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Abstract

Time complexity is associated with sensitive dependence on initial conditions and severe in-
trinsic predictability limits, in particular, the ‘butter.y e/ect’ paradigm: an exponential error
growth and a corresponding characteristic predictability time. This was believed to be the uni-
versal long-time asymptotic predictability limit of complex systems. However, systems that are
complex both in space and time (e.g. turbulence and geophysics) have rather di/erent predictabil-
ity limits: a limited uncertainty on initial and/or boundary conditions over a given subrange of
time and space scales, grows across the scales and there is no characteristic predictability time.
The relative symmetry between time and space yields scaling (i.e., power-law) decays of pre-
dictability. Furthermore, intermittency plays a fundamental role; the loss of information occurs
by intermittent pu/s. Therefore, contrary to the prediction of homogeneous turbulence theory its
description should depend on an in6nite hierarchy of exponents, not on a unique one. However,
we show that for a large class of space–time multifractal processes this hierarchy is de6ned in
a straightforward manner. We point out a few initial consequences of this result.
c© 2004 Published by Elsevier B.V.
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1. Lessons from complexity in time

Lorenz’s deceptively simple 3-component model [1] demonstrated not only the per-
tinence of PoincarFe’s criticism [2] of Laplace’s in6nite predictability limit [3], but also
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the ubiquity and practical signi6cance of sensitive dependence on initial conditions. Its
success helped to diminish the interest in 6nding “approximate solutions” and under-
scored the need to get fundamental insights on the qualitative behavior of these systems.
The corresponding dynamical system approach brought a wealth of striking results for
(6nite) nonlinear (ordinary) di/erential systems in a d-dimensional embedding space
Ed:

Ẋ (t) =
d
dt
X = F(X ; t) : (1)

This is also true for the simpler discrete iteration maps:

X n+1 = G(X n) ; (2)

which can be motivated either as a discrete approximation of a di/erential system for
X n = X (n 
t); for any choice of a small time increment 
t; G(x) = x + 
tF(x) or as
a PoincarFe map of the discrete series of intersections of the trajectory X (t) with a
hyper-plane (of dimension d − 1) transverse to it. Of particular importance was the
discovery of an exponential error growth

|
X (t)| ≈ e�t |
X (0)| (3)

for the amplitude of the in6nitesimal separation 
X (t) of a pair of points (X 1(t); X 2(t)=
X 1(t)+
X (t)), with a (6nite) Lyapunov exponent �. Fundamentally, this Multiplicative
Erodic Theorem (MET) derives from the straightforward fact that the pair separation
is multiplicatively modulated by the derivative of the vector 6eld F (or the map G)
at the point X (t). Whereas the d-dimensional case involve the noncommutative al-
gebra of matrices [4,5], the one-dimensional case of discrete maps is pedagogically
straightforward, since

1
n
t0

Log[|
Xn|=|
X0|] ≈ 1
n
t0

∑

n′=0; n−1

Log(|DXn′G|) : (4)

Let us assume that the process de6ned by Eq. (2) is ergodic with respect to a given
probability measure dP, i.e., the time average of the right hand side of Eq. (4) P-almost
surely converges to the corresponding ensemble average (denoted by square brackets
〈:〉) and yields Eq. (3) as long as �, de6ned by

� = 〈Log(|DXG|)〉 ; (5)

is 6nite, an assumption usually taken for granted. In order to get more insights at
intermediate times, consider the time evolution of the probability that the dynamics will
visit a given neighborhood. Let us recall [6] that for any well-posed 6nite d-dimensional
di/erential system (Eq. (1)), an ergodic measure exists and is regular with respect to
the Lebesque measure of the embedding space (dX1dX2; : : : ; dXd), i.e., it has almost
everywhere a well-de6ned density �(X ; t) which is the solution of the Liouville equation
[7], i.e., a continuity equation in the phase space:

9
9t �(X ; t) +

d∑

i=1

9
9Xi

[Ẋ i(t)�(X ; t)] = 0 : (6)



D. Schertzer, S. Lovejoy / Physica A 338 (2004) 173–186 175

Fig. 1. Evolution of the empirical pdf of a system complex in time (here the x–z projection of the Lorenz
model) simulated with the help of 100 000 points initially uniformly distributed (� = 0:027) in the neigh-
borhood of x0; y0; z0 = (6:27; 13:9; 19:5). The pdf 6rst di/uses in a quasi-linear manner (t = 5; 9), then in a
very nonlinear manner (t = 10), quickly converging (t = 15) to an invariant measure of the 6nite strange
attractor.

This equation has attracted attention in turbulence theory, as well in meteorology [8].
It has been presented [9] as the most general framework to describe in a probabilis-
tic manner the time-dependent behavior of an ensemble of solutions of a numerical
weather forecast model started from di/erent initial conditions or from similar mod-
els, the so-called Ensemble Prediction System (EPS) [10–12]. The Liouville equation
together with MET has often been used to argue in favor of the following route to
unpredictability (illustrated by Fig. 1): an initial uncertainty occupies a small fraction
of the phase space region, which 6rst grows linearly, then nonlinearly and in a 6nite
time spreads over a strange attractor. We will show that a rather di/erent scenario
occurs in systems that are complex in time and space.

2. Preliminary elements of complexity in space

Complexity in space rather corresponds to “the gap dividing simple chaotic sys-
tems and fully developed turbulence” [13]. This is usually introduced with the help of
nonlinear partial di/erential systems:

9
9t u(x; t) = F(u(x; t);∇u(x; t);Pu(x; t); : : :) : (7)

A signi6cant example is furnished by the Navier–Stokes equations
9u
9t + (u · ∇)u= −∇p

�
+ �∇2u+ f;

9
9t �+ ∇(u�) = 0 (8)
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where u is the velocity, t the time, p the pressure, � the .uid density, 1 � the vis-
cosity, f the forcing density (external forcing, gravity), as well as the associated
advection-di/usion equations for a scalar 6eld � (f� is the forcing density for the
scalar, � is the di/usivity):

9�
9t + (u · ∇)�= �∇2�+ f� : (9)

Contrary to the (academic) passive case (�, f, independent of �), active scalar 6elds
� are for applications that are as important as the velocity 6eld u. Examples include
convection, where � sensitively depends on �, either the temperature (atmosphere or
lithosphere) or salinity (oceans).
Such systems theoretically require consideration of (functional) in6nite dimensional

spaces; the attendant diQculties include the nonequivalence of norms. For instance,
there have only been limited extensions of the MET for compact operators [14], but
not for arbitrarily bounded operators. This requires us to consider variational extension
(9X → 
X (x; t)) of the Liouville equation (Eq. (6)): the once celebrated Hopf equation
[15] corresponds in fact to its Fourier transform.
One way to avoid the functional problem is to project the partial di/erential system

onto a 6nite d-dimensional space of ‘resolved scales’, and to proceed to a ‘subgrid
parametrization’ of the others. This already requires one to be very concerned with
the question of noisy perturbations due to subgrid scales. If–as is commonly assumed
–these perturbations are a gaussian white noise f(t) of intensity �, i.e.,

d
dt
X = F(X ; t) + f(t); 〈fi(t)fj(t′)〉 = �
i; j
(t − t′) ; (10)

then the Fokker–Planck equation [16] generalizes the Liouville equation with the in-
troduction of a Laplace di/usive operator

9
9t �(X ; t) +

d∑

i=1

9
9Xi

[Ẋ i(t)�(X ; t)] − ��X �(X ; t) = 0 : (11)

However, we will argue (Section 6) that these perturbations are strongly nongaussian.
This requires major changes. For instance if the perturbations are stable LFevy white
noise, a broad “fractional” generalization of the Fokker–Planck equation should be
considered. The latter involves fractional derivatives (e.g. Ref. [17] and references
herein), in particular fractional powers of the Laplace operator, as well as some exotic
convective–di/usive operators. Another major diQculty is that these perturbations are
also presumably colored rather than white noises. The fundamental question is: do we
converge to the functional problem when we enlarge the dimension of the projection?

3. Scaling

Although the preliminary mathematical properties of the Navier–Stokes equations
(e.g. existence and uniqueness of their solutions) correspond to one of the well-known

1 Hereafter � no longer denotes a probability density, as in a previous section.
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Hilbert problems [18] that remain fully open, these equations have a (more or less
formal) scale symmetry. This has been known for some time under the rubric of
self-similarity, e.g. Ref. [19], but with unnecessary limitations. These equations remain
formally invariant under any (aQne) contraction of the time–space (of scale ratios
�; �1−H ).

x → x=� ; � → t=�1−H : (12)

By suitably renormalizing the dependent variables

u → u=�H ; � → �=�H
′
; � → �=�H

′′
;

� → �=�1+H ; K → K=�1+H ; p → p=�H
′′−1 ;

f → f=�2H−1; f� → f�=�H+H ′−1 : (13)

One may either consider the asymptotic case of fully developed turbulence (with an
in6nite Reynolds number (Re → ∞) or vanishing viscosity (� → 0)) for the incom-
pressible Navier-Stokes equations [20], or more generally nonzero eddy viscosity (resp.
eddy di/usivity), rather than a molecular one [21]. To get more physical insights, the
notion of “eddy turnover time” !(‘) is helpful. This is the characteristic time, if it
exists, for structures of scale ‘ to “turnover” within a velocity shear 
u(‘):

!(‘)˙ ‘=
u(‘) : (14)

Since the characteristic time of destruction of structure of this scale ‘ can be only
proportional to the eddy turnover time [e.g. [22]], one 6nds for instance that the rate
of transfer of energy to scales smaller than ‘ is

�(‘)˙ 
u(‘)2=!(‘)˙ 
u(‘)3=‘ : (15)

Therefore,


u(‘)˙ �(‘)1=3‘1=3 !(‘)˙ �(‘)−1=3‘2=3 : (16)

On assuming that �(‘) does not .uctuate too much (i.e., ¡�q¿ ≈ 〈�〉q), is ergodic and
that its spatial average T�(‘) is scale independent ( T�(‘) = T�), the Kolmgorov–Obukhov
scaling law [23,24]) for velocity shear is obtained

〈
u(‘)2〉 ˙ T�2=3‘2=3; E(k)˙ T�2=3k−5=3 ; (17)

where E(k) is the energy spectrum at the wave number k. This yields the following
Lyapunov exponent and the characteristic space scale ‘e reached by the error at time
t:

�(‘)˙ 1= T!(‘)˙ T�1=3‘−2=3; ‘e(t)˙ T�1=2t3=2 : (18)

This shows that, contrary to the usual assumption, the Lyapunov exponent � diverges
at small scales, unless they are homogeneous.

4. Energetics and spectral analysis of the error growth

Thompson [25] and Lorenz [26] set up a rather general framework to study the error
growth of a complex time–space 6eld, namely the solutions of meteorological models
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or Navier–Stokes equations, by considering the two solutions u 1(x; t) and u 2(x; t)
as initially identical, but for a perturbation 
u(x; 0) = u 2(x; 0) − u 1(x; 0), con6ned to
(in6nitesimal) small spatial scales. When the nonlinear interactions preserve the kinetic
energy (e.g. the incompressible Navier-Stokes equations), it is convenient and important
(although not suQcient as discussed below) to consider the correlated (kinetic) energy
(per unit of mass)

ec(x; t) = 1
2 u

2(x; t):u 1(x; t) ; (19)

and the corresponding decorrelated energy

e�(x; t) = 1
2 (
u(x; t))

2 = 1
2 (u

2(x; t) − u 1(x; t))2 (20)

as well as the total energy and the energy of each solution

eT (x; t) = e1(x; t) + e2(x; t); en(x; t) = 1
2 (u

n(x; t))2 : (21)

This implies the straightforward, but nevertheless important relation

eT (x; t) = ec(x; t) + e�(x; t) ; (22)

which shows that if the total energy is statistically stationary, there is a .ux of cor-
related energy ec(x; t) to decorrelated energy e�(x; t). The same property holds for
the corresponding energy spectra (ET (k; t) = Ec(k; t) + E�(k; t)), since the latter cor-
respond to linear decomposition of the former with respect to the wave numbers
(e.g. 〈en(x; t)〉= ∫ ∞

0 dk En(k; t)). Therefore, the decorrelated energy spectrum E�(k; t)
steadily increases in magnitude from large to small wave numbers, to reach the total
energy spectrum ET (k; t) ≈ k−5=3. A critical wave number ke(t) ≈ 1=‘c(t) ≈ t−3=2

(Eq. (18)) of the transition from dominant correlation to dominant decorrelation can
be de6ned by Ec(kc(t); t) = E�(kc(t); t).

Thompson [25] studied the initial error growth with the help of the initial time
derivatives, whereas Lorenz [26] proceeded to a time integration with the help of a
quasi-normal closure, [27] and [28,29] re6ned the latter with the help of the Eddy-Damped
Quasi-Normal Model [30] and the Test Field Model [31].

5. How many spatial scales are involved?

The choice by [26] of a 3D energy spectrum up to synoptic scales for the statis-
tical quasi-normal closure of a 2D deterministic large scales models has been often
questioned [e.g. Ref. [32]] for being at odds with the prevailing standard model of
atmospheric dynamics [33,34], which considers small-scale motions as quasi-three di-
mensional (quasi-3D), and large-scale motions as quasi-two dimensional (quasi-2D),
i.e., rather regular. In order to stop the former from destabilizing the latter, the two
regimes were supposedly separated by a ‘meso-scale’ gap. As a consequence only the
micro-scales (say below 10 km) would be involved in the error growth.
However, there is no evidence [35,36] of this gap along this horizontal anywhere

near 10 km in the GASP experiment (airplane measurements), but on the contrary a
Kolmogorov–Obukhov scaling extended to at least hundreds of kilometers. This scaling
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was found in very di/erent climatological and meteorological regimes, including tropi-
cal and cyclonic conditions [37]. Nor did various radiosonde analyses [38–41] also 6nd
a meso-scale gap along the vertical and furthermore that the vertical spectrum of the
horizontal wind follows Bogliano–Obhukhov (BO) k−11=5 scaling throughout the tro-
posphere. Combining the vertical BO k−*v ; *v ≈ 11

5 with the horizontal Kolmorogov
k−*h ; *h ≈ 5

3 , a ‘uni6ed scaling’ model [40] of turbulent strati6ed atmosphere was
proposed from planetary scales down to dissipation scale, whose e/ective “elliptical
dimension” is neither 3 nor 2, but Del=2+ (*h − 1)=(*v − 1), hence Del= 23

9 = 2:555.
For recent empirical con6rmation of the relevance of this model, see Refs. [42,43],
lidar data of passive scalar yields Del=2:55±0:02. Therefore, all atmospheric scales—
from planetary to viscous ones, ratio . ≈ 109—are presumably involved in the error
growth process.

6. The limitations of the spectral approach

Lilly [44] criticized the statistical framework of the predictability analysis of Lorenz,
Leith and Kraichnan, pointing out that a consequence of the quasi-normal framework
of their closure schemes is that their analyses are local as well as global. This does
not agree with the observation that various atmospheric structures (e.g. rotating thun-
derstorms [45]) maintain a stable identity much longer than their turnover time. Lilly
cited the results of [46] showing that the probability distributions of log potential tem-
perature gradient (x = 
log�) and wind shear (x = 
u) have power law probability
tails, i.e.:

Pr(x¿ s) ≈ s−qD s¿¿ 1 (23)

he then argued that the error statistics should also be power law, so that they will be
much more variable and extreme than those assumed by quasi-normal closures. Indeed,
the power-law exponent qD of the probability tails (Eq. (23)), which has been taken
as a basic feature of self-organized criticality [74]; is a critical order of divergence of
statistical moments. For instance, empirical estimates in the vertical are qD = 5, 3.3,
1 for the horizontal wind, buoyancy force and Richardson number [40]. This means
that the (theoretical) statistical moment of order q¿ qD are in6nite, whereas their
empirical estimates on 6nite samples, although 6nite continue to grow (i.e., diverge)
with the number of samples [46]. As an immediate consequence, second-order moments,
such as energy spectra, are inadequate characterizing the variability of the process.
Unfortunately, quasi-normal closures close the in6nite hierarchy of moments with the
help of second-order moments.

7. Intermittency, cascades and multifractals

This criticism echoed a fundamental debate on the relevance of homogeneity. Landau
questioned this assumption [47] as early as 1942 [48]; there is no homogeneity at on
a large scale, and this in.uences the average estimates (in particular when using an
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ergodic assumption). Batchelor and Townsend [49,50] empirically con6rmed that not
only does the “activity” of turbulence induce inhomogeneity, but the activity itself is
very inhomogeneously distributed. There are “pu/s” of active turbulence inside pu/s
of (active) turbulence. The word “intermittency” has been used for this inhomogeneity
that became theoretically understood with the help of cascade models. The general idea
is that [51] in turbulence the successive cascade steps de6ne independent fractions of
the .ux F transmitted to smaller scales and that a cascade is scaling. To make this more
precise, denote an intermediate scale ratio (“resolution”) � = L

‘ where L is the outer
scale and ‘ the scale corresponding to scale ratio � and the total scale ratio .= L

‘′ =��′.
Scaling means that the cascade from � to . corresponds to a cascade from ratio 1 to
�′ contracted by T� of scale ratio �;T�(f(x))=f(T�(x)); in the self-similar (isotropic)
case T�(x) =

x
� . Together, these two properties imply that the .ux is a multiplicative

group ( d= means equality in probability distribution)

F.=��′
d=F�:T�(F�′) (any �; �′¿ 1) : (24)

This yields a similar group property for the statistical moments, therefore the following
scaling law:

〈Fq��′〉 = �′K(q)〈Fq� 〉 (any q; any �; �′¿ 1) ; (25)

where the “scaling moment function” K(q) is convex and is in fact, as discussed below,
the cumulant generating function of the generator of the group (Eq. (24)). With the
help of the Mellin transform [52,53] one obtains the corresponding scaling law for the
probability distribution of the event {F�¿ �2}

Pr{F�¿ �2} ˙ �−c(2) : (26)

The arbitrary exponent 2, which de6nes a given level of activity or intensity at all
resolution �, is called a “singularity” (more precisely a “singularity order”) since 2¿ 0
de6nes the power-law divergence of F� with � → ∞. The scaling exponent c(2) of the
probability is a “statistical codimension” [54] also called the “Cramer function” [55,56].
For large �′s, the Mellin transform reduces to the celebrated Legendre transform [57]
for the corresponding exponent functions

K(q) = max
2

{q2− c(2)} c(2) = max
q

{q2− K(q)} : (27)

These are the main properties common to all multifractal formalisms, i.e., an in6nite
hierarchy of statistical exponents, e.g. Refs. [46,58–60], and the in6nite hierarchy of
singularities, e.g. Refs. [57,61,62]. However, there are substantial di/erences. For ex-
ample, there is an upper bound for singularities of “geometrical” multifractals [57,61],
where each singularity is assumed to be supported by a well-de6ned geometrical (frac-
tal) set, and for singularities of “microcanonical” multifractal processes [63–65] that
conserve .uxes scale by scale on each realization. This upper bound, acknowledged as
arti6cial by [20], does not exist [66] for canonical multifractals, which respects only
conservation on ensemble averages of .uxes. Therefore, it is only for embedding di-
mensions D¿c(2) that the event {F�¿ �2} almost surely corresponds to a fractal set
of dimensions: D(2)=D−c(2). This is no longer the case for higher singularities (with
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c(2)¿D): they correspond to extreme events almost surely absent on an individual
realization. In general, there exists a 6nite critical singularity 2D such that the codi-
mension c(2) becomes linear, i.e., the corresponding probability distribution becomes
a power-law (Eq. (23)), for conservative processes: K(qD) = qD(D − 1).
Multiplicative processes, in particular when continuous in scale, can readily be ob-

tained from a white noise, their “sub-generator”. Indeed, they can be obtained by the
exponential of an additive process 3�(x), the “generator” of the .ux (x = (x; y; z) for
a 3D spatial process, x = (x; y; z; t) for a time–space process):

F� = e3� : (28)

In order to respect the scaling property of the statistical moments (Eq. (25)). the gen-
erator must have a logarithmic divergence with the resolution (3� ≈ Log(�); � → ∞).
This is readily achieved by applying an adequate linear transform to a (in6nitely divis-
ible) white noise (limited to the resolution �), the sub-generator 20; �. To obtain univer-
sal cascades (satisfying multiplicative central limit theorem [54,67]), the sub-generator
should be a Levy stable noise of Levy stability index 4 and the linear transform is
a fractional integration of order h, i.e., a convolution (denoted by ∗) by a power-law
function g of dimension Dh = d− h (d being the dimension of the embedding space):

3� = g ∗ 20; �; g˙ |x|−Dh ; Dh = d
4
: (29)

In general, the basic .uxes are conservative, i.e., for any scale ratio 〈F�〉=〈F1〉, whereas
they are related to nonconservative 6elds u with the help of scaling laws

|
u| ≈ Fa|
x|H (30)

the standard example being the Kolmogorov law (Eq. (17)) for the velocity shear
amplitude |
u|, with F= �, and a=H = 1

3 . A straightforward model of nonconservative
6elds is obtained by performing another fractional integration

u� = G∗Fa� ; G(x)˙ |x|−d−H : (31)

This Fractionally Integrated Fluxes (FIF) model was originally motivated on purely
scaling considerations. However, it has strong connections with the dynamics. This is
6rst achieved by taking into account the (scaling) anisotropy between space and time
with the help of a generalized scale notion [68,69] as well as by implementing the
causality condition to all the fractional integrations [70]. Both can be implemented
by considering a scaling (retarded) Green’s function (or propagator) g of a linear
(fractional) anisotropic di/erential operator g−1(g−1 ∗ g= 
), e.g.

G−1
R =

9
9t + (−�)(1−Ht)=2 ; (32)

where Ht �= 0 measures the scaling anisotropy between time and space. The generator
and the nonconservative 6eld are solutions of this type of equation.

g−1 ∗ 3� = 20; �; G−1 ∗ u� = Fa� ; F� = e3� :
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Fig. 2. The top two rows (a–b) show successive snap shots (t = i × !; i = 3; 6; 9::27; ! being the eddy turn
over time of the smallest structures) of two simulations (256 × 256 in space) that are identical until time
t = 0, when their .uxes at small scales become independent step by step due to the sudden independence
of the sub-generators at that time. Most of the di/erence between the two realizations is concentrated in a
few “hot spots”. The bottom row (c) shows a forecast based on the “memory” of the evolution up to t = 0
of (a), i.e., it has the same stochastic subgenerator until time t = 0, then de6ned in a deterministic manner
to preserve the mean of the .ux. Note the more rapid disappearance of small-scale structures. Parameters
are 4 = 1:5, C1 = 0:2, H = 0:1 (close to those of rain), and color scale is a logarithmic. The anisotropy of
space–time is characterized by Ht = 2=3.

8. Multifractal predictability

To generalize the approach followed in the spectral analysis of predictability (Section
4), we consider the time evolution of a pair of multifractal 6elds u1(x; t) and u2(x; t)
of common resolution .. They have sub-generators 2n0;., which are identical up to the
time t0, after which they become independent. It was checked [70,71] that the spectral
analyses of these multifractal simulations agree with homogeneous turbulence results
(Section 4), as well as the presence of bursts of violent .uctuations that cannot be
accounted for with the help of second-order statistical moments, e.g. energy spectra.
Indeed, although the energetics of the upscale cascade of errors remain basically the
same, they do not constrain the largest .uctuations of the errors as much as before.
Similar bursts are observable in time and space on the di/erence 
u(x; t) of the pair
of 6elds u1(x; t) and u2(x; t) displayed in Fig. 2a and b.

The sudden independence of the sub-generators at t0 only introduces—due to the
(causal) fractional integration—a slow logarithmic growth of relative independence
between the corresponding generators and therefore the two .uxes �1; �2 only up to
a scale resolution �(t)6.. Due to the (scaling) anisotropy between time and space
(i.e., Ht �= 0)

t6 t0 : �(t) = .; t ¿ t0 : �(t) ≈ Min[.; (T=(t − t0))1=(1−Ht)] ; (33)

where T is the outer time scale. As a consequence, one obtains [71] for the (normal-
ized) covariance of order q

C(q)(�1.; �
2
.) = 〈(�1.�2.)q〉=〈(�1.)q〉〈(�2.)q〉 ˙ �(t)K(q;2);

K(q; 2) = K(2q) − 2K(q) ; (34)
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where K(q) is the scaling moment function of the .uxes �1; �2. The nonlinearity of
K(q; 2) is a consequence of that of K(q) and shows that the joint 6eld �1.�

2
. is multi-

fractal, but the distinctive feature is that the relevant range of scale ratios [1; �(t)] also
has a power-law decay (Eq. (33)), instead of being 6xed at . (as for �1. = �2.). With
the help of the Legendre transform, the scaling of the probability distribution of the
joint 6eld singularities is easily obtained:

Pr(�1.�
2
.¿ �(t)2〈�1.〉〈�2.〉) ≈ �(t)−c(2;2);

c(2; 2) = max
q

{q2− K(q; 2)} : (35)

Similar relations hold for the correlation of the 6eld u1; u2 obtained by fractionally
integrating the .uxes �1; �2. It is important to appreciate that these power laws are
valid for all time scales, not only for large time scales. This is in a sharp contrast
with the “Liouville+MET” scenario discussed in Section 1, in particular with respect
to Fig. 1 and its series of distinct periods. Let us also emphasize that these laws are
purely determined by the multifractality of the 6elds �i (e.g. their scaling moment
function), either theoretically or empirically, which may be known, either theoretically
or empirically.
Let us point out that these laws could be used to quantify the performance of

forecast procedures. Indeed, the decay law of the (normalized) covariance C(q)(�F.; �
0
.)

of order q of the forecast 6eld �F. and of the observed 6eld �0. should be as close
as possible to the theoretical C(q)(�1.; �

2
.) (Eq. (34)). Statistical biases introduced by a

given type of forecast procedure can also be readily assessed. Indeed, due to its white
noise property, the sub-generator 2(x; t) can be split into two independent components
2−(x; t) and 2+(x; t) corresponding, respectively, to the past (i.e., “real” history up to
time t0) and the forecast period (after t0). The corresponding generators 3−(x; t) and
3+(x; t) are, respectively, dominant in the evolution of the 6eld at scales larger and
smaller than L=�(t); therefore the scaling of the forecast 6eld will be:

t¿ t0 : 〈(�F.(x; t)q)〉 ≈ �(t)K
−(q)(.=�(t))K

+(q) : (36)

When the scaling function of the forecast procedure K+(q) sensitively di/ers from the
past K−(q) (assumed to be identical to K(q)), important statistical bias are introduced.
This is illustrated by Fig. 2c, where 2+(x; t) was de6ned in a deterministic manner
to preserve the mean of the .ux, whereas 2−(x; t) is identical to that of Fig. 2a and
b. K+(q) is then linear, instead of being nonlinear like K(q). Fig. 2c in comparison
with Fig. 2a and b displays the drastic loss of all extreme events (q�1) related to
smoothing due to the time decay of �(t)K(q), which is no longer compensated by the
second factor of the r.h.s. of Eq. (36). This could explain the recent empirical evidence
that stochastic parametrizations do better than deterministic ones [72,73].

9. Conclusion

We critically discussed the predictability concepts that emerged from the study of
systems that are complex in time. We argued that complexity in space implies strong
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limitations on the applicability of the Multiplicative Ergodic Theorem (MET) and of
the Liouville equation. Both statistical closure models and the phenomenology of homo-
geneous turbulence indicate that predictability decay laws are not exponential: they are
algebraic. Unfortunately, the quasi-normal framework of these models prevents them
from dealing with intermittency; the “bursts” of the energy .uxes through scales. We
showed that multifractals o/er a very convenient framework to quantify the predictabil-
ity of space–time complex systems. This should help us to 6nd alternative modeling
strategies approaching the intrinsic predictability limits.
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