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I.INTRODUSTION

Jery thick horizontally homogeneous plane-parallel layers
with conservative scattering are known to have transmittances
(T) and albedoes (R) that scale as

T=1-R*t- l  r>1 (1)

when optical thickness t becomes very large, the phase
function and illumination geometry affecting only the common
prefactor. This regime corresponds to the diffusion of photons
through the layer.

This analysis is extended to finite homogeneous clouds in
two and three dimensions, as well as inhomogeneous fractal
clouds with a definite inner cut-off scale using a Discrete
Angle (DA) approach to radiative transfer and borrowing
generously from non-linear systems theory and lattice
statistical mechanics. DA methods are reviewed below, the
results pertaining to scaling can be summarized by the more
general algeb'raic scaling laws

T-r-vr  l -R*r-vR T>1 (2)

where (i) v1 < 1 the inequality applies to the fractal case
where the holes will enhance transmittance. r
must then be interpreted as an average.

(ii) vp S v1 the inequality applies to the finite case
where light will escape through the sides.

(iii) vp, vr are independent of the postulated scattering
phase function.

The last point shows that these scaling exponents define
universality classes irmongst model clouds; this important
feature justifies taking the asymptotic limit for the sake of its
conceptual simplicity. Large scale Monte Carlo simulations
show that (i), (ii) and (iii) crury over to the more realistic
continuous angle phase functions and transfer theory with
somewhat different numerical values. Finally, we discuss the
significance of these results to meteorological and
climatological modeling as well as remote sensing.

2. PLANE-PARALLEL CLOUDS: Vp=v1=l

Schuster (1905) was the first to show that, within the
context of two-flux theory, transmittance through and
reflection from horizontally extended homogeneous
atmospheres obey algebraic (rather than exponential) laws in
absence of true absorption

where A is a simple function of the optical properties of the
medium - say 9, the asymmetry factor - and (possibly) the
illumination conditions - namely ps, the cosine of the incidence
angle. Thus the only characteristic optical length in the
problem is 1/A = 1/(1-s); as soon as (l-g)t, which may be
considered as a rescaled optical thickness, is.large, 1-R and T
scale as in eq.( 1 ). This behavior is universal in the sense that it
does not depend on pe or g (except for the common prefactor,
A-I). Accounting for the directly transmitted beam introduces
transient exponential terms with characteristic optical depth ps,
see Meador and Weaver (1980).

Asymptotic theory for the complete radiance distribution
reviewed by van de Hulst (1980) gives (3) as the leading term
with an extra dependence of the prefactor on p, cosine of the
viewing angle. By definition, DA radiative transfer cannot
make a statement about pg or p; nevertheless Gabriel (1988)
retrieves (3) as an exact solution to the functional equation
obtained by "adding" two non-absorbing layers of arbitrary
optical thickness.

3. FINITE HOMOGENEOUS CLOUDS: vpcvl=l

DA radiative transfermay be thought of as a model for
describing systems where photon propagation is confrned to a
lattice. Adopting space-filling cells, such as squares or
triangles in 2-D, cubes in 3-D, one can apply "doubling" ideas
to DA radiative transfer. Lovejoy et al. (1989b) interpret the
resulting formulae as a bidimensional iterated map in (R,T)
space. Using methods developed to investigate non-linear
dynamical systems (e.g. fixed point stability analysis), they
obtain a closed-form approximation for vp. This estimate is
improved numerically by considering ever larger systems (i.e.
quadrupling, etc.). The scaling exponents are numerically
estimated to be vR=3/4, U2 rr,2-D and 3-D respectively.

A further discretization, of space this time, allows DA
radiative transfer problems to be solved exactly for (intemally)
homogeneous media, cf. Gabriel (1988). Figure 1 illustrates
the results; the l-R and T curves exhibit the theoretically
predicted slopes. It is notable that v1 retains its diffusional
value of 1. Universality respective to the DA phase function is
supported by the 2-D results as squares and triangles yield the
same value for vp.

Extensive Monte Carlo simulations were performed in
order to verify whether DA predictions carry over to the
equivalent standard radiative transfer problems. In other
words, do continuous angle phase functions belong to the
same universality classes as their DA counterparts? Table 1
describes an experiment in 2-D that extends to 1=lQ2.s=316
and uses three different values of g which selects a 2-D
analogue of the Henyey-Greenstein phase-function. Authors
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such as Davies (1978) addressed equivalent 3-D problems
usins some model phase-function or even Mie coefficients
usuaily based on beirmendjian's C1 cloud droplet size
distribirtion. While exploring various aspect ratios, it is not
obvious that their reiults extend deep enough into the
asymptotic regime which is notoriously time consuming for the
Monte Carlo method.

The results, presented infig.2, are consistent with the DA
prediction and positively exclude the plane-parallel exponent
ior 1-R, namely 1. At the same time, they suggest that-l-R
and T are well- approximated by a universal function of the
oDtical thickness-iescaled as (l-g)t, following van de Hulst
and Grossmann (1968). Notice that our study of "scaling"
focuses on the exponent of t rather than this effect on the
prefactor.

Fig 1: DA RESI.'LTS FOR FINITE CLOUDS MADE OF SQUARE
AND TRIANGIILAR CELLS IN 2-D, CUBES D{ 3-D.
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Fig 2:  CoNrrNuous ANGLE 2-D MONrE CARLO
SIMULATION FOR FIMTE HOMOGENEOUS CLOI'DS
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iqo*"t and^triangles) and -1.0 (A=T,squares and cubes)'

TABLE 1: PARAMETERS USED IN 2-D MONTE CARLO
SIMULATION

CLCT'.DGE€TJ|EIF/

optical thicknsss: 10.00, 17.78,31.62,56'23' 100'0' 177'8' 3162'
rosl '  '  ) :  1.00, 1.25, 1'50, 175, 200, 2'25' 2'50'

aspect ratio: 1'000...

BOUNDARY CONDITIONS

The ordinate represents loglg of photon-counts (for T) or
lo916 of the differences of these counts (instead of 1-R) in
arbitrary units. Note that the optical thickness'are equidistant
on a logarithmic scale and that l-R - T-vn implies that
dR/d(lnt) - tr-Vn also. The reference slopes indicate DA
predictions for the same geometrical set-up. The dispersion is
explained by the statistics of the adopted Monte Carlo
algorithm which is optimized for speed at the price of a more
involved calibration (irelevent to the slopes).

4. INTERNALLY INHOMOGENEOUS CLOUDS: vR<vr<l

Spatial variability inside clouds has been modeled by

seor;etrically self-Similar fractal structures which' by
Eonstruction, contain holes of all sizes down to some small
inner length scale. Theoretically,-these are ofinterest because
thev are ihe simplest examples of inhomogeneous but scaling
geometries. Fuhhermore, geophysical .fields are known to
Exhibit scaling over wide ianges, for in$ance-.King et al '
(1981) reDort-scaling power-spectra in cloud liquid water
iontent (LWC) soundirlgs. Interest in fractal-like clouds was
spurred by Lovejoy's (1982) investigation of cloud perimeters
uiine radir and iaiellite imagery. More recently, multifractal
metliods of analysis have been applied to similar data sets, see
Gabriel et al. (1989a).

The inset in fig. 3 illustrates the generation of a
deterministic fractal-cloud used as a prototype in this study'
Ar in" inai"iaual cells are either filled or empty (a so-called "p-

model"), it is described by a single "fractional dimension"
D=log3'Iog2=1.58.... This concept is defined in physical
terms by' (amount of matter) * (linear size)D. (4)

Now. if the fractal is embedded in d-space (d=1'2,3)' we have

(space-averaged) optical thickness € mass / sized-1

1* 1D-d+1 = I l -C (5)

where C=d-D is known as the codimension and l" is the size
Darameter, namely the ratio of the outer to the inner scales of
ihe fractal. The latter corresponds to some unit cell of .given
optical thickness tq which ii the prefactor that determines t
cbmpletely. Homogeneous systems correspond to C=0 and
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C2l is not of interest here since these structures arc so sparse
that horizontal (hyper-)planes usually don't intersect them.

DA radiative transfer allows an analytical approach to the
multiple scattering problem on this medium, see Lovejoy et al.
(1989a). Figure 3 shows the computational DA results for this
fractal cloud with illumination from above, both open and
cyclical boundary conditions were applied ro the sides, For
finite clouds, vn=0.162 and v1=6.634, whereas for extended
clouds vR=vr=0.601. The fact that v1<1 reflects the
impossibility, due to the presence of holes, of the photon flow
to attain a diffusional regime anywhere in the cloud (exept
possibly in the sense of "diffusion on a fractal" used in solid
state physics). D is not a one-to-one desciptor of universality
classes (via vp and v1) since it depends on boundary
conditions and d at the very least. These results are again
obtained via space discietization with the (implicit)
identification of the detailed radiation field with its averase
value at the scale of the elementary cell; this is called "reil-
space renorrnalization" in lattice statistical physics. In view of
the results to be discussed below it seems that this
approximation is not as good here as in the homogeneous case.

Figure 4 shows the Monte Carlo results for the same
deterministic fractal cloud with cyclic boundary conditions
(where T=1-R), various cell optical thicknesses and rather
extreme types of phase-function were used: four or six discrete
as well as continuously variable directions (all being isoropic
within their respective angle spaces, in particular, this implies
s=0). Fortunately, media with holes seem to reach their
asymptotic regime sooner in terms of their (average) optical
thickness. The clouds with semi-opaque cells (to=2) yield an
accurate value of vr=0.42 with six or more directions and
somewhat less compelling evidence for vT=0.47 with four
directions only. The reason for this discrepancy within the
continuous space approach is not obvious, some kind of
resonance with the prefered directions of the grid was ruled out
by a simulation with incident radiation inclined 30o to the
normal (not illustrated). The calculations for clouds with semi-
transparent ceils (t0=1/2,1/8) are not incompatible with these
results although it is doubtful they are in their asymptotic
regimes.after the prescribed 9 cascade steps (512x512 cells),
thus we cannot rule out a weak dependancy of the exponents
on the small scale limit of the cascade process.

Fig 3: DA RESULTS FoR THE DETERMINISTIC FRACTAL
CLOUD WITH D=1.58 EMBEDDED IN 2-D SPACE.
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The inset illustrates (the three first steps of) the constnrction

of this cloud which is used as a prototlpe medium with holes at
all scales. Using eq. (5), the (space-averaged) optical
thickness is seen to be (3/2)n times that of the unit cell after n
cascade steps. Light is incident from above. The ordinate is
defined as in fig.1, the abscissa is lo916 ofthe average optical
thickness expressed in units ofcell optical thickness; same unit
(square) cell coefficients as in fig.1 also. The slopes are, from
top to bottom, -0.162 (A=1-R, with sides), -0.690 (A=T, with
sides) and -0.601 (A=T=1-R, horizontally extended).
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Fig 4: MoNrE CARLo REsuLTs FoR Tr{E DETRMrNrsrrc
FRACTAL CLOUD WITH D=1.58 IN2-D SPACE
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The ordinate is 1og19(T) = logrO(l-R) for cyclical boundary
conditions. The abscissa is lo916 of the optical thicknesi
r=1"a1(312)n with tcell=l/8, l/2 and 2. A# ii the number of
angles considered and H# the number of photon histories
followed. See text for the meaning of the reference slopes.
Note that DA and continuous angle problems have numeri-aly
different plane-parallel limits (i.e. zero cascade steps)

Gabriel et al. (1989b) report numerical DA results on
random fractal clouds embedded in 3-D space; their results are
qualitatively and quantitatively different from those ofplane-
parallel theory even though the fractal behavior was restricted
to an inner-to-outer scale ratio of merely 32 and relatively small
(ensemble averaged) optical thickness' (<o=50). Coniinuous
angle radiative transfer studies are currently underway on
random (multi-) fractals with (continuous) variability i'n all
spatial dimensions.

5. APPLICATION TO ATMOSPFIERIC RADIATION

DA radiative transfer is a self-consistent theorv with
discrete space and continuous space versions baied on
Priesendorfer's (1965) Interaction Principle or coupled (rather
than integro-) differential equations respectively. Along with
the numerical studies mentioned above. the formal connEction
between DA and continuous angle radiative transfer is
presently under careful scrutiny. This is an important task in
view of the consequences of the theory discussed below.

Supposing that our basic results hold - even iust
qualitatively - true in nature, the application of standard (pline-
parallel) models to horizontally finite and./or inhomogeneous
clouds can lead to arbitrarily large errors. Sides alone make
Vx<vr, hence l>T+R even for conservatively scattering (thick
enough) clouds, potentially accounting for any anomalous
absorption. Cloud transmittance is a critical quantity in the
surface radiation budget; we see that inhomogenieties can
enhance transmittance by a factor rl-Vr with respect to plane-
parallel clouds of equal optical thickness. Thus, by
themselves, holes modify the optical response of clouds
drastically by making v1<1.

Let ( be the ratio of actual LWC to the LWC predicted by
plane-parallel theory, given the actual albedo. As c (the spac6-
averaged optical thickness) becomes very large, we have

,/T\ _l _\,
(i) 

- '* 
t-ut, hence E * t l-Vn r >> I

j  -1.4

3 -1.6

-1.6

0.E0.70.60.50.40.30.2
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This "packing factor" of the actual LWC respective to that
retrieved from backscattered radiation diverges with T as soon
as vp<l. This in turn is seen to be an eflect of finite size
and/or the 

^presence of holes. ( also proves to be an increasing
function of C (via vp), see GaS,riet ef at. (tSggU) for details. "

6. SUMMARY AND DISCUSSION

This paper focuses on the asymptotic behavior of optically
thick non-absorbing clouds in terms of reflectance and
transmittance; various global geometries and local optical
properties are considered. It is found that only the former
affect the scaling exponents defined in eq. (2). The results
presented here are largely derived from a relatively unexplored
approach to radiative transfer using angular discretization and
methods used in statistical physics. Taking the asymptotic limit
allows analytic estimates to be obtained for the exponents.
Monte Carlo simulations support the generalization of DA
predictions to continuous angle radiative transfer. In either
case, universality of these exponents respective to phase
function is stressed. The results show that many important
aspects of the interaction between clouds and shortwave
radiation are not captured by plane-parallel radiative transfer
and far more realistic models (than those presented here) must
be developed in order to meet the needs of quantitative
meteorology, climatology and remote-sensing.

At the same time, the idea is not to introduce a large number
of new degrees of freedom in order to emulate any given
dataset. Universal behavior, described by a reasonably small
number ofvariable, is a prerequisite for any progress towards
statistically robust data reduction. This applies to both density
(of LWC) and radiation fields, in Preisendorfer's (1976)
words, the "inherent" and "apparent" radiative properties ofthe
optical medium respectively. In connecting the two kinds of
properties, we have relied heavily on Monte Carlo techniques
or idealisations such as DA radiative transfer, both of which
have their limitations; fortunately, Stephens (1988) presents us
with a penetrating analysis of the most general multiple
scattering problem based on spatial Fourier transforms. In
parallel, Schertzer and Lovejoy (1987) propose a two-
parameter family of multiply scaling (probability) distributions
for density modeled as a passive scalar in a turbulent cascade.
They also suggest a three-parameter family for observed (i.e.
non-linearly smoothed) quantities and indeed Gabriel et al.
(1988) find representative samples of the Earth's radiation field
to be well described by multifractals.
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