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1. INTRODUCTION

_ Ever s ince the publ icat ion of  | landelbrot .s
cetebrated book "Fracta ' ls , ' in 1977, th is new
chapter of  c ' lassical-geonetry has been invading
physics.  The fractal 'geonct iy ot  n i iure 'nas
been discerned in a bewi lddr inq var iety ofplaces. Mandelbrot  h imsel f  nas-exam.ineO tne
fractal  structure of  language, stock-market
pr ice ser ies,  the organi iat ion of  matter in the
ynivelse,  the geometry of  r ivers and coasi l ines,
hydrological  t i re ser ies,  b io logical  structures
such as t rees and bronchiol i ,  a i  we' l l  as the
structure of  turbulence.

_ Hhat uni tes these diverse aspects of  narure
is the existence of  structure at 'a lmost everv
space or t ine scale.  This is perhaps the noi t
fundanental  property of  f ractais.  b ince one or
the most str ik ing features of  satel l i te c loud
pictures or of  radar rain maps is the wealth of
spat ia l  and temporal  structure, ' the idea that
rain and cloud areas are f ractal ,  is  intui t ively
appeal ing.  The aim of  the present paper is to
: lo l  9: .s imply and non-rnathematical iy '  as possible,
that  th is intui t ion is indeed wel l  f lunded
Coincidental ly,  the theoret ical  groundwork for
the introduct ion of  f ractals int6 rnteorology
has.recent ly been la id.  Chor in ( tggt)  has proved
ilandel brot's conjecture that the 

-sol 
uti on to the

Euler equat ions is a f ractal  set .

2. I{MT IS A FMCTAL?

, The best explanat ion of  f ractals is to be
found in l . landelbrot 's highly readable book
"Fractals",  a l though br iafei  and more intui t ive
accounts are Gardner (1979) and f , landelbrot  (1991).
Undoubtedly, the best rray to understand fractals'
is  to start  by examining what they ' look . l ike.
f rgure I  ' ts  a reproduct ion of  one of  l landelbrot 's
(198.1) beaut i fu l  i l lustrat ions:  a t ra i i i t  c loud.
(Although.rneteorologists may doubt whether some
reat ctouds are f ractals,  there is no doubt about
this-one).  To use l |andelbrot 's e*presi ion,  i t  is
a-100X geomtric ufake,,, drawn by i computer
after specify' ing three parareteri. The fact that
only- three paratcters were needed to unambiguously
speci fy th is rather contorted, compl icated i t rape -
suggests that_the f igure has a basic aeomtr icsrmptrc l tJ,  at though i t  is  c lear]y unl ike any_
thing in c ' lassical  geometry.  Indled, the con_
ceptual  d istance from Eucl id may be judged by
tn l?g!_!!lt one way_of mailremit.icai rv"oefininglne.ormenston (str . ic i ly speaking, the -"Hausdorf :
Besicovi tch" dimension),  is a n5n_ini .g" i '1.u._
tion. This should be cornpared to anoif,Jr cype

of dirBnsion, namely the topological  d i rBnsion.The topologica' l  d i r rension ciea. iy- f , is  the valueI for a parameter,

^,  
Comparing the.f ractal  c loud in Fig.  I  wi ththe-simplest  Eucl idean shapes iuctr  as a c. i rc le

l :_iIyi i i . l inq, t{hereas i ciri ie i l  uniqueryqerermtned by one size parameter _ which is n6t
lqlstn - by a dirnension' (O) 

"r i i i t  
conirots ure"disconnectedness,, or Ue!ree 

-or-i i .Ji to"sion,,,
and by a random seed whi ih select i - j -part icular
cloud frqn the family of al l  . iorar l  ' i f  realqlgqds are fractals,  one would . ip" i t  inen todi f fer.only in size,.  ana ranOorn-f5. i ,  not indirBnsion. This is because .ais ing-, ;" '  fo"". lngD has the effect of  making moie-or ' i i is , ,als_
connected"_clouds, ?lg ,gi"  or less j iggeo eOgesrespect ively.  Intui t ively,  D oughi [o"ue aeter_mined by the physical  p"ol"sses-i i i i . i - rr ,up. c louds.In part icular,  one mignt expei i  O to 'u" deter_mined-by the propert ies or luroui"ni" l -  t t  i ,therefore signi f icant that Komoigorov;s t f reoryof isotropic homogeneous turbuleice-p."Oi. t ,
D = _4/3, 5/3 for isouars iro-ii"irl..i ls=.espect_
iye' ly,  in a two-dinnnsional c"oi i_ie. i ion orthree dinpnsional turbul.n. . .  i te i i - i iooars anoisotherms are fractals because tn"i-siiisrv uan_detbrot,s def ini t ion: a trai t i l  

- ; ; i  
i ; -"  set whichhas a Hausdorf-Besicovi tcn Oinreni iJn' l reater t f ranthe topological  dimensron.

3. REAL CLOUDS AflD RAIII ARIAS

..  lhndelbrot produced Fig. I  by varying thedinension-of . the'  per incter Int i t  i  reai isf f  c_rooKrng cloud was produced, choosing D = 3/2. l {oactual data nent into i t ,  inceeO, idteorotogist f-may feel that a lower vaiue slo,riU trave'Oeenctrgsen because real c'louds toor-iinrooiier,, thanthis fractal  c loud. . l {e shalt  p." i"ni iy-show thatreal c louds have perircters with O _ qi3.

_--, , ,0n9 simple way to character ize the .smooth-
ness" or. the perircter.of  a tro_dinensional c loudpicture is to r€asure how nruch-p;"i;;;;; ts neededto.enclose a given area of c loui .  i i - i ' rong pi" i -meter encloses onlv a_sma.l I  area, D-is neariy ' iwotimes the dimnsioir .of a perinei".-"t,i.i, ' I iteral lyf i l ls the ptane. r f  only a s,nai i  ; ; ; ; ;  of  per. i_rnter is required to.enclose t tre sirB- irea, 0 isnearly l ,  the dinension ot a cont inuori ' i ln".  Inthe. ' ldt ter.cgs€, we would expect an- i""a (Air_ - '
per imter (p) relat ionship oi  i t re- io"rn--pr, f i
s ince this is the formula'ror i t issic i l  snrootnshapes such as circ les..or sguares. I f  the peri_meter is so , 'contorted" thai ' t  tenoi to ' f i i t  t t replane (D-2),  we obtain p. l IF. i f r is-suigests
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Fjg.  l .  This f igure is reproduced from t- landel-
brot  (1981) '  and represents the surface of  a OoC
isothenn in homogeneous isotropic turbulence.
Although l ' lande'l brot used this as a fractal c' loud
model,  the dimension of  a 2-D cross-sect ion is
5/3 and is too high to be compat ib le wi th the
data.  This accounts for  the fact  that  rea' l  c]ouds
look "smoother".  Any structure apparent in th is
cloud is purely random.

the general  re lat ionship prz(y ' ! ;0.  This intui t ionis proved to be correct in udira6tu"ot t igizi.  
- in"

::d:I-t? grl imate D,.we therefore measu"e tne siope
:1.  !n" tog p vs log A graph indicated in Fig.  2.Here tre have combined 1 x I km radar data fiom
tropical  At lant ic rain areas, wi th G0ES stat ion_
ary satel l i te Infrared cloud area data,  i rom ove"
the Indian 0cean. As can be seen, a f ractal  model
with D,v4l3 is strongly suggested'by tn i i  Oata
ranging over 6 orders of  malni tude in A, Laterf igures extend th. is at  teasi  anoine."o"aer ot
magnitude in the direct ion of  smalt  arei i  and i t
is  possible that  deviat ions Oo not 'o icui-unt i l
v iscosi ty becomes important on a scale of  meters
or less.  In the direct ion of  increis int  R, i t
may be hard to extend the curve mucn fuither
: j tp lv because very few ctouds at i i in i t . r "  s izes.rne^targest c loud examined here extended over
JUUU Km rrom the centre of  Afr ica to south ofIndi  a.

I t  should be remarked that the apparent absence
of a bend in Fig.  2 shows that no nor i iontal  length
scale is associated with these rain and cloud
area per imeters.  This strongly supports the posi-
t ion of  Pinus (1968),  Vinnechenko i tgZO).  Gaqb
(1979) and Gi let  et  a l  (1980),  who'repoi t  k-5/3
wind spectra (be1ow *rr  6 km),  out  to distances of
up to 1500 km (Vinqechenko [970)) .  A t ransi t ion
to the expected 1-s (2-0 turbulence) behaviour
would y ie ld an apparent lowering of 'D (an incrgase' ln the s lope of  Fiq.  2) .  This is because a k-J
f ie ld is smoother lhan'a k-5/3 one. No such trend
is apparent in Fig.  Z.

f lg.  2,  This f igure shows the area (A)-per incter
(P) re ' lat ionship for  radar rain data t rom the
tropical  At lant ic,  as wel ' l  as for  data f rom
infrared geostat ionary satel l i te data over the
Indian Ocean. For the radar data,  the per i reter
separated regions with rainrate ( .2 nm,/hr f rom
those w' i th rates )  .2 rmlhr.  In tne IR picture,
the threshold wai  -100C. The least  mean squares
f i t  of_109_A and 1og P is also shown, . indi iat ing
D = '1.35 with correlat ion coeff ic ient  = .994.

4. DEVELOPI4ENT

4.1 Random Fractals and non-Benign Chance

In the previous sect ion *e hinted at  a basic
aspect of  f ractal  ra in and cloud geonctr ies:  the
stochast ic element impl ied by the random "seed".
Tradi t ional ly,  npteorologists have regarded the
"smal l  scale" as a k ind of  random noise super-
imposed on a detenninist ic "1arge scale".  The
fractal  nature of  ra in chal lenges this dist inct ion
unless the boundary between large and smal l  is
shi f ted-of f^the graph in Fig.  2 to areas greater
than l0o kmz.

o Radar rain areas

oSatel l i te c loud area:
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The reason we feel  uncomfortable wi th the

idea of  random large scaie structure is that  unt i l
now most random processes studied ' in nature have
been -  to use Mandelbrot 's (1973) tenn -  "beni9n"
or Laplacian".  The fol lowing discussion closely
fol lows that in l thndelbrot  (1973).  To i l  lustrate
what is nnant by the term "benign",  as wel l  as to
dist inguish i t  f rom "non-benign" or "errat ic"
randonness, consider the random funct ion y( t ) ,  e.g.
Y(T) -  Y(0),  as being composed of  a sum of 'a ' lar96
number of  random incremnts X(t) :

t

Y(r)- Y(o).IX(t)
t. l

Benign randomness is character ized by two basic
properti es :.r

(a) E t ( , l l t
trl

tends to a non-random l imit  as T-f@ ,  denoted
(D;
(b) the c lassical  central  l imi t  theorem holds:

T

Z txt t l  -  < x> ) /  Ja is distr ibuted as a
t11

gaussian as T-t@. Taking the ' l  imi t  as T-)  €
is equivalent to ignor ing the f ine structure of
the process and studying the large scale,  which
can clear ly be decomposed jn the way indicated
' into the sum of a large number of  smal l  scale
contr ibut ions.  I f  propert ' ies (a),  (b)  hold,  then
f luctuat ions in Y(t)  must tend to cancel ,  and we
are just j f ied in regarding the change in Y(t)  as
be' ing due to a noise X(t)  super imposed on a s ignal
<X> .  I t  is  th is separat ion between noise and
signal that allows the nojse to be removed and
the signal  to be studied independent ly.  In mteoro-
logy,  the hypothesis of  benign randomness just i f ies
the div is ion between large and sma' l ' l  scale pro-
cesses.

Let us examine property (b) in greater detai l ;
i t can be decomposed into four parts:

i )  there exists two funct ions A(T),  B(T) such
that

(axf%O-46},, a rimit as T'r€
i i  )  th is l imi t  is  a gaussian.

i i j )  A(T) = JT

iv)  X(t)  and X(t+to) are independent for  suf-
f ic ient ly large to.

Hhen any of these four conditions does not
ho' ld,  re speak of  "non-benign" or "emat ic"
f luctuat ions.  Non-benign f luctuat ions rnni fest
themselves either as an extrerp fluctuation far
frcrn the nonn or as a series of persistent de-
partures frqn the norm. In reference to the
bibl ica ' l  stor ies of  the f lood, and of  the "seven
I ean, seven fat years " , l l lande]brot has cal I ed
these the Noah and Joseph ef fects respect ively.

1.? The Joseph Effect  in Rainfal I

An example of  the Joseph ef fect  is  stream
flow. In th is case (see Mandelbrot  and t{al l is
(1968)) ,  A(T) = TH where H- .6- .9 (depending on
the r iver) ,  and the future is by no nnans indep-
endent of  the distant past (condi t ion ( iv)  above
does not hold).  In the case of  the Ni ' le,  i t  is
possible to speak of  "wet"  mi l lenia and "dry"
mi l lenia, , ' indicat ing persistent departures f rom
the rpan over enormous tirr scales. A more fam-
i l iar  example is that  of  isotropic homogeneous
turbulence. A'lthough temperature fluclqqtions
are distr ibuted as iaussi ins,  A(T) = 11/3 6p6
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Fig.  3.  The probabi l i ty  (Pr(6r)  AR)) of  a
random di f ference in rain rate (Ar) ,  exceeding
a f ixed dR, when rainfa ' l l  is  integrated over an
isolated storm using Spanish radar data.  Only
negat ' ive Ar is shown, s ince posi t ive Ar is
distr ibuted simi lar ly.  Data are f rom 21 storms
on two afternoons in the spring. Loveioy et al
(1981) shows near ly ident ical  curves for Montreal
and the tropical  At lant ic.  Note that  doubl ing
the t im over which AR is evaluated, mu] t ip ' l  ies
the distr ibut ions by 2H where H-2/3 '  Also to
be noted js the asrmntot ic behaviour:
Pr(Ar)  AR) ^ 'R-1' t
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Fig.  4a.  The probabi l i ty  (Pr(  Ar )  AR)) of  a
random di f ference Ar (negat ive ! r  only) ,  ex-
ceeding a f ixed AR for spat ia l  increnpnts in
.25 km x I  km averaged rain rates.  These radar
data are f rom the tropical  At lant ic,  and curves
are shown for .25 km, .5 km, I  km separat ion
respect ively.  The paral le l ,  uni fonn spacing of
these curves is evidence of  a lack of  lenqth
scale down to .25 km. This suggests that  the
P-A relat ionship plot ted in Fig.  2 could be ex-
tended to .25 km x .25 km areas. Doubl ing the
spat ia i  separgt ion,  mult ip l ies the distr ibut ions
by a factor 2n with H ,vL/2.  Also shown are the
best f i t  syrrntr ic Stable-Levy distr ibut ions for
4= .75, aiong with an asymptot ic o( = 2 region

(see Sect ion 6).

110
AR ( mm rr i l  )

Fig.  4b. The same as Fig.  4a,  except for  a di f f -
erent day. The only apparent di f ference between
4a, 4b is the scale parameter (width),  and the
locat ion of  the onset of  the at=2 regirn.  The
actual  shapes of  the rain areas appeared qui te
di  f ferent,  however.

rain rate over a t i rne T.  By plot t ing the distr i -
but ion of  A R for di f ferent T,  A(T) could be
evaluated. In part lcular,  for  A(T) = TH, we ex-
pect:

thus the departures from the npan tend to caqgql
more quickly than they would in the benign TLt '
case (which would prevai l  i f  the independence condi-
t ion ( iv)  holds).  For gaussian distr ibut ions'  we
therefore have the classi f icat ion benign i f  A(T) = 1n
H = L/2,  "ant ipersistent"  for  H ( ,1/2,  "persistent"
i f  H > l /2.  l {e shal l  later see that rainfal l  d is-
t r ibut ions require a general izat ion of  th is not ion
to non-gaussian cases.

In order to examine the Joseph ef fect  in rain,
we wou' l  d l ike to eva' l  uate A(T) f rom the data.  The
simplest  way of  doing this is to regard each X(t)
value as a smalI  increnrent in the rain rate R(t)
( ju$ as for  Y(t)  previous' ly) .  Then

E x(t)  = R(T)-R(0) would rpasure the change in
t .A

Pr( (R(to+T)-R(to) )>6R) = Eq. t

Pr(  n-H( R( to+hT)-R(to) ))d R

for.al l  to,  T,  h where Pr indicates "probabi l i ty" ,
R(t)  the rain rate as a funct ion of  t im, A R is
a given change in R. The val id i ty of  th is rela-
t lonship and the value of  the parannter H can be
eva'l uated by pi otti ng

1os Pr(  (R(to+hT)-R(to)Dd R

against  lo9 AR for di f ferent values of  h.  0n
such a plot  (Fig.  3) ,  one expects to f ind paral le l
curves for di f ferent h,  separated by a constant
distance H 1og h.  As discussed in Lovejoy et  a1
(1981),  these distr ibut ions appear to be the sarne
for rainfal l  in any diverse Iocat ions:  €.9. ,
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Montreal ,  Spain,  and the tropical  At lant ic,  and
yield Har2l3 depend' ing sonnwhat on the method of
est imat ion.  An important point  to note is the
asymptot ic straight l ine behaviour indicat ing
p. ia DaR)a,[n-t(  wi tho(-1.55 for tne proUiUi l i ty
of  a random di f ference Ar exceeding a f ixed A R.

The sann plot may be made for the distribu-
t ion of  AR in space ( f ig.  a) .  Here H-1/2 '  and
the distr ibut ions appear to be hyperbol ic wi th
d,-.75, with an extreme 0(=2 regirn (see Section

6).  These distr ibut ions were ident ical  in shape
for al ' l  the cases examined in the t ropical  At lan-
t ic.  The asymptot ic regions of  these plots are
qui te important,  and wi ' l  I  be dea' l  t  wi th in Sec-
t ion 4.3.  For now, i t  suf f ices to note that
these distr ibut ions contain far  npre "extrelp"
points than a gaussian, and thus the gaussian
c' lassi f  icat ion persistence; H) 1/2,  independence:
H = L/2,  ant ipersistence H<I/2,  does not hold '
In the next sect ion,  we shal l  see that the H'v1/2
case corresponds to ant ipersnstence because the
incrennnts in Fig.  4 must cancel  considerably
more quickly than in the independent case to
yield such a smal l  H.

As can be seen from these figures, an accurate
est imate of  H may be di f f icul t .  In fact ,  there
is a much better nrethod of  invest igat ing persist-
ence known as R/S or "Re-scaled range" analysis
(Mandelbrot  and l .Jal l is  (1959)) .  Since this
requires a fa i r ly  long uninteruupted ser ies of  R
values, i t  was only perfonned on the spat ia l  d is-
t r ibut ions.  R/S analysis also y ie lds H-.50.

4.3 The t loah Effect  in Rain

As rpnt ioned ear l ier ,  the Noah ef fect  occurs
when X(t)  occasional ly takes on such extreme
values thl t

,  = (E x(t) ) /A(T)-B(T)
td

cannot possibly be distr ibuted as a gaussian.
Indeed, i t  is  possible to show that i f  u has a
l imit ing distr ibut ion for  T-+o ,  that  i t  must
belong to a four-pararpter fami ly of  d istr ibut ions
known as Stable-Levy distr ibut ions.  This resul t
is  a form of a general ized central  l imi t  theorem
which includes the gaussian' l imi t  as a special
case. I f  u has a f in i te var iance, then the l imi t
is  a gaussian, otherwise i t  is  another nenber of
the Stable-Levy fami ly.  These distr ibut ions have
the following asyrnptotic form:

Pr(u) U)-  (U/U*)-  
(  

for  a<1 z

for the probabi l i ty  of  a random u exceeding a
f ixed U. 0( is the most inportant pararpter-s ince
i t  determines the total  probabi l i ty  contained in
the extreme tai l  of  the distr ibut ion;  in other
words, it controls the frequency of occurrence of
"extre[€" values, U* is a 'paraneter analogous to
the standard deviat ion and measures the width of
the distr ibut ion.

for  0((  2,  the var iance is inf in i te,  s ince
n@

<u2)= l r2oo.r  @ and, tor  (  S 1,  the ncan
is also inf in i te.  The ear ' l iest  tabulat ion and
appl icat ion of  these distr i  but ions was l ' ' landelbrot 's
(1960) work on income d' istr ibut ion.  They were
probably f i rst  introduced into reteorology in
Lovejoy et  a l  (1981),  which also conta' ins an
appendix giv ing a fu l ler  d iscussion. A standard
reference is Fe1ler (1966).  Another property
relevant to the present case is that  i f  consecut ive
X(t)  values are independent,  and yield u dis-
tributed..as a Stable-Levy, paranEterq, , then
A(T) = TH with H = 1/o( .  t t re gaussian case (H=1/2)
is obtained by putt ingo( =2. In- the more general
case, we obtain persistence i f  H7L/ lx. ,  ant i -
persi stence ' i f H <1!(

Since Figs.  3 and 4 indicate o<ry 1.65, .75 for
the temporal  and spat ia l  var iat ions of  R respect-
ively ( ignor ing the extremeo( =2 behaviour in
Fig.  4 -  see Sect ion 6) and H*2/3,  1/2 respect-
ively we have both Joseph effects (rurtlx ) ana
Noah ef fects (non-gaussian distr ibut ions),  a l -
though in the temporal case the data is not
suff ic ient  to exclude H=1,6( .

Eefore cont inuing, i t  is  worth discussing in
detai l  the inrpl icat ions of  the l {oah ef fect  in
rnteorology. I f  changes in rainfal l  in t inp or in
space are hyperbol ical ly distr ibuted wit-h ol(  2 '
then occasional ly such large values of  AR occur
that the var iance (and man, i f r (< 1) of  !R does
not converge. In other words, as we add more and
more AR's together,  the var iance (and nnan for
o(-(1) increase without l imi t .  One inmdiate con-
sequence is that rainfall cannot be an RllS con-
t inuous random funct ion;  i t  is  made of  sharp dis-
cont inui t ies.  Another way of  looking at  th is is
to note that if we regard a change in rain rate as
being made up of many small changes, that the
largist  of  these wi l l  be much larger than al l  the
others.  This is i ' l lustrated in Fig.  5,  which
shows a computer generated R(t)  ser ies wi th X=1.5.
The visual  impression is one of  a few large " jLmps"
separated by noise. It is tempting to regard
these jumps as a s ignal ,  a l though clear ly such a
dist inct ion would have no basis.  This behaviour
is known as "c'lustering" because the small iurPs
appear to "c luster"  around the large ones. In
rain f ie ' lds,  th is ef fect  would give r ise to the
appearance of stochastic structure and organiza-
tion even if the Joseph effect (which can do the
sarn) was not present. Conversely, very different
looking rain areas yield s imi lar  probabi l i ty  d is-
t r ibut ions (see Figs.  4a,b).  In th is uayr rain
areas differ by only two pararpters (the rldth
and =.75 to =.75 transi t ion point) ,  of  rh ich
at least  one, and possibly both,  are random.
(See Sect ion 6).
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Fig.  5.  A random funct ion Y(t)  produced with independent or= 1.5 increnents,  shown with two
di f ferent values of  Y(0) (at  points 0,0 ' ) .  Also shown is the ef fect  of  " t runcat ing" negat ive
values (be1ow axis marked "T") ,  a procedure required i f  Y(t)  is  to model the rainraie R, 's ince
R)20. (See Sect ion 6).
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5. MIN AREA DISTRIBUTIONS

Up t i ' l l  now, we have stressed two di f ferent
aspects of  f ractal  ra in areas. 0n the one hand,
a geornetry wi th structure at  a l l  scales,  and on
the other,  the non-benign stochast ic elernnt which
permits th is structure to ar ise in a non-
determinist ic fashion, so that no detai led informa-
t ion speci fy ing the shapes is required. what
f inds these two elennnts together,  and al  lows for
a c lass of  non-random fractals,  is  the concept of
sel f -s imi lar i ty.  A sel f -s imi lar  curve, such as a
rain area per ineter,  has the property that  the
structure is in sonre sense the sarne at  a l l
scales,  wi th the except ion of  a scale factor.
This means that i t  is  impossible to dist inguish
the per inreter of  a large cloud from that of  a
smal l  c loud enlarged by sore factor.  In both
cases the relat ive s izes of  the "bumps" and
"wiggles" of  the per inreter are the same. This
invar iance is expressed mathematical ly by Eq'  I
for  the case of  random fractals.  For non-random
fractals,  such as the f ractal  "snowflake" in Fig.
6,  sel f -s imi lar i ty is determ' ined by a f ixed rule
which bui lds per ineters (or other structures)
with a hierarchy of  ident ical  shapes.

Sel f -s imi lar i ty is a powerful  concept because
i t  can uni te the var ious parameters we have
est i rnated, such as D-4/3,  o(ry1.65, .75 and
H,. t2/3,  I i2 ( for  the ternporal  and spat ia l
structures respect ively) ,  into a coherent nrodel
which could permit  the cohstruct ion of  "mock" or
cornputer generated rain areas, The construct ion
of such a nrodel  wculd be very intportant becduse
i t  would al low. in;rp1n. ip le,  nrost  of  the stat is-

A*
Fiq.  6.  Reproduced from Mandelbrot  (1981) '  This
ge6netr ical ,  non-random "snowflake" is shown in
[ t 'e t i rst  three stages of  construct ion (which
oioceeOs an inf in i te number of  steps before be-
toming a t rue f racta ' l ) .  The resul t  is .known as
the sel f -s imi lar  Koch curve, wl tn u = L '1o'

t ical  propert ies of  ra in to be der ived theoret i -
ca11y. Unfortunately,  i t  appears (Mandelbrot ,
pr ivate conrnunicat ion),  that  ant ipersistent,
inf in i te vaniance fractals have not been ade-
quately invest igated, and thus i t  seems that the
problem of rain structure is part ly a mathemati-
cal  one, requir ing new techniques. I f  the problem
is solved, mock radar scans and t ime histor ies
could be produced which are completely in-
dist inguishable f rom real  ones, and the random
structure of  ra in would be indisputable.  Skept ics
should look back at  Fig.  I  or  at  any of  the
' i l lustrat ions in Mandelbrot  (1977) '  Natural ly '
such a f ractal  descr jpt ion of  ra in would pose the
quest ion not only of  the or ig ins of  the part icular
paranreters,  but  a lso of  the consequences of  stoch-
astrc rain structure.
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Returning to the not ion of  sel f -s imi ' lani ty,
l . , landel  brot  (1977 )  has shown that i  f  a 2-D f  ie l  d
(such as R(x,y)) ,  has sel f -s imi lar  re l  ief  ( i .e. ,
Eq. I  holds),  that  the distr ibut ion of  f ractal
" is lands" (e.9. ,  r l in areas) must be of  the form
Pr(a)A)^,  (A/A*)-B for the probab' i I i ty  of  a
random area a exceeding A, whose A* is the width
parameter.  In fact ,  in the case of  gaussian dis-
t r ibut ions of  A 3,  one would expect B = D/2.
However, in the present case, tre have two sources
of hyperbol ic behaviour of  Pr(a)A):  the sel f -
s imi ' lar  R f ie ld,  and the hyperb-ol ic A R distr ibu-
t ion.  I t  is  not  known how these should combine
to determine B.
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Figure 7 shows the distr ibut ion of  ra in
areas in the t ropical  At lant ic,  c lear iy inoicat ing
hyperbol  i  c  behavi  ou r  wi  th Bp .82. Data f rom
Spain,  F1 or ida and l ; lontreal  y ie ld s imi lar  values
of B (see Lovejoy et  a l  (1981)) .  The fact  that
th is d ' is t r ibut ion has nei ther f in i te var iance nor
mean indicates that enonnous f luctuat ions in rain
ar€a are possible.  Even i f  one argues that the
width of  the distr ibut ion (A*),  is  determined by
the tradi t ional  large scale mteorological  para-
mters ( the existence and nature of  th is rela-
t ionship is the object  of  the cumulus pararneter-
izat i ,on project) ,  f luctuat ions of  actual  ra in
areas (which are random samples from such a dis-
t r ibut ion),  can st i l l  be very large. For examp' le,
computer s imulat ions show that two sample rain
areas taken from distr ibut ions wi th the sane A*
( i .e. ,  the sare large scale condi t ions),  d i f fer
by a factor 3,40X of  the t ime, and by a factor
10, 16X of  the t inc (see Lovejoy et  a1 (1981) for
the detai ' ls  of  th is calculat ion).  Because of  the
inf in i te mean property,  the total  area of  ra in
covered by a large number of stonns wi I I behave
in a s jmi lar  way: relat ive cancel lat ion of
f ' luctuations does not occur, because the extrern
rain area is always comparable in s ize to the sum
of al l  the others.  The existence of  larqe
f ' luctuat ions in rajn area is important, ispecial ly
in the t ropics because in addi t ion to latent heat
and moisture t ransport  the area of  convect ion also
controls the " f r ic t ion" which balances tropical
pressure gradients.  Even in mid- lat i tudes where
the dynamics are control led by cor io l is  force, /
pressure gradient balance, these stochast ic
effects may be very important. If A* is not
determined by the iarge scale but is i tsel f  a
random var iable,  then the prospect of  stochast ic
forecast ing may be unavuidable.

6, A FURTHER N0TE 0N "i_,l0CKu RAIN l,lAPS

Before concluding, a f inal  note on "rpck"
rain maps and A R distr ibut ions should be made.
Al though fractals wi th Hryl /2,  X^r3l4 cannot at
present be computer generated, H = 4/3,a= 3/4
fractafs are qui te easy to produce because H = 4/3
is the scal ing one obtains for  independent (= 3/4
increments {see Sect ion 4.3).  Al though such
fractals show l i t t le resemblance to the strongly
ant i -persistent rain type fractal  (H-L/?,  q,a '3 l4) ,
they can explain the asymptot lc 1=2 region in
Fig.4,  which ne have previously ignored.

These computer generated fracta'ls are prod-
uced in fash' ion s imi lar  to that  shoum in Fig.  5
by adding posi t ive and negat ive randon increnents.
The resul tant  R f ie ' ld wi l l  in general  contain
physical ly ncaningless negat ive R values ( those
belor the t  axis in Fig.  5) .  These negat ive R
values must be set to zero. Hhen this procedure
is perfoned, the extrerc AR are clearly mre
l ikely to be truncated than the others,  and the
resul t  seems inevi tably to be an0( =2 asynptote -
at  ' least  over the range of  H,d- values tested.
The abrupt transition point varying randun'ly for
a f ixed sequence of  random increnents.  The0(=2
region therefore has a natural  and simple explana-
tion as a truncation effect produced by the
condi t ion R >0. As far as I  know, no analyt ic
der ivat ion 0f  th is ef fect  exjsts,  a l though i t
seems to occur in many situations (see Lovejoy et
al  (1e81)) .
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Fig.  7.  The probabi l i ty  (pr(  fa >. tT))  of  a
random root rain area (  f i )  exceeaing' i  r ixeC
root-area-_( fA).  Data'are '  replot teJ-from Lopez
(1978).  Atso shown is t t re Uei t  f i t  lo9-f6r | Ip1
curve, and the least  rBan sguares straight l ine
f i r  (correlat ion coeff ic ieni  = .990),  VieiAing-slope -1.64. _The areas are thus di ; t r ibuted as
Pr (a)A) ' \ ,A-8,  wi th B = .82.
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7. CoNCLUSIoNS

Convect ive rain and cloud area are shown to
have fractal  structure wi th dinension 0ry4l3 for
over more than 7 orders of magnitude in area.
Thjs sqggests that  convect ive structures up to
10o kmz are stochast ic in or ig in and do not have a
character ist ic length scale.  This v iew was sup-
ported by an analysis of  the spat ia l  and temporal
structure of  ra in,  which indicates that the rajn
f ie ld exhibi ts several  unusual  propert ies des-
cr ibed under the rubr ic of  "non-benign" or
"errat ic"  f luctuat ions.  Rainfal l  is  shown to ex-
hibi t  the , loseph ef fect ,  which reans that rainfal l
at even distant points ln time or space are not
independent.  Perhaps more signi f icant ly,  i t  is
also shown to exhibi t  the Noah ef fect ,  which npans
that rainfal l  var ies in t ims and space in a nuch
more emat ic manner than in the usual  models.  The
temporal  and spat ia l  scal ing parannters (H) are
est i rnted to be approximately 2/3.  L l2 respect ively.
The coresponding pararneters characterizing the
importance of  f luctuat ions,  are Q,ry1.65, .75
respect ively.  The distr ibut ion of  ra in areas was
shown to be hyperbol ic,  in agreement wi th the
fractal  model (exponent a,  - .82).  These pararcters
suff ice to speci fy the type of  f ractal  involved.
Unfortunately,  there is no known rethod of  combin-
' ing them in a computer model that could generate
"mock" rain area maps.
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