results from the existence of prefered dirsctions (e.g. in the atmosphere due to
gravity or rotation). In meteorology this common and unfortunate association of
scaling with isotropy has raised the guestion of whether a single scaling regime
exists at all : the classical scheme of atmospheric dynamics postulates a quasi-two

dimensional regime at large scales and a quasi-three dimensional regime at small
scales.

Recently, we have proposed an alternative scaling theory((1, 2, 3) see also
(4, 5) for non- mathematical reviews) in which the anisotropy introduced by gravity
via the buoyancy force results in a differential stratification and a consequent
modification of the metric. This leads to a reduction of the effective dimension of
space (from the isotropic value D=3 to 23/922.5555...). The metric is modified
because in a cascade process, the most natural metric to use is the one in which
the "balls" it defines coincide with the average eddies. In the isotropic case, the
balls are self-similar spheres, but when there is a priviledged direction, we
expect these to be replaced by self-affine ellipsoids (see fig. 1 and 2).

In order to take into account this and other effects such as the differential
rotation introduced by the Coriolis force, a general formalism of scaling is
required. In fact, as pointed out in Section 3 and 5, only measurable, not metric
properties are necessary. This is because the scale notion may be extended so as
to depend only on measurable properties of the balls.

As indicated and illustrated in Section 2, the fundamental problem is that of
finding a family of "balls" representing the statistical properties of eddies at
different scales. These balls define physically important, scale invariant
(mathematical) measures such as the flux (or dissipation) of energy through
structures of a given scale. In Section 3, a general formalism is deduced from
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these phenomenological considerations to take into account both anisotropy and
intermittency. This formalism is given a sound foundation by the linear metric
case which is explored in section 4. Section 5 is devoted to several of the
numerous implications for scale invariant measures, in particular we discuss
"multidimensional"” intermittency which is described not by a single dimension but
rather by a sequence of dimensions. Section 6 gives direct experimental support
for multidimensionality in the rainfield (obtained from remotely sensed radar
data).

2. Phenomenology of turbulent cascades :

2.1. Isotropic energy cascades :

Since Richardson (6) the phenomenology of turbulence has been closely
associated with self-similar cascades. In this section we review simple cascade
schemes, outlining several variations in order to capture both anisotropy and
intermittency. In an isotropic, homogeneous cascade, non-linear interactions
break-up large eddies into smaller sub-eddies, transfering their energy (without
dissipation) in the process (energy is thus an invariant of the process). Fig. A, B
schematically shows a single step of such a cascade. The initial eddy (A),
represented for convenience as a square, is transformed into B. Each of the
sub-eddies are copies of the original reduced by the linear ratio A (here taken

= 2) and each containing a 1“1":‘4ction)’“2 of the original energy. If the process is
continued indefinately, it is clear that the energy distribution remains
homogeneous and isotropic.

In order to account for the "spottiness" (7) of turbulence (the fact that the
active regions only occupy a small frnction of the total volume available), this
cascade scheme has been elaborated, through the work of Novikov and Stewart (8),
Yaglom (9) to the more general scheme of Mandelbrot (10). The simplest case (known
as the " p model" (11) 1is illustrated in fig. 1C. As before, the large eddy is
broken up isotropically. Now however, the sub-eddies are randomly chosen to be
either "dead" or "alive" (active), with the energy at each step being divided
equally only between the N active sub-eddies with<N>< A2 . When the the number of
steps tends infinity, the energy is eventually distributed over a set of points
(called the "support of the turbulence"), with (Hausdorff) fractal dimension Dg =
logiN>/log{ X ). In fully developed three dimension turbulence, ¥t is found
empirically that, Dg~ 2.5 (12).

This simple scheme can readily be extended to account for the more realistie
case involving turbulence with a continuum of intensities. This leads to a number
of interesting implications (10, 1, 2, 3, 13), including the hyperbolic nature of
extreme fluctuations (divergence of the high moments of the density of energy
flux), and the multidimensional nature of the intermittency, both of which we
discuss in Section 5. For the moment, we rather concentrate on showing how these
simple schemes can deal not only with intermittency, but also the strong
anisotropy.

2.2. Anisotropic cascades :

The strong anisotropy in the atmosphere is primarily due to gravity which
induces a differential stratification and the Coriolis force which induces a
differential rotation. The simplest way to deal with this (3, 13) is to consider
anisotropic cascades in order to account for the vertical stratification. This
natural idea leads to the surprising conclusion that the effective dimension
(called an elliptical dimension Dg; - see Section 4) of the atmosphere is 23/9 =
2.5555 rather than 2 or 3 as in the usual models. To see how this intermediate
dimension can arise, consider the schematic illustration of a simple anisotropic
cascade shown in fig. 1D, E. Rather than producing sub-eddies by dividing both axes
in fig. 1 by the same factor, we divide one by A and the other by)ﬁz. Fig. 10, E
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shows this with A= 4, H, = 1/2. The resulting elliptical dimension is 1+H, = 1.5
rather than 2 as in the isotropic case. In the intermittent case, (E), the support
has an effective dimension (also of the elliptical type) Dg < Dgj. Note that at
each step of the process, the initial rectangular eddy is reduced in size and
elongated. The transformation from one scale to another now involves a compression
as well as a reduction. Note that as in the atmosphere, the structures at the
largest scales are the most horizontally stratified. In the atmosphere, theoretical
and empirical results show H, = 5/9, hence Dg] = 2+H, = 23/9 (3).

One of the motivations for the formalism described below, is to go beyond
these square and rectangular eddy shapes, which are instructive, but hardly
realistic. Using GSI, the squares and rectangles can be replaced by nearly any
shape, the simplest of which are circles. Fig 2 illustrates this with a family of
average eddies in a simple example of anisotropic scaling involving both
differential rotation and stratification. For comparison recall that under
isotropy, we transform from one member of the family to another by simple
multiplication by the ratio M\, hence the balls are concentric circles. In Fig. 2 ,
we rather multiply by MG where G is a matrix.

3. Generalised notion of scale :

As noted above, in geophysics, the notion of scale has to be generalised in
order to take into account anisotropy. However, Geophysical quantities are also
often extremely variable, hence at the very least, we require measures which are
both anisotropic and intermittent.

The previous examples outlined the basic properties associated with the notion
of scale which can be restated in the following abstact way : there exists a family
B of "balls" B generating the topology of a set M and an application Q/ from
M to R* which is increasing (i.e. BCB's> @B Z(B")). &(B) defines the
scale of B.

The balls of & can be generated by a scale transformation of ratio A from
those of a sub-family &, (covering M) bounded for @& (i.e. there exists a
positive and finite real number A such that :VB,eg,, @(B)<A ). This (abstract)
scale transformation BF ratio A corresponds to an operator T, (from M to M) such
that : B (T, B) = )\’ &(B).

We are thus lead to the following abstract definition in terms of a group (the
"scaling group") of operators T>\ for a topological space M :

Generalized scale transformation (global definition)

(1) Ty is a multiplicative group ()€ R:) of transformation from M to M, i.et

(3.1) TX)\\ = TX o T>‘\

in particular : Tq = 1 = the identity and TX1=T

s

(ii) there exists a family £| of "balls" (open sub-sets of M) such that
8 =T,\g5, is a basis for the topology of M)

(iii) there exists an increasing function ¢ from & to R,, bounded on ﬁ, and
which factorizes in (D € R,)

D
(3.20 T, g =\ §
(in (3.2.) T)‘¢ is naturally defined by : TA¢/B =ﬁ(T)\ B,V M\, B.
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D
Note in (3.2.) the expression )\ results from the group property of Ty since it
is implied by the assumption of the existence of a continous function g()\) in
(3.2.).
As is easily shown, in case of a metric space, D plays the role of a dimension
and @(B) can be taken as the radius of the balls defined by the distance d(x,y)

(i.e. if Bx,L is the ball centred at x, radius L, then : By |= {y/d(x,y)\<L ,
¢(Bx,L):L and D = 1). d (x,y) can be called the scaling metric. More generally we
can use the measurability property of the balls. For instance on Rd, we can take
& as the Lebesgue (d volume) measure, by supposing that the B's are Lebesgue
measurable, and D equals d if the balls are the usual spheres or cubes. As we will
see, this is no longer true with strongly anisotropic balls (such as sel f-affine,
but not self-similar, ellipsoids). Even more anisotropic (and/or irregular) balls
can be addressed in this formalism (see Figs. 3a, b : the balls need not be
convex). Interesting examples are isotropic or anisotropic Cantor sets or more
generally fractal sets which are not Lebesgue measureable but measurable by a
D-dimensional Hausdorff measure. In all these cases & can be taken as the correct
Hausdor ff measure (that which is finite and positive on the balls) and the scale
is given by ﬁ'I/D . can be called the scaling measure.
The last example already shows that although it is usually based on metrics
the measurability notion of scale is more general than the metric notion. It also
has the advantage of being immediately transposable to the space K(M) of the "test

functions" of compact support on M, since the equality in (3.2.) is also true in
terms of test functions :

(3.3) FEKM), Ty f(x) = f(T3] x)
not only in terms of balls i.e.

: p
(3.4) BEK' (M), FEKMDT, B () = X & () = ﬂ(TXf).
We now establish several precise results in the linear case.

4. Linear GSI case :

4.1. Introduction :

In this section we will explore the necessary and sufficient conditions for
obtaining a scaling group on a vector space M, where the Ty will be a linear
application from M to M.

In this case, it is well known that any multiplicative group T>\ is generated
by a (bounded) linear application G according to :

(4.1.) TX: exp (Glog A ) =
[/ n n
—é‘(/ogk) G
n=0 m

To generate a generalized scaling measure we proceed as follows : start with
a given scaling measure (defined by Go do,DJ, which may correspond to the usual
scaling such as an isotropic metric. f\!ext deduce whether a given generator G
defines a new scaling (with ¢, D). This requires the use of unit balls £, (i.e.
@ (B)=% (By) = 1) which should generate, through Ty defined by (4.1.), the
whole family $ of balls of the new scaling, i.e. :

-1
4.2)  @BI=X & Fo(Ty B)=1
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4.2. The measurable case :

This case is rather easy handle. If we start with a measure, onthen 25
will be the image measure of though Ty, (which is continuous), and thus will
satisfy the desired properties if (3.2.) is satisfied with a positive D. If we take
@o as the Lebesgue measure on RA, then we obtain :

(4.3.) Dg1 = Trace (G)

since the Jacobian of the transformation T) is :

(4.4.) det (Ty ) = exp (Trace(G)Log )

De] can be considered as the effective dimension of the space, and when the balls
are ellipsoidswe may continue to call it the elliptical dimension of the space
(cf. 1, 2, 3). See Fig. 3a, b for examples obtained by various non-linear

generators G,

4.3. The metric case :

This case is more demanding since the image of a metric is not usually itself
a metric. Nevertheless it is possible to establish (13) the following proposition
(starting with an initial metric d(x,y))
(4.5.) inf Re ©<G) 2 1
where 0(G) is the spectrum of G :
(4.6.) o(G) = {’4 G_C‘ G—/q1}non invertible on C® M
and C ® M is the complexified space of M.
If we started with a unit ball defined by the ellipsoid generated by a
symmetric operator A and euclidean product (* ,*) :
(46.7) x € B> (Ax,x)1/2g 1
Then we obtain the following condition :
(4.8) inf o~(sym (AG))2 1
where Sym (AG) denotes the symmetric part of AG.

4.4, Some simple examples on the plane :

A particularly simple example of linear GSI may be obtained by the use of
quaternions. Of the many possible representations of quaternions (such as the Pauli
matrices) we choose the following four 2x2 matrices : the identity (1) and :

(6.9) 1=(0-"%g, 3=0"%e, k=00_p

these satisfy the following anticomutation relations :

(4.10) IJ = -JI = =K
J = K= 1
KI = <IK = -J
and :

(4.11) 1=-12 =32 =

]
x
N
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If we decompose G on this basis, then : G=dl+cK+el+fJ also, taking
aZ=c2+f2-¢2, we obtain, with u = Logh:

(4.12) NG = \(1 cosh(au) + (G -d 1) sinh(au)/(a))

Of course, I and K corespond to the elementary linear operation of multiplication

by i and complex conjugation. J has the same effect as K coupled with a rotation,
namely we have :

(4.13) oK + 3 = c'R*KR ; c'2 = (c2+f2), R=eI® 8 = tan-1(f/c)

If a is imaginary, the rotation effect (due to I) is dominant, otherwise, the
stratification effect (due to K and J) dominates. Fig. 2 shows an example of
families of By for the limiting case where the ellipsoids touch along a
log-spiral, f=1, e=2, 22=-3. When rotation dominates, the axes of the ellipsoids
rotate indefinately, otherwise the total rotation is only tan-1(f/c). The existence
of such metrics are assured by :

2
(4.14)  dZ 3 o2 + fZ
Lovejoy and Schertzer (14) exploit the stochastic fractal model discussed in

Lovejoy and Mandelbrot (15) to give examples of (mono-dimensional) fields
respecting linear metric GSI.

5. GSI is a natural framework for multiplicative chaos and multidimensional
intermittency :

5.1. Introduction :

Usual stochastic process (such as Brownian motion) are obtained by the
(weighted) addition/independent identically distributed (i.i.d.) random variables
(e.g. integrals of white noise). Conversely, the multiplicative group T) suggests
that in GSI the most natural type of process to use are those obtained by
multiplication.

The difference in nature of additive and multiplicative processes is profound
since the former is mono-dimensional, while the latter generally leads to multiple
dimensions. This difference needs underlining since many efforts have been made to
relate the most obvious aspect of intermittency-its "spottiness" (7) to a turbulent
support with a single fractal dimension (10, 11) . If we define active (turbulent)
regions as those exceeding an arbitrary threshold, then the active regions may
indeed be characterised in this way: the turbulence occupies a much smaller space
than that available. However, as pointed out in (1, 2), phenomenological models of
intermittency (8, 9, 10) lead, more generally to supports characterised by multiple
dimensions, corresponding to the different (tensorial) powers of the measure of the
flux of energy. Indeed, a sequence of dimensions is easily obtained (2, 3) by
considering the divergence of high moments of the density €p of this flux with
respect to different Da-dimensional Hausdorff measures:

(5.1) €p0 for Dﬁ(C(h)=Del-D(h)
C(h)=log <Wn> /(h-1)

where W is the random variable which distributes the density during a step of the

cascade (i.e. from an eddy to a sub-eddy in fig. 1). Increasing h corresponds to

studying the more intense regions. Since D(h) is a decreasing function of h, the

most intense regions are the most sparsely distributed.



Generalised scale invariance in turbulent phenomena 629

5.2 GSI and additive processes :

Combining the action of Ty with addition creates random structures of
different sizes and intensities. Indeed, take an i.i.d. random test functions vix)
of a given spatial resolution (e.g. V 5: constant over the unit ball: the process
is therefore the sum of i.i.d. indicator functions of unit balls). Thus:

(5.2) Ve T,mTOV) oD

will be a random test function of lower spatial reso%ution AT Summing these
different Vx (renormalising their intensities by X‘, ¥ >0 if necessary), we
obtain a random density with respect to the (fundamental) scaling measure m (Tym=
Wel m), thus define my  as:

(5.3) mp= (J Pd Vydy/om - (B50)

is a random measure corresponding to a hierarchy of structures of scale ratio )Y ,
and the action of Ty (for any 2) will obviously leave this property unchanged.
More precisely, the density of Tym will also be the sum of i.i.d. densities of the
same type as for m except for a magnification X-C where C depends on ¥ and the
probability distribution of the Vj ). Thus:

d

< uD
(5.4) Tﬁ‘ﬂiﬁ'ﬂ m
( é meaning equality in distributions, Cz=Dg1-D) and D is the unique dimension
characterising the supports of all the any moments of m . Note that we have

implicitely supposed that both <V> =0 and <mp=0. This is not restrictive since we
can normalise qﬁ_by adding to TAf fim= <my>where f is the density of the average of

mp) -

5.3 GSI and multiplicative processes-multiplicative chaos :

Instead of adding random increments of finer and finer resolution along the
cascade, one may multiply by random increments of finer and finer resolution. This
multiplicative procedure corresponds to the non-linear break-up of eddies into
sub-eddies. The resulting random density will be of the form:

(5.5) m'Yy =f,m= f’ '
. my -~AT_EXP(, dek/) Jm

where the Vy will still result from the action of 751 on i.i.d. V® (of resolution
1). Mandelbrot's cascade model of intermittency on a rigid grid corresponds to a
discrete summation (\p= 5’1, d\/A=6-1, the i.i.d. random variable Wn‘l’/ being the
intensity of exp(Vn(6—1)) on the ith cube of resolution A-N).

In such processes, one is interested in myg =lim m (even when f has no limit
in the sense of functions), which represents a difficult mathematical problem where
few results have been obtained (16). Nevertheless, due to the multiplicative
property of both Tyand the way the process is constructed, we may introduce the
co-dimension function C(h):

(5.6) <T;1 fhoa Xp-DC g by,

In this ‘paper, we will not develope the formalism further, but only note that
it clearly indicates that multidimensionality is quite general. Other work on
multidimensionality may be found in Hentschel and Procaccia (17), Grassberger (18),
Mandelbrot (19), Parisi and Frisch (20).
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6. Intermittent multidimensional measures in the radar determined rain field :

6.1. The integral structure function :

from the preceeding it is clear that the most obvious way of empirically
studying scale invariance is by measuring various powers of cascade quantities over
different scales and dimensions. We therefore introduce the integral structure
function S(h, L, Dp) defined for a quantity X(r) as :

sth, L, b=<((J x(r)dPAr)APM)hS
where L is the size of the Dp-dimensional hypercube over which the averages are
take. Scale invariance implies :

Sthy AL, Dg) = A "PUDA) sent by
where )\ is our usual enlarBement ratio and p(h,Dy) is a function not only of h,
but also of Dp. Note that d Ar denotes a Hausdorff measure, dimension Dj : the
averaging can clearly be performed over any fractal set.

The function p(h,Da) contains all the information about the scale and
dimension dependence of both intense (large h) and weak (small h) phenomena.

For the simple case where the phenomenon is mono-dimensional with dimension Dg
(co-aimension = Dg1-Dg=Cg) (e.g. the "B model") it can be shown (21) that p(h, Dp)
takes the following simple form (for h>0) :

p(h, Da) = inf(Cg, Dp).(h - 1)

i.e. for Dp>Cg, p is independent of the averaging dimension and is linear in h.
When Dp>Cg, the averaging set and the phenomena intersect : when the dimension of
the averaging set is large enough to intersect the phenomenon then averages are
independent of Dp.

This has immediate consequences for p(h,Dp) of multidimensional phenomena : as
Dp is decreased from its maximum possible value more and more of the intense
regions (with lowest dimension) will fail to intersect the averaging set. Hence,
p(h,Dp) will be sensitively dependent on Dp. Averages of multidimensional phenomena
are therefore not only scale dependent, they are also dimension dependent. A
related difference is that p(h, Dj) is no longer linear in h.

6.2. The rain field :

Of all the geophysical fields, none are known with as high a resolutin in the
four dimensions of space and time as the radar-determined rain field. For example,
the data used in the study described below were from 5 series of Constant Altitude
Z LOg Range maps (CAZLORs).

The radar measures the total backscatter from all the drops within a
scattering volume, with an amplitude proportional to the drop volume squared, and
with a random phase due to the random positions of the drops. The total integral Z
isiéndérgctly related to the rain rate (R), by an approximate formula (22) :
R FALLN

Fig. 4 shows the functions p(h,Da) for Dp= 1, 1.5, 2, 3, 4 corresponding to a)
azimuthal averaging, b) averaging over 1.5 dimensional fractals ¢) azimuth-range
averaging, d) azimuth-range-elevation averaging, e) azimuth-range-elevation-time
averaging. The curve for Dy = 1.5 is of interest because Lovejoy and Schertzer (21,
23) show that geophysical measuring networks are clustered at all scales (e.g. on
continents, near cities) with Dp< 2 (e.g. in Canada the meteorological surface
network has Dy~ 1.5. In France the climate network has Dy~ 1.8 , the glo) network
Dy~ 1.75), ] /
7. CONCLUSION :
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Motivated by the strong anisotropy and intermittency of the atmosphere, we
have developed a formalism called generalised scale invariance. The formalism is
based on two sets of elements and may be regarded as an extension of earlier work
on cascade processes (especially 10, 3).

The first is a group of general scale changing operators, whereas the second
are the intermittent measures invariant under the operators. In a turbulent
cascade, the scale changing operator transforms eddies into sub-eddies, while
leaving the physically significant energy flux invariant (here represented by a
scaling measure). The scaling operators can be classified according to whether the
balls associated with the eddy topology define a metric or are only measurable. It
can further the ¢ ssified according to whether the underlying space is homogeneous
(i.e. translation invariant, linear GSI), or inhomogeneous (non-linear GSI).
Examples of each are given. The scaling measures can be classified according to
whether they involve a single fractal dimension (mono-dimensional measures), or
whether as in the more general case) the measures are characterised by an infinite
sequence of fractal dimensions with the most intense regions having the lowest
dimension. The latter case is also associated with interesting phenomena of
divergence of high order statistical moments.

Finally, we test some of these ideas directly on the radar determined rain
field. The scale and dimension dependence of the averages of variocus powers of this
field are clear support of its multidimensional nature.
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Fig. 1 : A schematic representation of how various turbulence models
treat the break-up of an eddy (represented by the square in A) via
non-linear interactions during a single step in the cascade process. The
various schemes are divided from left to right into homogeneous and
inhomogeneous (intermittent), and from top to bottom into isotropic and
anisotropic cades. For each scheme, the formula giving the number of

active eddies at size (L) (=N(L)) is shown.
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//

eddie
Fig. 2 : The shapes of the average)glhe balls By ) for an example with
both differential stratification and rotation (modelling the effect of
the Coriolis force). Here, Dgj=2.

Fig. 3 : Example of the balls By for non-linear, non-metric GSI,
obtained with various (non-linear) generators G. 3b models a scale
invariant "cyclone".



Generalised scale invariance in turbulent phenomena
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Fig. 4 : The structure function exponents p(h,Dp) for (symbols bottom to
top respectively), Dp=1, Dp=1.5 (using simulated fractal rain gage
networks). Dp=2, Dp=3 (space), Dp=4 (space-time). The straight lines for

large h have slopes Dj which indicate the most intense regions have
dimension zero.
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