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Abstract:	
The	 atmosphere	 is	 governed	 by	 continuum	mechanics	 and	 thermodynamics	

yet	 simultaneously	 obeys	 statistical	 turbulence	 laws.	 	 	 	 Up	 until	 its	 deterministic	
predictability	 limit	 (τw	 ≈	 10	 days),	 only	 General	 Circulation	Models	 (GCM’s)	 have	
been	 used	 for	 prediction;	 the	 turbulent	 laws	 being	 still	 too	 difficult	 to	 exploit.		
However,	 beyond	 τw	 -	 in	macroweather	 -	 the	 GCM’s	 effectively	 become	 stochastic	
with	 internal	variability	 fluctuating	about	 the	model–	not	 the	 real	world	–	climate	
and	 their	 predictions	 are	 poor.	 	 In	 contrast,	 the	 turbulent	 macroweather	 laws	
become	 advantageous	 notably	 due	 to	 a)	 low	 macroweather	 intermittency	 that	
allows	 for	 a	 Gaussian	 approximation,	 and	 b)	 thanks	 to	 a	 statistical	 space-time	
factorization	 symmetry	 that	 (for	 predictions)	 allows	 much	 decoupling	 of	 the	
strongly	 correlated	 spatial	 degrees	 of	 freedom.	 	 	 The	 laws	 imply	 new	 stochastic	
predictability	limits.		We	show	that	pure	macroweather		-	such	as	in	GCM’s		without	
external	forcings	(control	runs),	can	be	forecast	nearly	to	these	limits	by	the	ScaLIng	
Macroweather	Model	 (SLIMM)	 that	 exploits	 huge	 system	memory	 that	 forces	 the	
forecasts	to	converge	to	the	real	world	climate.				

To	apply	SLIMM	to	the	real	world	requires	preprocessing	to	take	into	account	
anthropogenic	and	other	low	frequency	external	forcings.	 	We	compare	the	overall	
Stochastic	 Seasonal	 to	 Interannual	 Prediction	 System	 (StocSIPS,	 operational	 since	
April	 2016)	with	 a	 classical	 GCM	 (CanSIPS)	 showing	 that	 StocSIPS	 is	 superior	 for	
forecasts	two	months	and	further	in	the	future,	particularly	over	land.		In	addition,	
the	relative	advantage	of	StocSIPS	increases	with	forecast	lead	time.	

In	this	chapter	we	review	the	science	behind	StocSIPS	and	give	some	details	of	
its	implementation	and	we	evaluate	its	skill	both	absolute	and	relative	to	CanSIPS.	

1.	Introduction	

1.1	Deterministic,	stochastic,	low	level,	high	level	laws	
L.	F.	Richardson’s	“Weather	forecasting	by	numerical	process”	(1922)	opened	

the	era	numerical	weather	prediction.	Richardson	not	only	wrote	down	the	modern	
equations	 of	 atmospheric	 dynamics,	 but	 he	 pioneered	 numerical	 techniques	 for	
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their	solution	and	even	laboriously	attempted	a	manual	integration.	 	Yet	this	work	
also	 contained	 the	 seed	of	 an	 alternative:	 buried	 in	 the	middle	of	 a	paragraph,	 he	
slyly	inserted	the	now	iconic	poem:	“Big	whirls	have	little	whirls	that	feed	on	their	
velocity,	 little	whirls	 have	 smaller	whirls	 and	 so	 on	 to	 viscosity	 (in	 the	molecular	
sense)”.		Soon	afterwards,	this	was	followed	by	the	Richardson	4/3	law	of	turbulent	
diffusion	 [Richardson, 1926],	 which	 today	 is	 celebrated	 as	 the	 starting	 point	 for	
modern	 theories	 of	 turbulence	 including	 the	 key	 idea	 of	 cascades	 and	 scale	
invariance.	 	 Unencumbered	 by	 later	 notions	 of	 meso-scale,	 with	 remarkable	
prescience,	he	even	proposed	that	his	scaling	law	could	hold	from	dissipation	up	to	
planetary	scales,	a	hypothesis	that	has	been	increasingly	confirmed	in	recent	years.		
Today,	 he	 is	 simultaneously	 honoured	 by	 the	 Royal	 Meteorological	 Society’s	
Richardson	 prize	 as	 the	 father	 of	 numerical	 weather	 prediction,	 and	 by	 the	
Nonlinear	Processes	division	 the	European	Geosciences	Union’s	Richardson	medal	
as	the	grandfather	of	turbulence	approaches.		

Richardson	was	not	alone	 in	believing	that	 in	the	 limit	of	strong	nonlinearity	
(high	Reynolds	number,	Re),	 that	 fluids	would	obey	new	high	level	turbulent	 laws.		
Since	 then,	 Kolmogorov,	 Corrsin,	 Obhukhov,	 Bolgiano,	 and	 others	 proposed	
analogous	 laws,	 the	 most	 famous	 of	 which	 is	 the	 Kolmogorov	 law	 for	 velocity	
fluctuations	 (it	 is	 nearly	 equivalent	 to	 Richardson’s	 law).	 	 While	 the	 laws	 of	
continuum	 mechanics	 and	 thermodynamics	 are	 deterministic,	 the	 classical	
turbulent	laws	characterize	the	statistics	of	fluctuations	as	a	functions	of	space-time	
scale;	they	are	stochastic.		Just	as	the	laws	of	statistical	mechanics	are	presumed	to	
be	compatible	with	those	of	continuum	mechanics	-	and	even	though	no	proof	(yet)	
exists	 –	 the	 latter	 are	 also	 presumed	 to	 be	 compatible	 with	 the	 higher	 level	
turbulence	laws,	see	the	comprehensive	review	[Lovejoy and Schertzer, 2013].		

If	 both	 continuum	 mechanics	 and	 turbulent	 laws	 are	 valid,	 then	 both	 are	
potentially	exploitable	for	making	forecasts.		Yet	for	reasons	that	we	describe	below,	
for	 forecasting,	 only	 the	 brute	 force	 integration	 of	 the	 equations	 of	 continuum	
mechanics	 -	 	 General	 Circulation	 Models	 (GCM’s)	 -	 have	 been	 developed	 to	 any	
degree.	 	 In	 this	paper	we	review	an	early	attempt	 to	directly	exploit	 the	 turbulent	
laws	 for	 macroweather	 forecasting	 i.e.	 for	 forecasts	 beyond	 the	 deterministic	
predictability	limit	(≈	10	days).			

1.2		The	Status	of	the	Turbulent	laws	
				The	classical	turbulent	laws	are	of	the	scaling	form:	fluctuation	≈	(turbulent	

flux)x(scale)H	where	H	is	the	fluctuation	exponent	(for	the	Kolmogorov	law,	H=1/3,	
see	 below).	 	 The	 scaling	 form	 is	 a	 consequence	 of	 the	 scale	 invariance	 of	 the	
governing	 laws;	symbolically,	 (laws)->	(scale	change	by	factor	λ) ->	λH	(laws),	(note	
that	 the	 scale	 change	 must	 be	 anisotropic,	 see	 [Schertzer et al., 2012]).	 	 The	
atmosphere	 has	 structures	 spanning	 the	 range	 of	 scales	 from	 planetary	 to	
submillimetric	with	Re	≈1012:	making	it	in	principle	an	ideal	place	to	test	such	high	
Re	theories.		However,	the	classical	laws	were	based	on	very	restrictive	assumptions,	
they	 used	 unrealistic	 notions	 of	 turbulent	 flux	 and	 scale.	 	 In	 particular,	 the	 fluxes	
(which	 are	 actually	 in	 Fourier	 space	 and	 typically	 go	 from	 small	 to	 large	
wavenumbers)	 were	 assumed	 to	 be	 homogeneous	 or	 at	 least	 quasi	 Gaussian.	
However	 a	 basic	 feature	 of	 atmospheric	 dynamics	 is	 that	 almost	 all	 of	 the	 energy	



2017-02-01	10:31	am	 3	

and	other	fluxes	are	sparsely	distributed	in	storms	-	and	in	their	centres	-	and	this	
enormous	 turbulent	 intermittency,	 was	 not	 taken	 into	 account.	 	 In	 addition,	 the	
classical	notion	of	scale	was	naïve:	 it	was	taken	to	be	the	usual	Euclidean	distance	
between	two	points	i.e.	it	was	isotropic,	the	same	in	all	directions.	

To	be	 realistic,	 [Schertzer and Lovejoy, 1985]	 argued	 that	 the	 classical	 laws	
needed	 to	 be	 generalized	 precisely	 to	 take	 into	 account	 intermittency	 and	
anisotropy	 (especially	 stratification)	 and	 introduced	 the	 main	 tools:	 multifractal	
cascade	processes	and	Generalized	Scale	Invariance.	 	Profiting	from	the	golden	age	
of	geophysical	data	(remotely	sensed,	in	situ	and	airborne),	models	and	reanalyses	
(model	–	data	hybrids),	a	growing	body	of	work	has	largely	vindicated	this	view,	and	
has	resulted	in	a	quantitative	characterization	of	the	relevant	multifractal	hierarchy	
of	exponents	over	wide	ranges	of	space	and	time	scales.		While	the	laws	are	indeed	
of	 the	 (generalized)	 scaling	 form	 indicated	 above,	with	 only	 a	 few	 exceptions	 the	
values	 of	 the	 exponents	 still	 have	 not	 been	 derived	 theoretically.	 	 They	 are	
nevertheless	robust	with	quite	similar	values	being	found	in	diverse	empirical	data	
sets	as	well	as	in	GCM	outputs.			

While	large	scale	boundary	conditions	clearly	affect	the	largest	scales	of	flows,	
at	 small	 enough	 scales,	 the	 latter	 become	 unimportant	 so	 that	 for	 example	 in	 the	
atmosphere	 for	 scales	 below	 about	 5000km,	 the	 predictions	 of	 turbulent	 cascade	
theories	 are	 accurate	 to	 within	 typically	 ±0.5%	 (see	 e.g.	 ch.	 4	 of	 [Lovejoy and 
Schertzer, 2013]),	 although	 at	 larger	 scales,	 deviations	 are	 important.	 	 If	 the	
turbulent	laws	are	insensitive	to	driving	mechanisms	and	boundary	conditions,	then	
they	should	be	“universal”,	operating	 for	example	 in	other	planetary	atmospheres.		
This	 prediction	 was	 largely	 confirmed	 in	 a	 quantitative	 comparison	 of	 turbulent	
laws	on	Earth	and	on	Mars.	 	 It	turns	out	with	the	exception	of	the	largest	factor	of	
five	or	so	in	scale,	that	statistically,	we	are	twins	with	our	sister	planet	[Chen et al., 
2016],	see	fig.	1a,	b!		

1.3	Status	of	forecasts	based	on	the	Classical	laws	and	their	prospects	with	
turbulence	laws	

Over	the	 last	decades,	conventional	numerical	approaches	have	developed	to	
the	point	where	they	are	now	skilful	up	until	nearly	their	theoretical	(deterministic)	
predictability	 limits	 -	 itself	 close	 to	 the	 lifetimes	of	planetary	structures	 (about	10	
days,	 see	 below).	 	 	 Actually	 -	 due	 to	 stochastic	 parametrisations	 -	 state	 of	 the	 art	
ensemble	GCM	forecasts	are	stochastic	–	deterministic	hybrids,	but	this	limit	is	still	
fundamental.	 	At	the	same	time,	the	strong	intermittency	(multifractality)	over	this	
range	 has	 meant	 that	 stochastic	 forecasts	 based	 on	 the	 turbulent	 laws	 must	 be	
mathematically	treated	as	(state)	vector	anisotropic	multifractal	cascade	processes,	
the	mathematical	understanding	of	which	 is	 still	 in	 its	 infancy	 (see	e.g.	 [Schertzer 
and Lovejoy, 1995]),	GCMs	are	the	only	alternative.		However,	if	we	consider	scales	
of	 many	 lifetimes	 of	 planetary	 structures	 -	 the	 macroweather	 regime	 -	 then	 the	
situation	is	quite	different.		On	the	one	hand	because	of	the	butterfly	effect	(sensitive	
dependence	 on	 initial	 conditions),	 in	 macroweather	 the	 GCMs	 become	 fully	
stochastic	–	and	in	fact,	even	in	the	weather	regime.			On	the	other	hand,	as	pointed	
out	in	[Lovejoy and Schertzer, 2013],	[Lovejoy and de Lima, 2015],	[Lovejoy et al., 
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2015]	in	their	macroweather	limit,	the	turbulence	laws	become	much	simpler	and	–	
as	we	 review	below	 –	 can	 already	 be	 used	 to	 yield	monthly,	 seasonal	 annual	 and	
decadal	 forecasts	 that	 are	 comparable	 or	 better	 than	 the	 GCM	 alternatives.	 	 The	
stochastic	 forecasts	 that	 we	 describe	 here	 effectively	 harness	 the	 butterfly	 effect.			
Significantly,	 their	 forecasts	 already	 appear	 to	 be	 close	 to	 new	 -	 stochastic	 -	
predictability	limits.			

As	 we	 review	 below,	 there	 are	 two	 principle	 reasons	 that	 macroweather	
turbulent	 laws	 are	 tractable	 for	 forecasts.	 	 The	 first	 is	 that	 macroweather	
intermittency	 is	 generally	 low	 enough	 that	 a	 Gaussian	 model	 is	 a	 workable	
approximation	(although	not	for	the	extremes)	-	and	the	corresponding	prediction	
problem	 has	 been	 mathematically	 solved.	 	 This	 is	 the	 basis	 of	 the	 ScaLIng	
Macroweather	 Model	 (SLIMM,	 [Lovejoy et al., 2015])	 that	 is	 the	 core	 of	 the	
Stochastic	 Seasonal	 and	 Annual	 Prediction	 System	 (StocSIPS)	 that	we	 describe	 in	
this	 review	 paper.	 	 The	 second	 is	 that	 in	 macroweather,	 the	 usual	 size-lifetime	
relations	breakdown,	being	replaced	by	new	ones	and	an	 important	new	property	
called	“statistical	space-time	factorization”	(SSTF)	holds	(at	least	approximately).		It	
turns	out	that	the	SSTF	effectively	transforms	the	forecast	problem	from	a	familiar	
deterministic	nonlinear	PDE	initial	value	problem	into	a	stochastic,	fractional	order	
linear	 ODE	 past	 value	 problem.	 	 In	 contrast	 at	 macroweather	 time	 scales,	 a	
fundamental	 GCM	 limitation	 comes	 to	 the	 fore:	 each	 GCM	 converges	 to	 its	 own	
model	 climate,	 not	 to	 the	 real	 world	 climate.	 	 While	 this	 was	 not	 important	 at	
shorter	weather	scales,	now	it	becomes	a	fundamental	obstacle.	 	We	conclude	that	
for	macroweather	forecasting,	the	turbulent	approach	becomes	attractive	while	the	
GCM	 approach	 becomes	 unattractive.	 Below,	 we	 compare	 the	 skills	 of	 the	 two	
different	approaches	and	underline	the	advantages	of	exploiting	the	turbulent	laws.	

	Before	describing	the	forecast	model	and	its	skill	(section	3),	and	comparing	
stochastic	hindcasts	with	GCMs	(section	4),	we	first	discuss	macroweather	statistics	
(section	2).	
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Fig.	 1a:	 Top	 row:	 The	 zonal	 spectra	 of	 Earth	 (top	 left)	 and	 Mars	 (top	 right)	 as	
functions	 of	 the	 nondimensional	 wave	 numbers	 for	 the	 pressure	 (p,	 purple),	
meridional	wind	(v,	green),	zonal	wind	(u,	blue),	and	temperature	(T,	red)	lines.	The	
data	for	Earth	were	taken	at	69%	atmospheric	pressure	for	2006	between	latitudes	
±45∘.		The	data	for	Mars	were	taken	at	83%	atmospheric	pressure	for	Martian	Year	
24	to	26	between	latitudes	±45∘.		The	reference	lines	(top	left,	Earth)	have	absolute	
slopes,	from	top	to	bottom:	3.00,	2.40,	2.40,	and	2.75	(for	p,	v,	u,	and	T,	respectively).		
Top	right	(Mars)	have	reference	lines	with	absolute	slopes,	from	top	to	bottom:	3.00,	
2.05,	2.35,	and	2.35	(for	p,	v,	u,	and	T,	respectively).	The	spectra	have	been	rescaled	
to	 add	 a	 vertical	 offset	 for	 clarity	 and	wavenumber	k	 =	 1	 corresponds	 to	 the	 half	
circumference	of	the	respective	planets.		
	
Bottom	row:		The	same	as	top	row	except	for	the	meridional	spectra	of	Earth	(left)	
and	Mars	(right).		The	reference	lines	(left,	Earth)	have	absolute	slopes,	from	top	to	
bottom:	 3.00,	 2.75,	 2.75,	 and	 2.40	 (for	p,	v,	u,	 and	T,	 respectively).	 	 The	 reference	
lines	 (right,	Mars)	 have	 absolute	 slopes,	 from	 top	 to	 bottom:	 3.00,	 2.40,	 2.80,	 and	
2.80	 (for	 p,	 v,	 u,	 and	 T,	 respectively).	 	 The	 spectra	 have	 been	 rescaled	 to	 add	 a	
vertical	offset	for	clarity.		Adapted	from	[Chen	et	al.,	2016].	
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Fig.	 1b:	 The	 three	 known	weather	 -	macroweather	 transitions:	 air	 over	 the	 Earth	
(black	and	upper	purple),	the	Sea	Surface	Temperature	(SST,	ocean)	at	5o	resolution	
(lower	blue)	and	air	over	Mars	(Green	and	orange).		The	air	over	earth	curve	is	from	
30	years	of	daily	data	from	a	French	station	(Macon,	black)	and	from	air	temps	for	
last	 100	 years	 (5ox5o	 resolution	NOAA	NCDC),	 the	 spectrum	of	monthly	 averaged	
SST	 is	 from	the	same	data	base	(blue,	bottom).	 	 	The	Mars	spectra	are	 from	Viking	
lander	 data	 (orange)	 as	 well	 as	 MACDA	 Mars	 reanalysis	 data	 (Green)	 based	 on	
thermal	 infrared	retrievals	 from	the	Thermal	Emission	Spectrometer	(TES)	 for	 the		
Mars	Global	Surveyor	satellite.		The	strong	green	and	orange	“spikes”	at	the	right	are	
the	Martian	diurnal	cycle	and	its	harmonics.		Adapted	from		[Lovejoy et al., 2014].	
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Fig.	 1c:	Spectra from the 20CR reanalysis (1871-2008) at	 45oN	 for	 temperature	 (T),	
zonal	and	meridional	wind	(u,	v)	and	specific	humidity	(hs).	The	reference	lines	have	
correspond	to,	βmw	=	0.2,	βw	=	2	 	 left	 to	right	respectively.	 	 	Adapted	from	 [Lovejoy 
and Schertzer, 2013].	
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Fig.	2:	The	weather-macroweather	transition	scale	τw	estimated	directly	from	break	
points	 in	 the	 spectra	 for	 the	 temperature	 (red)	 and	 precipitation	 (green)	 as	 a	
function	 of	 latitude	 with	 the	 longitudinal	 variations	 determining	 the	 dashed	 one	
standard	deviation	 limits.	 	 The	 data	 are	 from	 the	 138	 year	 long	Twentieth	 Century		
reanalyses	 (20CR,	 [Compo et al., 2011]),	 the	τw	estimates	were	made	by	performing	
bilinear	log-log	regressions	on	spectra	from	180	day	long	segments	averaged	over	280	
segments	per	grid	point.	The	blue	curve	is	the	theoretical	τw	obtained	by	estimating	the	
distribution	 of	 ε	 from	 the	 ECMWF	 reanalyses	 for	 the	 year	 2006	 (using	 τw	 =ε-1/3L2/3	
where	L	=	half	earth	circumference),	it	agrees	very	well	with	the	temperature	τw.	 	τw	is	
particularly	high	near	the	equator	since	the	winds	tend	to	be	lower,	hence	lower	ε.		
Similarly,	τw	 is	particularly	 low	 for	precipitation	since	 it	 is	usually	associated	with	
high	turbulence	(high	ε).	Reproduced	from	[Lovejoy and Schertzer, 2013].	

2.	Macroweather	statistics	

2.1	The	transition	from	weather	to	macroweather		
Ever	since	the	first	atmospheric	spectra	[Panofsky and Van der Hoven, 1955; 

Van der Hoven, 1957],	 it	 has	 been	 known	 that	 there	 is	 a	 drastic	 change	 in	
atmospheric	statistics	at	time	scales	of	several	days.			At	first	ascribed	to	“migratory	
pressure	systems”,	termed	a	“synoptic	maximum”	[Kolesnikov and Monin, 1965],	it	
was	 eventually	 theorized	 as	 baroclinic	 instability	 ([Vallis, 2010]).	 However,	 its	
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presence	 in	 all	 the	 atmospheric	 fields	 (fig.	 1c),	 its	 true	origin	 and	 its	 fundamental	
implications	 could	 not	 be	 appreciated	 until	 the	 turbulent	 laws	 were	 extended	 to	
planetary	scales.		

The	key	point	is	that	the	horizontal	dynamics	are	controlled	by	the	energy	flux	
ε	to	smaller	scales	(units	W/Kg,	also	known	as	the	“energy	rate	density”).		Although	
this	is	the	same	dimensional	quantity	upon	which	the	Kolmogorov	law	is	based	(Δv	
=	 ε1/3L1/3	 for	 the	 velocity	 difference	 Δv	 across	 a	 distance	 L),	 it	 had	 not	 been	
suggested	 that	 it	 hold	up	 to	planetary	 scales;	Kolmogorov	himself	 believed	 that	 it	
would	 not	 hold	 to	more	 than	 several	 hundred	meters.	 	 	 Indeed	 as	 pointed	 out	 in	
[Lovejoy et al., 2007]	 on	 the	basis	of	 state	of	 the	 art	dropsonde	data,	 the	original	
Kolmogorov	 law	 is	 isotropic	 and	 doesn’t	 appear	 to	 hold	 anywhere	 in	 the	
atmosphere	 (at	 least	 at	 scales	 above	 ≈	 5	 m)!	 	 However,	 the	 recognition	 that	 an	
anisotropic	generalization	of	 the	Kolmogorov	 law	could	account	 for	 the	horizontal	
statistics	(with	the	vertical	being	controlled	by	buoyancy	force	variance	fluxes	and	
Bolgiano-Obhukhov	 statistics),	 explains	 how	 it	 is	 possible	 for	 the	 horizontal	
Kolmogorov	law	to	hold	up	to	planetary	scales	(see	fig.	1a,	for	the	space-time	scaling	
up	to	planetary	scales,	see	also	fig.	3	for	IR	radiances).	 	The	classical	lifetime	–	size	
(L)	relation	is	then	obtained	by	using	dimensional	analysis	on	ε:	τ	≈	ε-1/3L2/3	where	L	
is	the	horizontal	extent	of	a	structure,	(no	longer	an	isotropic	3D	estimate	of	its	size).		
This	 law	 has	 been	 validated	 in	 both	 Lagrangian	 and	 Eulerian	 frames,	 see	
[Radkevitch et al., 2008],	[Pinel et al., 2014],	fig.	3).			
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Fig.	3:		The	zonal,	meridional	and	temporal	spectra	of	1386	images	(~	two	months	of	
data,	 September	 and	 October	 2007)	 of	 radiances	 fields	 measured	 by	 a	 thermal	
infrared	 channel	 (10.3-11.3	μm)	 on	 the	 geostationary	 satellite	MTSAT	over	 south-
west	Pacific	at	resolutions	30	km	and	1	hr	over	latitudes	40°S	–	30°N	and	longitudes	
80°E	–	200°E.			With	the	exception	of	the	(small)	diurnal	peak	(and	harmonics),	the	
rescaled	spectra	are	nearly	identical	and	are	also	nearly	perfectly	scaling	(the	black	
line	 shows	 exact	 power	 law	 scaling	 after	 taking	 into	 account	 the	 finite	 image	
geometry.		Reproduced	from	[Pinel et al., 2014].	

	
If	 one	 estimates	 ε	 by	 dividing	 the	 total	 tropospheric	mass	 by	 the	 total	 solar	

power	that	is	transformed	into	mechanical	energy	(about	4%	of	the	total),	then	one	
finds	ε	≈	1	mW/Kg	which	is	close	to	the	directly	estimated	empirical	value	(it	even	
explains	 regional	 variations,	 see	 fig.	 2).	 	 	 Using	 ε	 ≈	 1	mW/Kg,	L	 =	 20,000km	 (the	
largest	 great	 circle	 distance)	 this	 value	 implies	 that	 the	 lifetime	 of	 planetary	
structures	and	hence	the	weather-macroweather	transition	is	τw	≈	5-	10	days.		When	
the	theory	is	applied	to	the	ocean	(which	is	similarly	turbulent	with	ε	≈	10-8	W/Kg),	
one	obtains	a	transition	at	about	1-	2	years	(also	observed,	[Lovejoy and Schertzer, 
2010],	fig.	1b).		Finally,	it	can	be	used	to	accurately	estimate	ε	≈	40	mW/Kg	on	Mars	
and	 hence	 the	 corresponding	 Martian	 transition	 scale	 at	 about	 1.8	 sols	 (fig.	 1b,		
[Lovejoy et al., 2014]).		

From	 the	 point	 of	 view	 of	 turbulent	 laws,	 the	 transition	 from	 weather	 to	
macroweather	is	a	“dimensional	transition”	since	at	time	scales	longer	than	τw,	the	
spatial	 degrees	 of	 freedom	 are	 essentially	 “quenched”	 so	 that	 the	 system’s	
dimension	 is	 effectively	 reduced	 from	 1+3	 to	 1	 ([Lovejoy and Schertzer, 2010]).			
Using	 spectral	 analysis	 fig.	 4	 shows	 that	 simple	 multifractal	 turbulence	 models	
reproduce	the	transition.		GCM	control	runs	i.e.	with	constant	external	forcings	(see	
section	 2.2	 and	 fig.	 5c)	 	 -	 also	 reproduce	 realistic	 macroweather	 variability,	
justifying	 the	 term	 “macroweather”.	 	 However	 in	 forced	 GCM’s	 -	 as	 with	
instrumental	 and	 multiproxy	 data	 beyond	 a	 critical	 time	 scale	 τc,	 the	 variability	
starts	 to	 increase	 again	 (as	 in	 the	 weather	 regime)	 and	 the	 true	 climate	 regime	
begins;		τc	≈	10	years	in	the	anthropocene,	and	τc	>≈100	years	in	the	pre-industrial	
epoch,	(see	section	2.2,	fig.	5).		
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Fig.	4:	A	comparison	of	temperature	spectra	from	a	grid	point	of	the	20CR	data	

(bottom,	orange	line)	and	from	a	turbulence	cascade	model	(top,	blue	line)	showing	
that	 it	 well	 reproduces	 the	 weather-macroweather	 transition.	 	 Reproduced	 from	
[Lovejoy and Schertzer, 2013].	

	
	
In	 order	 to	 understand	 the	 key	 difference	 between	 weather,	 macroweather	

and	 the	 climate,	 rather	 than	 spectra,	 it	 is	 useful	 to	 consider	 typical	 fluctuations.		
Classically	 -	 for	 example	 in	 the	 Kolmogorov	 law	 -	 fluctuations	 were	 taken	 to	 be	
differences	i.e.	ΔT(Δt):			

	 (1)	
While	this	is	fine	for	weather	fluctuations	-	these	typically	increase	with	scale	Δt	-	it	
is	 not	 adequate	 for	 those	 that	 typically	 decrease	with	Δt,	 and	 as	we	 shall	 see	 this	
includes	macroweather	fluctuations.	 	For	these,	we	often	consider	“anomalies”;	 for	
example	for	the	temperature	anomaly	T(t)	is	the	temperature	with	both	the	annual	
cycle	 and	 the	 overall	 mean	 of	 the	 series	 removed	 so	 that	 <T>=0	 where	 “<.>”	
indicates	 averaging.	 	 	 For	 such	 zero	 mean	 anomaly	 series	 T(t),	 define	 the	 Δt	
resolution	anomaly	fluctuation	by:	

	 (2)	
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(as	for	differences,	in	ΔT(Δt)	we	suppressed	the	t	dependence	since	we	assume	that	
the	 fluctuations	 are	 statistically	 stationary).	 	 	 Since	 T(t)	 fluctuates	 around	 zero,	
averaging	 it	 at	 larger	 and	 larger	Δt	 tends	 to	 decrease	 the	 fluctuations	 so	 that	 the	
decreasing	classical	anomaly	fluctuations	and	the	increasing	difference	fluctuations	
will	each	have	restricted	and	incompatible	ranges	of	validity.			

In	general,	average	fluctuations	may	either	increase	or	decrease	depending	on	
the	 range	 of	Δt	 considered	 so	 that	we	must	 define	 fluctuations	 in	 a	more	 general	
way;	 wavelets	 provide	 a	 fairly	 general	 framework	 for	 this.	 	 A	 simple	 expedient	
combines	 averaging	and	differencing	while	overcoming	many	of	 the	 limitations	of	
each:	the	Haar	fluctuation	(from	the	Haar	wavelet).		It	is	simply	the	difference	of	the	
mean	over	the	first	and	second	halves	of	an	interval:		

	 (3)	
	(see	[Lovejoy and Schertzer, 2012]	for	these	fluctuations	in	a	wavelet	formalism).		
In	 words,	 the	 Haar	 fluctuation	 is	 the	 difference	 fluctuation	 of	 the	 anomaly	
fluctuation,	 it	 is	also	equal	 to	the	anomaly	fluctuation	of	 the	difference	fluctuation.		
In	regions	where	the	fluctuations	decrease	with	scale	we	have:	
	 		 (decreasing	with	Δt)	 (4)	

	 		 (increasing	with	Δt)	

In	order	for	eq.	4	to	be	reasonably	accurate,	the	Haar	fluctuations	in	eq.	3	need	to	be	
multiplied	by	a	calibration	factor;	here	we	use	the	canonical	value	2	although	a	more	
optimal	value	could	be	tailored	to	individual	series.	

Over	 ranges	 where	 the	 dynamics	 have	 no	 characteristic	 time	 scale,	 the	
statistics	of	the	fluctuations	are	power	laws	so	that:	

ΔT Δt( )
q
∝Δt ξ q( ) 	 (5)	

the	 left	 hand	 side	 is	 the	 qth	 order	 structure	 function	 and	 ξ(q)	 is	 the	 structure	
function	 exponent.	 “<>”	 indicates	 ensemble	 averaging;	 for	 individual	 series	 this	 is	
estimated	by	temporal	averaging	(over	the	disjoint	fluctuations	in	the	series).	 	The	
first	order	(q	=	1)	case	defines	the	“fluctuation	exponent”	ξ(1)	=	H:	

ΔT Δt( ) ∝Δt H 	 (6)	
In	 the	 special	 case	 where	 the	 fluctuations	 are	 quasi-Gaussian,	 ξ(q)	 =	 qH	 and	 the	
Gaussian	white	noise	case	corresponds	 to	H	=	 -1/2.	 	More	generally,	 there	will	be	
“intermittency	corrections”	so	that:	
	
		 K(q)	=qH	- ξ(q)		 (7)	
	
where	K(q)	is	a	convex	function	with	K(1)	=	0.		K(q)	characterizes	the	multifractality	
associated	with	the	intermittency.			

Eq.	 6	 shows	 that	 the	 distinction	 between	 increasing	 and	 decreasing	 mean	
fluctuations	corresponds	to	the	sign	of	H.		It	turns	out	that	the	anomaly	fluctuations	
are	adequate	when	-1<H<0	whereas	the	difference	fluctuations	are	adequate	when	

ΔT Δt( )( )Haar =
2
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t−Δt /2

t

∫ − 2
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t−Δt
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∫
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0<H<1.	 	 In	contrast,	 the	Haar	 fluctuations	are	useful	over	 the	range	-1<H<1	which	
encompasses	virtually	all	 geoprocesses,	hence	 its	more	general	utility.	 	When	H	 is	
outside	the	indicated	ranges,	then	the	corresponding	statistical	behaviour	depends	
spuriously	on	either	the	extreme	low	or	extreme	high	frequency	limits	of	the	data.				

	

2.2	The	low	frequency	macroweather	limit	and	the	transition	to	the	climate	
	

We	 have	 argued	 that	 there	 is	 a	 drastic	 statistical	 transition	 in	 all	 the	
atmospheric	fields	at	time	scales	of	5	–	10	days,	and	that	the	basic	equations	have	no	
characteristic	 time	 scale.	 	 However,	 it	 was	 noted	 since	 [Lovejoy and Schertzer, 
1986]	 (fig.	 5a)	 that	 global	 temperature	 differences	 tend	 to	 increase	 in	 a	 scaling	
manner	 right	 up	 to	 the	 ice	 age	 scales:	 the	 glacial-interglacial	 “window”	 at	 about	
50kyrs	(a	half	cycle)	over	which	fluctuations	are	typically	of	the	order	±2	to	±4	K.			

	
Fig.	5a:	 	The	RMS	difference	structure	 function	estimated	 from	 local	 (Central	

England)	 temperatures	since	1659	(open	circles,	upper	 left),	northern	hemisphere	
temperature	 (black	 circles),	 and	 from	paleo	 temperatures	 from	Vostok	 (Antarctic,	
solid	triangles),	Camp	Century	(Greenland,	open	triangles)	and	from	an	ocean	core	
(asterixes).	 	 	For	the	northern	hemisphere	temperatures,	the	(power	law,	linear	on	
this	plot)	climate	regime	starts	at	about	10	years.			The	rectangle	(upper	right)	is	the	
“glacial-interglacial	 window”	 through	 which	 the	 structure	 function	 must	 pass	 in	
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order	to	account	for	typical	variations	of	±2	to	±3K	for	cycles	with	half	periods	≈	50	
kyrs.		Reproduced	from	[Lovejoy and Schertzer, 1986].	

	
	
Fig.	 5b:	 	 A	 composite	 RMS	 Haar	 structure	 function	 from	 (daily	 and	 annually	
detrended)	 hourly	 station	 temperatures	 (left),	 20CR	 temperatures	 (1871-2008	
averaged	 over	 2o	 pixels	 at	 75oN)	 and	 paleo-temperatures	 from	 EPICA	 ice	 cores	
(right)	over	the	last	800kyrs.		The	glacial-interglacial	window	is	shown	upper	right	
rectangle.		Adapted	from	[Lovejoy, 2015a].	
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Fig.	 5c:	 Haar	 fluctuation	 analysis	 of	 globally,	 annually	 averaged	 outputs	 of	 past	
Millenium	simulations	over	 the	pre-industrial	period	(1500-1900)	using	 the	NASA	
GISS	E2R	model	with	various	forcing	reconstructions.		Also	shown	(thick,	black)	are	
the	fluctuations	of	the	pre-industrial	multiproxies	showing	that	they	have	stronger	
multi	 centennial	 variability.	 	 Finally,	 (bottom,	 thin	 black),	 are	 the	 results	 of	 the	
control	 run	 (no	 forcings),	 showing	 that	 macroweather	 (slope<0)	 continues	 to	
millennial	scales.		Reproduced	from	[Lovejoy et al., 2013].	
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Fig.	 5d:	 	 Haar	 fluctuation	 analysis	 of	 	 Climate	Research	Unit	 (CRU,	HadCRUtemp3	
temperature	 fluctuations),	 and	 globally,	 annually	 averaged	 outputs	 of	 past	
Millenium	simulations	over	the	same	period	(1880-2008)	using	the	NASA	GISS	E2R	
model	 with	 various	 forcing	 reconstructions	 (dashed).	 	 Also	 shown	 are	 the	
fluctuations	of	the	pre-industrial	multiproxies	showing	the	much	smaller	centennial	
and	millennial	scale	variability	that	holds	in	the	pre-industrial	epoch.	 	Reproduced	
from	[Lovejoy et al., 2013].	
	

Fig.	5a	shows	the	root	mean	square	second	order	structure	function	defined	by	

difference	 fluctuations	 ΔT Δt( )diff
2 1/2

	for	 both	 local	 and	 hemispherically	 averaged	

temperatures.	 	 From	 the	above	discussion,	we	anticipate	 that	 it	will	 give	 spurious	
results	 in	 the	 regions	where	 the	 true	 fluctuations	decrease	with	 scale;	 indeed,	 the	
local	 (central	England)	 series	 (upper	 left	 in	 fig.	 5a	 and	ocean	 cores	beyond	≈	100	
kyrs,	 upper	 right)	 are	 spuriously	 flat	 (i.e.	 the	 differences	 do	 not	 reflect	 the	
underlying	scaling	of	the	fluctuations	that	are	in	fact	decreasing	over	these	ranges).			
This	 is	 confirmed	 using	 both	 more	 modern	 data	 as	 well	 as	 Haar	 rather	 than	
difference	fluctuations,	in	fig.	5b	that	shows	a	composite	of	temperature	variability	
over	the	range	of	scales	of	hours	to	nearly	a	million	years.	 	 	From	fig.	5b,	 it	can	be	
seen	 that	 the	 drastic	 weather-macroweather	 spectral	 transition	 corresponds	 to	 a	
change	 in	 the	 sign	 of	 H	 for	 H>0	 to	 H<0,	 i.e.	 from	 fluctuations	 increasing	 to	
fluctuations	 decreasing	 with	 scale.	 	 The	 bottom	 of	 the	 figure	 shows	 extracts	 of	

1000	
100	Log10Δt	(yrs)	

0.1 K 

1 K 

10	4	months	

0.5 K 

Lo
g
1
0
	<
	Δ
T
2
>
1
/2
	(
K
)	

Mul:-Proxies	
North	

1500-1900	

GISS	E2-R	
North,	land	

1880-2005	

CRU:	
North,	land	

1880-2008	
CRU	North	
1880-2008	

CRU	global	
1880-2008	

0.2 K 

Climate (industrial) macroweather (industrial) 

Climate preindustrial) macroweather (preindustrial) 



2017-02-01	10:31	am	 17	

typical	data	at	the	corresponding	resolutions,	when	H>0,	the	signal	“wanders”	like	a	
drunkard’s	walk,	when	H<0,	successive	fluctuations	tend	to	cancel	out.		

Moving	to	the	 longer	time	scales,	one	may	also	note	that	beyond	a	decade	or	
two,	 the	 fluctuations	 again	 increase	 with	 scale.	 In	 reality,	 as	 one	 averages	 from	
weeks	 to	months	 to	 years,	 the	 temperature	 fluctuations	 are	 indeed	 averaged	 out,	
appearing	 to	 converge	 to	 a	 fixed	 climate.	 	 However,	 starting	 at	 decades,	 this	
apparent	 fixed	climate	actually	 started	 to	 fluctuate,	varying	up	 to	 ice	age	scales	 in	
much	the	same	way	as	the	weather	varies	(with	nearly	the	same	exponent	H≈	0.4,	
see	 fig.	5b).	 	While	 the	adage	says	“The	climate	 is	what	you	expect,	 the	weather	 is	
what	you	get”,	the	actual	data	indicate	that	“Macroweather	is	what	you	expect,	the	
climate	is	what	you	get”.	
	

	
Fig.	6:	Variation	of	τw (bottom)	and	τc	(top)	as	a	function	of latitude	as	estimated	from	
the	138	year	long	20CR	reanalyses,	700mb	temperature	field	(the	τc	estimates	are	only	
valid	in	the	anthropocene).		The	bottom	red	and	thick	blue	curves	for	τw	are	from	fig.	2;	
also	shown	at	the	bottom	is	the	effective	external	scale	(τeff)	of	the	temperature	cascade	
estimated from	 the	 European	 Centre	 for	 Medium-Range	 Weather	 Forecasts interim	
reanalysis	for	2006	(thin	blue).		The	top	τc	curves	were	estimated	by	bilinear	log-log	fits	
on	 the	 Haar	 structure	 functions	 applied	 to	 the	 same	 20CR	 temperature	 data.	 	 The	
macroweather	regime	is	the	regime	between	the	top	and	bottom	curves. 
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The	annual	and	decadal	scales	in	figs.	5a	and	Fig	5b	are	from	the	anthropocene,	
it	is	important	to	compare	this	with	the	preindustrial	variability.		This	comparison	is	
shown	in	detail	in	figs.	5c	and	5d	that	include	comparisons	with	GCM	outputs.		From	
the	figures	we	see	that	in	the	anthropocene,	macroweather	ends	(scale	τc)	at	around	
a	decade	or	so;	fig.	6	give	estimates	of	τc	averaged	over	fixed	latitudes	showing	that	
it	is	a	little	shorter	in	the	low	latitudes.		We	have	seen	(fig.	4)	that	without	external	
forcing,	 turbulence	 models	 when	 taken	 to	 their	 low	 frequency	 limit	 reproduce	
macroweather	statistics;	the	same	is	true	of	GCMs	in	their	“control	run”	mode	(fig.	
5c).			These	results	are	important	for	macroweather	forecasting	since	they	represent	
a	 potential	 calculable	 climate	 perturbation	 to	 the	 otherwise	 (pure	 internal	
variability)	macroweather	behaviour.	

In	 order	 to	 reproduce	 the	 low	 frequency	 climate	 regime	 characterized	 by	
increasing	 fluctuations,	we	 therefore	need	 something	new:	 either	 a	new	source	of	
internal	 variability,	 or	 external	 forcings.	 	 Figure	 5d	 shows	 that	 whereas	 in	 the	
anthropocene,	 the	 GCM’s	 with	 Green	 House	 Gas	 (GHG)	 forcings	 do	 a	 good	 job	 of	
reproducing	the	variability,	in	the	preindustrial	period	(fig.	5c),	their	centennial	and	
millennial	 scale	 variability	 seems	 to	 be	 too	 weak	 (at	 least	 when	 using	 current	
estimates	of	“reconstructed”	solar	and	volcanic	forcings	[Lovejoy et al., 2013]).	

The	 usual	 way	 to	 understand	 the	 low	 frequencies	 is	 to	 consider	 them	 as	
responses	to	small	perturbations,	 indeed,	even	the	strong	anthropogenic	forcing	is	
less	than	1%	of	the	mean	solar	flux	and	may	be	considered	this	way.		This	smallness	
is	 the	 usual	 justification	 for	 making	 the	 approximation	 that	 the	 external	 forcings	
(whether	of	natural	or	anthropogenic	origin)	yield	a	roughly	linear	response,	indeed,	
this	 is	 the	basis	of	 linearized	energy	balance	models	 and	 it	 can	also	be	 supported	
from	a	dynamical	systems	point	of	view	[Ragone et al., 2015].	

In	 order	 to	 avoid	 confusion,	 it	 is	 worth	making	 these	 notions	more	 precise.		
For	simplicity,	consider	the	atmosphere	with	fixed	external	radiative	forcing	F(r)	at	
location	 r,	 (e.g.	 corresponding	 to	 GCM	 control	 runs).	 For	 this	 fixed	 forcing,	 the	
(stochastic)	temperature	field	is:	

TF r,t( ) = TF r( ) + ʹTF r,t( ) 	 (8)	
where	the	ensemble	average	is	independent	of	time	(since	the	past	forcing	is	fixed)	
and	 T’	 (with	 <T’>	 =	 0)	 is	 the	 random	 deviation.	 	 If	 we	 identify	 TF r( ) 	with	 the	
climate	and	 ʹTF r,t( ) 	with	the	internal	variability,	then:	

TF ,internal r,t( ) =TF r,t( )−TF ,c lim r( ); TF ,c lim r( ) = TF r,t( ) ; TF ,internal r,t( ) = ʹTF r,t( )
	 (9)a	
For	 simplicity,	 we	 have	 ignored	 the	 annual	 cycle,	 the	 internal	 variability	 is	
somewhat	different	than	the	notion	of	temperature	anomalies	discussed	in	section	
4).			

Now	 increase	 the	 forcing	 from	F r( )→ F r( )+ΔF r,t( ) 	so	 that	the	climate	part	
increases	from	 TF r( ) → TF+ΔF r,t( ) 	i.e.	TF ,c lim r( )→TF+ΔF ,c lim r,t( ) 	and:	
	
	ΔTΔF ,c lim r,t( ) =TF+ΔF ,c lim r,t( )−TF ,c lim r( ) 	 (9b)	
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is	 the	 change	 in	 the	 climate	 response	 to	 the	 changed	 forcing.	 	 	 The	 generalized	
climate	sensitivity	λ	can	then	defined	as:	
	

λ r,t( ) =
∂TF ,c lim r,t( )
∂F r,t( )

≈
ΔTF ,c lim r,t( )
ΔF r,t( )

	 (10)	

GCM’s	 make	 many	 realizations	 (sometimes	 from	 many	 models-	 “multimodel	
ensembles”)	and	this	equation	may	be	used	to	determine	the	climate	response	and	
generalized	 sensitivity	 (the	 more	 common	 equilibrium	 and	 transient	 climate	
sensitivities	 are	 discussed	momentarily).	 	 	 If	 t	 is	 a	 future	 time,	 then	TF+ΔF r,t( ) is	 a	
prediction	 of	 the	 future	 state	 of	 the	 atmosphere	 including	 the	 internal	 variability	
and	 the	 changed	 forcing,	 whereas	 TF+ΔF ,c lim r,t( ) 	is	 called	 a	 climate	 “projection”.			
Sometimes	 climate	 projections	 and	 sensitivities	 are	 estimated	 from	 single	 GCM	
model	runs	by	estimating	the	ensemble	averages	by	temporal	averages	over	decadal	
time	scales.	

We	can	now	state	the	linear	response	assumption:		
	 ΔTc lim r,t( ) =G r,t( )∗ΔF r,t( ) 	 (11)	
where	G(r,t)	 is	 the	system	Green’s	 function,	 in	 this	context,	 it	 is	also	known	as	 the	
Climate	Response	Function	(CRF),	“*”	means	convolution.		Eq.	11	is	the	most	general	
statement	 of	 linearity	 for	 systems	 whose	 physics	 is	 the	 same	 at	 all	 times	 and	
locations	 (it	 assumes	 that	only	 the	differences	 in	 times	and	 locations	between	 the	
forcing	and	the	responses	are	important).			To	date,	applications	of	CRF’s	have	been	
limited	 to	 globally	 averaged	 temperatures	 and	 forcings	 so	 that	 the	 spatial	 (r)	
dependence	is	averaged	out;	for	simplicity,	below	we	drop	the	spatial	dependence.		

The	 CRF	 is	 only	 meaningful	 if	 the	 system	 is	 linear,	 in	 which	 case	 it	 is	 the	
response	of	the	system	to	a	Dirac	function	forcing.			The	simplest	CRF	is	itself	a	Dirac	
function	 possibly	with	 a	 lag	Δt≥0,	 i.e.	G t( ) = λδ t −Δt( ) ,	 (sensitivity	λ).	 	 Such	CRF’s	
have	been	used	with	some	success	by	[Lean and Rind, 2008]	and		[Lovejoy, 2014a]	
to	 account	 for	 both	 anthropogenic	 and	natural	 forcings.	 	 Rather	 than	 characterize	
the	system	by	a	response	to	Dirac	 forcing,	 it	 is	more	usual	to	characterize	 it	by	 its	
responses	to	a	step	function	F(t)	(the	Equilibrium	Climate	Sensitivities,	ECS)	or	to	a	
linearly	 increasing	F(t)	(“ramps”;	 Transient	 Climate	 Responses,	 TCR).	 	 	 Since	 step	
functions	and	ramps	are	simply	the	first	and	second	integrals	of	the	Dirac	function,	if	
the	 response	 is	 linear	 (eq.	11),	 then	knowledge	of	 these	 responses	as	 functions	of	
time	is	equivalent	to	the	CRF	(note	that	usually	the	ECS	is	defined	as	the	response	
after	an	infinite	time,	and	TCR	after	a	finite	conventional	period	of	70yrs).	

Traditionally,	Green’s	functions	are	deduced	from	linear	differential	operators	
arising	 from	 linear	differential	equations.	 	For	example,	by	 treating	 the	ocean	as	a	
homogeneous	 slab,	 the	 linearized	 energy	 balance	 equation	 may	 be	 used	 to	
determine	 the	 CRF,	 but	 the	 latter	 is	 an	 integer	 ordered	 ordinary	 differential	
equation	 for	 the	mean	 global	 temperature	 which	 leads	 to	 exponential	 CRF’s	 (e.g.	
[Schwartz, 2012],	 [Zeng and Geil, 2017]).	 	 	 Such	 CRF’s	 are	 unphysical	 since	 they	
break	the	scaling	symmetry	of	the	dynamics;	the	dynamical	ocean	is	better	modelled	
as	a	hierarchy	of	slabs	each	with	 its	own	time	constant	(rather	 than	a	unique	slab	
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with	 a	 unique	 constant).	 	 	 To	model	 this	 in	 the	 linear	 energy	 balance	 framework	
requires	 introducing	 differential	 terms	 of	 fractional	 order;	 these	 generally	 lead	 to	
the	required	scaling	CRF’s	(SCRF)	and	will	be	investigated	elsewhere.			

Rather	 than	 determine	 the	 CRF	 from	 differential	 operators,	 they	 can	 be	
determined	directly	from	the	symmetries	of	the	problem.		In	this	case	(considering	
only	the	temporal	CRF,	G(t)),	the	three	relevant	symmetries	are:		a)	that	the	physics	
is	stationary	 in	 time,	b)	 that	 the	system	is	causal,	 c)	 that	 there	 is	no	characteristic	
time	scale.			From	these	three	symmetries	we	obtain	G t( )∝ t HR−1Θ t( ) 	where	HR	is	the	
SCRF	response	exponent	and	Θ t( ) 	is	the	Heaviside	function	(=0	for	t<0,	=	1	for	t≥0),	
necessary	to	ensure	causality	of	the	response.			

Before	 continuing,	 we	 must	 note	 that	 such	 pure	 power	 law	 SCRF’s	 are	
unusable	 due	 to	 either	 high	 or	 low	 frequency	 divergences;	 in	 this	 context	 the	
divergences	are	aptly	called	“runaway	Green’s	function	effect”	([Hébert and Lovejoy, 
2015])	 so	 that	 truncations	 are	 needed.	 	 For	 forcings	 that	 have	 infinite	 “impulses”	
(such	as	step	 functions	or	 ramps	whose	 temporal	 integrals	diverge),	when	HR>0	a	
low	frequency	temperature	divergences	will	occur,	unless	G(t)	has	a	low	frequency	
cutoff	whereas	whenever	HR<0,	the	cutoff	must	be	at	high	frequencies.	For	example,	
[Rypdal, 2015; Rypdal and Rypdal, 2014]	 use	 an	 SCRF	 with	 exponent	 HR>0	
(without	cutoff)	so	that	low	frequency	temperature	divergences	occur	unless	all	the	
forcings	return	to	zero	quickly	enough.			This	is	why	[Hebert et al., 2017]	use	HR	<0	
but	 introduce	 a	 high	 frequency	 cut-off	 τ	 in	 order	 to	 avoid	 the	 divergences:
G t( ) = λH t / τ+1( )HR−1Θ t( ) ;	 	λΗ	 is	a	generalized	sensitivity.	 	 In	 this	case,	 the	cut-off	
should	correspond	to	the	smallest	time	scale	over	which	the	linear	approximation	is	
valid.	 	While	 the	most	 general	 (space-time)	 linear	 approximation	 (i.e.	with	G(r,t))	
may	be	valid	at	shorter	time	scales,	if	we	reduce	the	problem	to	a	“zero	dimensional”	
(globally	 averaged)	 series	 T(t),	 then	 clearly	 a	 linear	 response	 is	 only	 possible	 at	
scales	 over	 which	 the	 ocean	 and	 atmosphere	 are	 strongly	 coupled.	 	 The	
breakthrough	in	understanding	and	quantifying	this	was	to	use	Haar	fluctuations	to	
show	 that	 the	 coupling	 of	 air	 temperature	 fluctuations	 over	 land	 and	 SST	
fluctuations	abruptly	change	from	very	low	to	very	high	at	the	ocean	weather-ocean	
macroweather	transition	scale	of	τ	=	1-	2	years	(see	fig.	7).		A	truncated	SCRF	with	
this	 τ	 and	with	HR	 ≈	 -0.5	 allows	 [Hebert et al., 2017]	 to	make	 future	 projections	
based	on	historical	 forcings	as	well	as	to	accurately	project	 the	 forced	response	of	
GCM	models.	
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Fig.	 7:	 	 The	 correlations	 quantifying	 the	 coupling	 of	 global,	 land	 and	 ocean	

temperature	 fluctuations.	 	 At	 each	 scale	 Δt,	 the	 correlation	 coefficient	 r	 of	 the	
corresponding	 Haar	 fluctuations	 was	 calculated	 for	 each	 pair	 of	 the	 monthly	
resolution	series.	 	 	The	key	curve	is	the	correlation	coefficient	of	globally	averaged	
air	 over	 land	 with	 globally	 averaged	 sea	 surface	 temperature	 (SST,	 bottom,	 red).		
One	 can	 see	 that	 there	 is	 a	 sharp	 transition	 at	 τ	 ≈	 1	 -2	 years	 from	 very	 low	
correlations,	 to	 very	 high	 correlations	 corresponding	 to	 uncoupled	 and	 coupled	
fluctuations.		Reproduced	from	[Hebert et al., 2017].	

2.3	Climate	zones	and	Intermittency:	in	space	and	time	
We	 have	 argued	 that	macroweather	 is	 the	 dynamical	 regime	 of	 fluctuations	

with	time	scales	between	the	lifetimes	of	planetary	structures	(τw)	and	the	climate	
regime	 where	 either	 new	 (slow)	 internal	 processes	 or	 external	 forcings	 begin	 to	
dominate	(τc).		We	have	seen	that	a	key	characteristic	is	that	mean	fluctuations	tend	
to	 decrease	 with	 time	 scale	 so	 that	 the	 macroweather	 fluctuation	 exponent	H<0.		
However	in	general,	fluctuations	require	an	infinite	hierarchy	of	exponents	for	their	
characterization	(the	entire	function	K(q)	in	eq.	7).		In	particular,	when	K(q)	is	large,	
the	process	is	typically	“spikey”	with	the	spikes	distributed	in	a	hierarchical	manner	
over	various	fractal	sets.			

To	see	this,	consider	the	data	shown	in	fig.	8a	(macroweather	time	series	and	
spatial	 transects,	 top	 and	 bottom	 respectively).	 	 Fig.	 8b	 compares	 the	 root	 mean	
square	 (RMS,	 exponent	 ξ(2)/2)	 and	 mean	 fluctuation	 (exponent	 H	 =	 ξ(1))	 of	
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macroweather	 temperature	 temporal	 data	 (bottom)	 and	 for	 the	 transect	 (top).		
When	the	system	is	Gaussian,	ξ(q)	=	qH	 so	 that	K(q)	=	0)	 	and	we	obtain	ξ(2)/2	=	
ξ(1)	 so	 that	 the	 lines	 in	 the	 figure	 will	 be	 parallel.	 	 We	 see	 that	 to	 a	 good	
approximation	 this	 is	 indeed	 true	 of	 the	 nonspikey	 temporal	 series	 (fig.	 8a,	 top).		
However,	 the	 spatial	 transect	 is	 highly	 spikey	 (fig.	 8a,	 bottom)	 and	 the	
corresponding	statistics	(the	top	lines	in	fig.	8b)	tend	to	converge	at	large	Δt.	 	To	a	
first	approximation,	it	turns	out	that	ξ(2)/2	-	ξ(1)		≈	K’(1)	=	C1	which	characterizes	
the	 intermittency	 near	 the	 mean.	 	 However,	 there	 is	 a	 slightly	 better	
characterisation	 of	C1	 (described	 in	 [Lovejoy and Schertzer, 2013],	 ch.	 11),	 using	
the	 intermittency	 function	 (see	 fig.	 8c	 and	 caption)	 whose	 theoretical	 slope	 (for	
ensemble	averaged	statistics)	is	exactly	K’(1)	=	C1.		As	a	point	of	comparison,	recall	
that	 fully	developed	 turbulence	 in	 the	weather	regime	typically	has	C1	≈	0.09,	 (see	
[Lovejoy and Schertzer, 2013],	 table	 4.5).	 	 The	 temporal	 macroweather	
intermittency	 (C1≈0.01)	 is	 indeed	 small	whereas	 the	 spatial	 intermittency	 is	 large	
(C1	≈	0.12).	

The	strong	spatial	intermittency	is	the	statistical	expression	of	the	existence	of	
climate	zones	([Lovejoy and Schertzer, 2013]).	 	However	we	shall	see	 that	due	to	
space-time	 statistical	 factorization	 (next	 subsection),	 each	 region	may	 be	 forecast	
separately.		In	addition,	a	low	intermittency	(Gaussian)	approximation	can	be	made	
for	 the	 temporal	 statistics.	 	 Note	 that	 in	 spite	 of	 this	 Gaussian	 approximation	 for	
forecasts,	 there	 is	 evidence	 that	 the	 5th	 and	 higher	 moments	 of	 the	 temperature	
fluctuations	 diverge	 (i.e.	 power	 probability	 distributions)	 so	 that	 the	 Gaussian	
approximation	fails	badly	for	the	extreme	3%	or	so	of	the	fluctuations	(see	[Lovejoy 
and Schertzer, 1986],	[Lovejoy, 2014a]).				
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Fig.	8a:		A	comparison	of	temporal	and	spatial	macroweather	series	at	2o	resolution.		
The	 top	 are	 the	 absolute	 first	 differences	of	 a	 temperature	 time	 series	 at	monthly	
resolution	 (from	 80o	E,	 10o	N,	 1880	 -1996,	 displaced	 by	 4K	 for	 clarity),	 and	 the	
bottom	 is	 the	 series	 of	 absolute	 first	 differences	 of	 a	 spatial	 latitudinal	 transect	
(annually	averaged,	1990	from	60o	N),	as	a	function	of	longitude.		Both	use	data	from	
the	20CR.		One	can	see	that	while	the	top	is	noisy,	it	is	not	very	“spikey”.				
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Fig.	8b:		The	first	order	and	RMS	Haar	fluctuations	of	the	series	and	transect	from	fig.	
8a.	 	 One	 can	 see	 that	 in	 the	 spikey	 transect,	 the	 fluctuation	 statistics	 converge	 at	
large	lags	(time	scale	Δt),	the	rate	of	the	converge	is	quantified	by	the	intermittency	
parameter	C1.	 	The	series	(bottom)	is	less	spikey,	converges	very	little	and	has	low	
C1	(see	fig.	8c).	
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Fig.	 8c:	 	 A	 comparison	 of	 the	 intermittency	 function	

F = ΔT ΔT 1+Δq( ) / ΔT 1−Δq( )
1/Δq

	for	 the	 series	 and	 transect	 in	 the	 figs	 8a,	 b,	

quantifying	 the	 difference	 in	 intermittencies:	 in	 time	 C1≈0.01,	 in	 space,	 C1≈0.12.		
Since	 K’(1)	 =	 C1,	 when	 Δq	 is	 small	 enough	 (here,	 Δq	 =0.1	 was	 used),	 we	 have	
F Δt( ) = ΔtC1 .	 	 The	 break	 in	 the	 temporal	 scaling	 at	 about	 20	 –	 30	 years	 is	 due	 to	
anthropogenic	forcings.	

2.4	Scaling,	space-time	statistical	factorization	and	size-lifetime	relations	
	
In	the	previous	section	we	saw	that	there	was	evidence	for	scaling	separately	

both	 in	 space	and	 in	 time	with	 the	 former	being	highly	 intermittent	 (multifractal)	
and	the	latter	being	nearly	Gaussian	(fig.	8).	 	However,	in	order	to	make	stochastic	
macroweather	forecasts,	we	need	to	understand	the	joint	space-time	macroweather	
statistics	and	these	turn	out	to	be	quite	different	from	those	in	the	weather	regime.			
For	 the	 latter,	 recall	 that	 there	 exist	 well-defined	 statistical	 relations	 between	
weather	structures	(“meso-scale	complexes”,	“storms”,	“turbulence”	etc.)	of	a	given	
size	L	 and	 their	 lifetimes	τ.	 	 	 Indeed,	 the	 textbook	space-time	“Stommel”	diagrams	
that	 adorn	 introductory	 meteorology	 textbooks	 show	 log	 spatial	 scale	 versus	 log	
temporal	scale	plots	with	boxes	or	circles	corresponding	to	different	morphologies	
and	phenomenologies	and	these	typically	occupy	the	diagonals.			These	diagrams	are	
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usually	 interpreted	 as	 implying	 that	 each	 factor	 of	 two	 or	 so	 in	 spatial	 scale	
corresponds	 to	 fundamentally	 different	 dynamical	 processes,	 each	 with	 its	 own	
typical	 spatial	 extent	 and	 corresponding	 lifetime.	 	 However,	 as	 pointed	 out	 in	
[Schertzer et al., 1997],	the	part	of	the	diagram	occupied	by	realistic	structures	and	
processes	 are	 typically	 not	 only	 on	 diagonals	 (implying	 a	 scaling	 space-time	
relation),	 but	 are	 on	 the	 precise	 diagonal	 whose	 slope	 has	 the	 value	 2/3,	
theoretically	 predicted	 by	 the	 (Lagrangian,	 co-moving)	 size-lifetime	 relation	
discussed	 above:	 τ	 =	 ε-1/3L2/3.	 	 The	 usual	 interpretation	 is	 an	 example	 of	 the	
“phenomenological	 fallacy”	 [Lovejoy and Schertzer, 2007]:	 rather	 than	 refute	 the	
scaling	hypothesis,	the	Stommel	diagrams	support	it.	

As	 usual,	 the	 Eulerian	 (fixed	 frame)	 space-time	 relations	 are	much	 easier	 to	
determine	empirically,	although	theoretically	their	relation	to	Lagrangian	statistics	
is	not	trivial.		In	a	series	of	papers	based	on	high	resolution	lidar	data	([Lilley et al., 
2008; Lovejoy et al., 2008; Radkevitch et al., 2008]	and	then	geostationary	IR	data	
(fig.	 3,	 [Pinel et al., 2014]),	 an	 argument	 by	 [Tennekes, 1975]	 about	 the	 small	
structures	 being	 “swept”	 by	 larger	 ones	 was	 extended	 to	 the	 (atmospheric)	 case	
assuming	 that	 there	 was	 no	 scale	 separation	 between	 small	 and	 large	 horizontal	
scales.	 	 It	was	 concluded	 that	 the	 corresponding	Eulerian	 (i.e.	 fixed	 frame)	 space-
time	relation	generally	had	space-time	spectra	of	the	form:	

 
Pxyt kx ,ky ,ω( ) = kx ,ky ,ω( )!

"#
$
%&
−s
	 (12)	

	
where	Pxyt	is	the	space-time	spectra	density:	

 
Pxyt kx ,ky ,ω( )∝ T! kx ,ky ,ω( )

2
		 (13)	

and	
 
kx ,ky ,ω( )!
"#

$
%& 	is	 the	 wavenumber	 (kx,ky)	 -	 frequency	 (ω)	 scale	 function	

nondimensionalized	by	the	large	scale	turbulent	velocities	(i.e.	using	ε	and	the	size	
of	 the	earth).	 	The	analogous	 (real	 space)	 second	order	 joint	 space-time	 structure	
function	statistics:	

Sxyt Δx,Δy,Δt( ) = ΔT Δx,Δy,Δt( )2 	 (14)	

were	of	the	form:	

 
Sxyt Δx,Δy,Δt( ) = Δx,Δy,Δt( )!" #$

ξ 2( ) 	 (15)	

where
 
Δx,Δy,Δt( )!" #$ 	is	the	real	space	(nondimensional)	scale	function	for	horizontal	

lag	 (Δx,Δy)	 and	 temporal	 lag	 Δt.	 	 The	 scale	 functions	 relevant	 here	 satisfy	 the	
isotropic	 scaling:	

 
λ−1 Δx,Δy,Δt( )!
"#

$
%&= λ

−1 Δx,Δy,Δt( )!" $% and	 
λ kx ,ky ,ω( )!
"#

$
%&= λ kx ,ky ,ω( )!
"#

$
%& 	

where	 λ	 is	 a	 scale	 reduction	 factor.	 	 This	 is	 directly	 confirmed	 in	 fig.	 3	 for	 IR	
radiances.	

In	 the	 simplest	 cases	 (with	 no	 mean	 advection	 and	 ignoring	 weak	 scaling	
singularities	associated	with	waves,	[Pinel and Lovejoy, 2014]),	and	retaining	only	
a	 single	 spatial	 lag	 Δx,	 and	 wavenumber	 kx,	 the	 nondimensional	 scale	 functions	
reduce	to	the	usual	vector	norms	i.e.	they	are	of	the	form:		
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Δx,Δt( )!" #$= Δx2 +Δt 2( )1/2 		 (16)	

	
 
kx ,ω( )!" #$= kx

2 +ω2( )1/2 	 (17)	
	

With	s	=	d+ξ(2)	with	d	=	the	dimension	of	space-time,	in	this	example	d	=	2.			
In	 order	 to	 define	 a	 relationship	 between	 a	 structure	 of	 extent	 L	 with	 the	

lifetime	τ,	we	can	use	Sxt.	 	For	example,	if	we	wait	at	a	fixed	location	(Δx	=	0)	for	a	
time	τ,	we	may	ask	what	distance	L	must	we	go	at	a	given	instant	(Δt	=	0)	in	order	to	
expect	the	same	typical	fluctuation?	This	gives	us	an	implicit	relation	between	L	and	
τ:	Sxt 0, τ( ) = Sxt L,0( ) ;	 in	 this	 simple	 case	 (eqs.	 15,	 16)	 this	 implies	 τ	 =	 L	 for	 the	
nondimensional	variables	so	that	the	dimensional	relationship	would	correspond	to	
a	constant	speed	relating	space	and	time.	 	A	similar	relation	would	be	obtained	by	
using	the	same	argument	in	Fourier	space	on	the	spectral	density	P.			

What	is	the	space-time	relation	in	macroweather	where	we	consider	temporal	
averages	over	periods	>τw,	typically	months	or	longer?		In	this	case,	we	average	over	
many	lifetimes	of	structures	of	all	sizes,	so	clearly	size-lifetime	relations	valid	in	the	
weather	 regime	must	 break	 down.	 	 [Lovejoy and Schertzer, 2013]	 and	 [Lovejoy 
and de Lima, 2015]	argued	on	theoretical,	numerical	and	empirical	grounds	that	–	
at	 least	 to	 a	 good	 approximation	 –	 that	 the	 result	 is	 statistical	 space-time	
factorization	 (SSTF).	 	 The	 application	 of	 the	 SSTF	 to	 the	 second	 order	 statistics	
means:	

Pxt kx ,ω( ) = Px kx( )Pt ω( )

Rxt Δx,Δt( ) = Rx Δx( )Rt Δt( );
	 (18)	

Note	 that	 in	 real	 space	 we	 have	 used	 correlation	 functions	
Rxt Δx,Δt( ) = T t, x( )T t −Δt, x −Δx( ) 	rather	 than	 Haar	 structure	 functions	 S;	 in	
macroweather	(H<0)	they	are	essentially	equivalent.		However	for	small	lags	in	time,	
one	 effectively	 goes	 outside	 the	macroweather	 regime	 and	Δt	 =	 0	 is	 problematic.		
When	both	Ht<0	 and	Hx<0	we	 can	 avoid	 issues	 that	 arise	 at	 small	Δt,	Δx	by	using	
correlation	functions	(fig.	9a)	(for	the	case	Ht<0,	Hx>0,	see	section	10.3	of	[Lovejoy 
and Schertzer, 2013]).	

Using	 the	 autocorrelations	 to	 obtain	 space-time	macroweather	 relations,	we	
obtain	 Rxt 0, τ( ) = Rxt L,0( ) 	so	 that	using	 factorization	and	the	 identity	Rt 0( ) = Rx 0( )
the	implicit	τ-L	relation	is:	

Rt τ( ) = Rx L( ) 	 (19)	
This	is	valid	if	both	space	and	time	have	H<0;	if	there	is	scaling,	we	have	 Rt τ( )∝ τHt 	
and	 Rx L( )∝ LHx with	 exponents	 Ht<0,	 Hx<0.	 	 The	 lifetime	 of	 a	 macroweather	
structure	of	size	L	is	thus:	

	 τ∝ LHx /Ht 	 (20)	
Which	-	unless	Hx	=	Ht	 -	 is	quite	different	 from	the	 lifetime	size	relationship	 in	the	
weather	 regime;	 fig.	 9a	 shows	 that τ∝ L0.65 ,for	 macroweather	 temperature	 and	
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precipitation.	 	Fig.	9a,	shows	that	empirically	the	factorization	works	well	 for	both	
temperature	 and	precipitation	data,	 and	 fig.	 9b	 shows	 that	 it	 is	 also	 (even	better)	
obeyed	 by	 the	 GISS	 E2R	 GCM;	 Del	 Rio	 Amador	 2017	 shows	 that	 it	 holds	 very	
accurately	for	36	CMIP5	control	runs.			

It	turns	out	that	the	SSTF	is	important	for	macroweather	forecasting.			This	is	
because,	using	means	square	estimators,	since	it	implies	that	no	matter	how	strong	
the	correlations	(teleconnections),	if	one	has	long	time	series	at	each	point,	pixel	or	
region,	 that	 no	 further	 improvement	 can	 be	 made	 in	 the	 forecast	 by	 adding	 co-
predictors	 such	 as	 the	 temperature	 data	 at	 other	 locations	 (Del	 Rio	 Amador	 et	 al	
2017).		This	effectively	means	that	the	original	nonlinear	initial	value	PDE	problem	
has	 been	 effectively	 transformed	 into	 a	 linear	 but	 fractional	 ordered	 ODE	 “past	
value”	problem,	we	pursue	this	in	the	next	sections.	

	
Fig.	 9a:	 The	 joint	 space	 (Δθ	 i.e.	 angle	 subtended)	 time	 (Δt)	 RMS	 fluctuations	 of	
temperature	 (top,	 adapted	 from	 [Lovejoy, 2017])	 and	 precipitation	 (bottom,	
adapted	from	[Lovejoy and de Lima, 2015]).	 	 	In	both	cases,	zonal	spatial	anomaly	
fluctuations	 are	 given	 for	 data	 averaged	 over	 1,	 2,	 4,	 ..	 1024	 months	 (since	 the	
temporal	H<0	this	is	an	anomaly	fluctuation).	 	 	The	temperature	data	are	from	the	
HadCRUtemp3	 data	 base	 and	 the	 precipitation	 data	 from	 the	 Global	 Historical	
Climate	Network,	both	at	5o,	monthly	resolutions	and	spanning	the	20th	century.			On	
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this	 log-log	plot,	 SSTF	 implies	 	so	 that	 the	 curves	will	 be	
parallel.	If	in	addition,	they	respect	spatial	scaling	then	they	will	be	linear	and	if	they	
respect	 the	 temporal	 scaling	 then	 as	 we	 double	 the	 temporal	 resolution	 (top	 to	
bottom),	 they	will	be	equally	spaced	(separated	by	 log	2H).	 	 	 	Eventually	(red),	 the	
temporal	scaling	breaks	down	(at	τc	≈	256	months).	 	Over	the	regimes	where	both	
SSTF	 and	 scaling	 hold	 we	 have	 for	 temperature,	 Sθ,t Δθ,Δt( ) ≈ Δθ−0.2Δt−0.3 	and	 for	
precipitation	 Sθ,t Δθ,Δt( ) ≈ Δθ−0.3Δt−0.4 .	 	 The	 double	 headed	 red	 arrows	 show	 the	
corresponding	total	predicted	range	over	macroweather	time	scales.	
	

	
Fig.	 9b:	 The	 same	 as	 fig.	 9a,	 but	 for	 temperature	 fluctuations	 from	 GISS-E2R	
historical	simulations	from	1850.	 	In	this	case,	rather	than	using	anomalies	(which	
were	 the	 only	 data	 available	 for	 fig.	 9a),	 we	 used	 the	 difference	 between	 two	
realizations	of	the	same	historical	simulation	(i.e.	with	identical	external	boundary	
conditions)	 obtained	 by	 slightly	 varying	 the	 initial	 conditions.	 	 The	 temporal	
behaviour	 of	 this	 plot	 shows	 rapidly	 the	 model	 climate	 is	 approached	 under	
temporal	averaging,	and	how	it	varies	as	a	function	of	angular	scale.	 	Again	we	see	
that	 the	 joint	 fluctuations	have	nearly	exactly	 the	same	shapes	 (confirming	SSTF);	
over	 the	 ranges	 where	 the	 scaling	 holds,	 the	 joint	 structure	 function	 is:
Sθ,t Δθ,Δt( ) ≈ Δθ0.3Δt−0.4 .			This	plot	shows	that	GCM’s	obey	the	SSTF	very	accurately,	a	
fact	confirmed	in	section	4	by	the	success	by	which	they	can	be	predicted	by	SLIMM.	
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3.	Macroweather	forecasting	

3.1		The	fractional	Gaussian	noise	model	and	some	of	its	characteristics	
	

We	have	argued	 that	macroweather	 is	scaling	but	with	 low	 intermittency,	 so	
that	 a	 Gaussian	 forecasting	 model	 may	 be	 an	 acceptable	 approximation.	 	 The	
simplest	 such	 model	 is	 fractional	 Gaussian	 noise	 (fGn).	 We	 now	 give	 a	 brief	
summary	of	 some	useful	 properties	 of	 fGn;	 for	 a	 longer	 review	 see	 [Lovejoy	et	al.,	
2015]	and	for	an	extensive	mathematical	treatment	see	[Biagini et al., 2008].			

Over	the	parameter	range	of	interest	-1/2<H<0,	fGn	is	essentially	a	smoothed	
Gaussian	white	noise	and	it’s	mathematical	definition	raises	similar	issues.		For	our	
purposes,	 it	 most	 straightforward	 to	 use	 the	 framework	 of	 generalized	 functions	
and	 start	 with	 the	 unit	 Gaussian	 white	 noise	 γ(t)	 which	 has	 <γ>=	 0	 and	 is	 “δ	
correlated”:	

γ t( )γ ʹt( ) = δ t − ʹt( ) 	 (21)	
where	“δ”	is	the	Dirac	function.			The	H	parameter	fGn	GH(t)	is	thus:			

GH t( ) = cH
Γ 1/ 2+H( )

t − ʹt( )− 1/2−H( ) γ ʹt( )d ʹt
−∞

t

∫ ; −1< H < 0
	 (22)

	

The	constant	cH	is	a	constant	chosen	so	as	to	make	the	expression	for	the	statistics	
particularly	simple,	see	below.		Mathematically	γ(t)	is	thus	the	density	of	the	Wiener	
process	W(t),	often	written	γ(t)dt	=	dW:	just	as	the	Dirac	function	is	only	meaningful	
when	integrated,	the	same	is	true	of	γ(t).			For	fGn,	we	shall	see	below	that	GH(t)dt	=	
dBH’	where	BH’	is	a	generalization	of	the	Wiener	process,	fractional	Brownian	motion	
(fBm,	 parameter	H’	 =	 1+	H)	 and	BH’	 reduces	 to	 a	Wiener	 process	when	H’	 =	 1/2.		
GH(t)	 is	thus	the	(singular)	density	of	an	fBm	measure.	 	 In	practice,	we	will	always	
consider	 GH(t)	 smoothed	 over	 finite	 resolutions	 so	 that	 whether	 we	 define	 GH(t)	
indirectly	via	fBm	or	directly	as	a	smoothing	of	eq.	21	the	result	is	equivalent.		

We	can	see	by	inspection	of	eq.	21,	that	GH t( ) 	is	statistically	stationary	and	by	
taking	 ensemble	 averages	 of	 both	 sides	 of	 eq.	 21	we	 see	 that	 the	mean	 vanishes:	
GH t( ) = 0 .	 	 	When	H	=	 -1/2,	 the	process	G−1/2 t( ) 	itself	 is	simply	a	Gaussian	white	
noise.		Although	we	justified	the	use	of	fGn	as	the	simplest	scaling	process,	it	could	
also	 be	 introduced	 as	 the	 solution	 of	 a	 stochastic	 fractional	 ordered	 differential	
equation:	

dH+1/2T
dtH+1/2

= γ t( ) 	 (23)	

the	solution	of	which	is	T t( )∝GH t( ) .		
Now,	take	the	average	of	GH	over	τ,		the	“τ	resolution	anomaly	fluctuation”:	

GH ,τ t( ) =
1
τ

GH ʹt( )d ʹt
t−τ

t

∫ 	 (24)	

If	cH	is	now	chosen	such	that:	
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cH =
π

2cos πH( )Γ −2H −2( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

	 (25)	

then	we	have:	

GH ,τ t( )
2
= τ2H ; −1< H < 0 	 (26)	

This	shows	that	a	fundamental	property	of	fGn	is	that	in	the	small	scale	limit	(τ->0),	
the	 variance	 diverges	 and	H	 is	 scaling	 exponent	 of	 the	 root	 mean	 square	 (RMS)	
value.	 	This	singular	small	scale	behaviour	is	responsible	for	the	strong	power	law	
resolution	effects	in	fGn.			Since	 GH t( ) = 0 ,	sample	functions	GH,τ(t)	fluctuate	about	
zero	 with	 successive	 fluctuations	 tending	 to	 cancel	 each	 other	 out;	 this	 is	 the	
hallmark	of	macroweather.		

Anomalies: 

An	anomaly	 is	 the	 average	deviation	 from	 the	 long	 term	average	and	 since
GH t( ) = 0 ,	 the	anomaly	 fluctuation	over	 interval	Δt	 is	 simply	GH	 at	 resolution	Δt	
rather	than	τ:	

ΔGH ,τ Δt( )( )anom =
1
Δt

GH ,τ ʹt( )d ʹt =
t−Δt

t

∫ 1
Δt

GH ʹt( )d ʹt =
t−Δt

t

∫ GH ,Δt t( ); Δt > τ 	 (27)	

Hence	using	eq.	26:	

ΔGH ,τ Δt( )( )anom
2

= Δt 2H ; −1< H < 0 	 (28)	

Differences: 

In	the	large	Δt	limit	we	have:	

ΔGH ,τ Δt( )( )diff
2

≈ 2τ2H 1− H +1( ) 2H +1( ) Δt
τ

⎛

⎝
⎜

⎞

⎠
⎟
2H⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	 (29)	

Since	H<0,	the	differences	asymptote	to	the	value	2τ2H	(double	the	variance).		Notice	
that	since	H<0,	the	differences	are	not	scaling	with	Δt.	

Haar Fluctuations 

For	the	Haar	fluctuation	we	obtain:	

ΔGH ,τ Δt( )( )Haar
2

= 4Δt 2H 2−2H −1( ); Δt ≥ 2τ 	 (30)	

this	 scales	 as	Δt2H	 and	does	 not	 depend	on	 the	 resolution	 τ.	 	 This	 relation	 can	be	
used	to	estimate	the	spatial	variation	of	H,	fig.	10	gives	the	sptial	distribution	using	
20CR	data.		It	can	be	seen	that	H	is	near	zero	over	the	oceans	and	is	lower	over	land,	
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typical	values	being	-0.1	and	-0.3	respectively.			Below,	we	see	that	this	corresponds	
to	large	memory	(and	hence	forecast	skill)	over	oceans	and	lower	memory	and	skill	
over	land.	

	
	
Fig.10:	 	 The	 spatial	 distribution	 of	 the	 exponent	H	 estimated	 at	 5oX5o	 resolution	
using	 monthly	 resolution	 data	 from	 the	 NCEP	 reanalyses	 (1948-	 2010)	 and	
estimated	by	a	maximum	liklihood	method.		The	mean	was	-0.11±0.09.	
	
	
Autocorrelations:	

Gτ,H t( )Gτ,H t − Δt( ) = 	 (31)
	

	
Spectra:	

Since	 fGn	 is	 stationary,	 its	 spectrum	 is	given	by	 the	Fourier	 transform	of	 the	
autocorrelation	function.	 	Note	that	in	the	above,	Δt>0;	since	the	autocorrelation	is	
symmetric	for	the	Fourier	transform	with	respect	to	Δt,	we	use	the	absolute	value	of	
Δt.		We	obtain:	

E ω( ) = Γ 3+ 2H( )sinπH
2π

ω −β ; β = 1+ 2H
	 (32)
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Relation	to	fBm:	
It	is	more	common	to	treat	fBm	whose	differential	dBH’(t)	is	given	by:	

dB ′H =GH t( )dt; ′H = H +1; 0 < ′H <1 	 (33)	

so	that:	

ΔB ′H τ( ) = B ′H t( )− B ′H t − τ( ) = G ′H ′t( )d ′t = τG ′H ,τ t( )
t−τ

t

∫ 	 (34)	

with	the	property:	
ΔB ′H Δt( )2 = Δt 2 ′H 	 (35)	

(eq.	 29).	 	 While	 this	 defines	 the	 increments	 of	 BH’(t)	 and	 shows	 that	 they	 are	
stationary,	 it	does	not	completely	define	 the	process.	 	For	 this,	one	conventionally	
imposes	BH’(0)=0,	and	this	leads	to	the	usual	definition:	

B ′H t( ) = c ′H

Γ ′H +1/ 2( ) t − s( ) ′H −1/2 − −s( ) ′H −1/2( )γ s( )ds
−∞

0

∫ + c ′H

Γ ′H +1/ 2( ) t − s( ) ′H −1/2 γ s( )ds
0

t

∫
	 (36)	
[Mandelbrot and Van Ness, 1968].	 	Whereas	fGn	has	a	small	scale	divergence	that	

can	be	eliminated	by	averaging	over	a	finite	resolution	τ,	the	fGn	integral GH ′t( )d ′t
−∞

t

∫ 	

on	 the	 contrary	 has	 a	 low	 frequency	 divergence.	 	 This	 is	 the	 reason	 for	 the	
introduction	 of	 the	 second	 term	 in	 the	 first	 integral	 in	 eq.	 36:	 it	 eliminates	 this	
divergence	at	the	price	of	imposing	BH’(0)	=	0	so	that	fBm	is	nonstationary	(although	
its	increments	are	stationary,	eq.	34).				

A	 comment	 on	 the	parameter	H	 is	 now	 in	 order.	 	 In	 treatments	 of	 fBm,	 it	 is	
usual	 to	 use	 the	 parameter	H	 confined	 to	 the	 unit	 interval	 i.e.	 to	 characterize	 the	
scaling	of	the	increments	of	 fBm.	 	However,	 fBm	(and	fGn)	are	very	special	scaling	
processes,	and	even	in	low	intermittency	regimes	such	as	macroweather	–	they	are	
at	 best	 approximate	 models	 of	 reality.	 	 Therefore,	 it	 is	 better	 to	 define	 H	 more	
generally	as	the	fluctuation	exponent	(eq.	6);	with	this	definition	H	is	also	useful	for	
more	general	(multifractal)	scaling	processes	although	the	interpretation	of	H	as	the	
“Hurst	exponent"	is	only	valid	for	fBm).		When	-1<H<0,	the	mean	at	resolution	τ	(eq.	
24)	defines	 the	anomaly	 fluctuation,	so	 that	H	 is	equal	 to	 the	 fluctuation	exponent	
for	 fGn,	 in	 contrast,	 for	 processes	with	 0<H<1,	 the	 fluctuations	 scale	 as	 the	mean	
differences	and	eq.	35	shows	that	H’	 is	 the	 fluctuation	exponent	 for	 fBm.	 	 In	other	
words,	as	long	as	an	appropriate	definition	of	fluctuation	is	used,	H	and	H’	=	1+H	are	
fluctuation	 exponents	 of	 fGn,	 fBm	 respectively.	 	 The	 relation	 H’	 =	 H+1	 follows	
because	fBm	is	an	integral	order	1	of	fGn.		Therefore,	since	the	macroweather	fields	
of	 interest	have	 fluctuations	with	mean	scaling	exponent	 	 -1/2<H<0,	we	use	H	 for	
the	fGn	exponent	and	½<H’<1	for	the	corresponding	integrated	fBm	process.	

We	can	therefore	define	the	resolution	τ	temperature	as:	

Tτ t( ) =σTGH ,τ t( ) =σT
B ʹH t( )− B ʹH t − τ( )

τ
	 (37)	

Using	eq.	26,	the	τ	resolution	temperature	variance	is	thus:	
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Tτ
2 = σT

2τ2H 	 (38)	
From	this	and	the	relationTτ t( ) = σTGH ,τ t( ) ,	we	can	trivially	obtain	the	statistics	of	
Tτ(t)	from	those	of .	

3.2	Mean	Square	(MS)	estimators	for	fGn	and	the	ScaLIng	Macroweather	Model	
(SLIMM)	
	

The	 Mean	 Square	 (MS)	 estimator	 framework	 is	 a	 general	 framework	 for	
predicting	 stochastic	 processes,	 it	 determines	 predictors	 that	 minimize	 the	
prediction	 error	 variance,	 see	 e.g.	 [Papoulis, 1965].	 	 Since	Gaussian	processes	 are	
completely	determined	by	their	second	order	statistics,	the	MS	framework	therefore	
gives	optimum	forecasts	for	fGn.				

Our	problem	is	to	use	data	Tτ(s)	at	times	s<0	(or	equivalently,	the	innovations	
γ(s))	to	predict	the	future	temperature	Tτ(t)	 	at	times	t>0.	 	Denoting	this	predictor	
by	 T̂τ t( ) 	MS	 theory	 then	 shows	 that	 the	 latter	 is	 given	 by	 a	 linear	 combination	 of	

data,	i.e.	either	the	Tτ(s)	or	equivalently	by	a	linear	combination	of	past	white	noise	
“innovations”	γ(s):	

T̂τ t( ) = MT t, s( )Tτ s( )ds
−τ0<s≤0
∫

T̂τ t( ) = M γ t, s( )γ s( )ds
−τ0<s≤0
∫

	 (39)	

where	 MT,	 Mγ	 are	 the	 predictor	 kernels	 based	 on	 past	 temperatures	 and	 past	
innovations	respectively,	and	the	range	of	integration	is	over	all	available	data,	the	
range	 –τ0<s≤0.	 	 The	 simplest	 problems	 are	 those	where	 the	 range	 extends	 to	 the	
infinite	past	( τ0 →∞ ),	but	practical	predictions	require	the	solution	for	finite	τ0.	

The	prediction	error	is	thus:	
ET t( ) =Tτ t( )− T̂τ t( ) 	 (40)	
and	from	MS	theory,	the	basic	condition	imposed	by	minimizing	the	error	variance	
ET
2 t( ) 	is:	

ET t( )T̂τ t( ) = ET t( )Tτ s( ) = ET t( )γ s( ) = 0; t > 0; s ≤ 0 	 (41)	

This	 equation	 states	 that	 the	 (future)	 prediction	 error	 ET(t)	 is	 statistically	
independent	 of	 the	 predictor	 T̂τ t( ) 	or,	 equivalently,	 it	 is	 independent	 of	 the	 past	

data	Tτ s( ) ,	γ(s)	upon	which	 the	predictor	 is	based.	 	 	This	makes	 intuitive	sense:	 if	
there	was	a	nonzero	correlation	between	the	available	data	and	the	prediction	error,	
then	 there	would	 still	 information	 in	 the	 data	 that	 could	 be	 used	 to	 improve	 the	
predictor	and	reduce	the	error.			Since	GCM	forecasts	are	not	MS,	they	do	not	satisfy	
this	 orthogonality	 condition.	 	 On	 the	 one	 hand,	 this	 explains	 how	 they	 can	 have	
negative	 skill	 (see	 below),	 on	 the	 other,	 it	 justifies	 complex	 GCM	 post-processing	

GH ,τ t( )
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that	 exploit	 past	 data	 to	 reduce	 the	 errors.	 	 Indeed,	 a	 condition	 used	 to	 optimize	
post-processing	corrections	is	actually	close	to	the	orthogonality	condition.	

	In	 [Lovejoy et al., 2015],	 the	mathematically	simplest	predictor	was	given	in	
the	case	of	infinite	past	data	but	using	the	innovations	γ(s):	

 

T! τ t( ) = M γ t, s( )γ s( )ds
−∞

0

∫

M γ t, s( ) = cHσT

τΓ H + 3 / 2( )
t − s( )H+1/2 − t − τ − s( )H+1/2⎡

⎣
⎤
⎦

	 (42)	

The	error	is:	

ET =Tτ t( )− T̂τ t( ) =
cHσT

τΓ H + 3 / 2( )
t − s( )H+1/2 γ s( )ds− t − τ − s( )H+1/2 γ s( )ds

0

t−τ

∫
0

t

∫
⎡

⎣
⎢

⎤

⎦
⎥
	 (43)	

Since	 T
! t( ) 	depends	 only	 on	 γ(s)	 for	 s<0	 and	ET	 on	 γ(s)	 for	 s>0,	 it	 can	 be	 seen	 by	

inspection	that	the	orthogonality	condition	(eq.	41)	holds.		Using	this	MS	predictor,	
we	can	define	the	Mean	Square	Skill	Score	(MSSS)	or	“skill”	for	short:	

MSSS = Sk t( ) =1−
ET t( )2

Tτ t( )2
	 (44)	

For	MS	forecasts,	we	can	use	the	orthogonality	condition	to	obtain	equivalently;	

 
Sk t( ) =

T! τ

2
t( )

Tτ
2 t( )

	 (45)	

which	 shows	 that	 for	 MS	 forecasts,	 the	 skill	 is	 the	 same	 as	 the	 fraction	 of	 the	
variance	explained	by	the	predictor.			

Using	the	predictor	(eq.	42)	we	can	easily	obtain	the	skill	for	fGn	forecasts:	

Sk λ( ) =
FH ∞( )−FH λ( )

FH ∞( )+ 1
2H +2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
; λ = t / τ; λ ≥1 	 (46)	

where	the	auxiliary	function	FH	is	given	by:	

FH λ( ) = 1+ u( )H+1/2 − uH+1/2( )2 du
0

λ−1

∫ ; λ ≥1 	 (47)	

with:	
FH ∞( ) = π−1/2 2− 2H+2( )Γ −1−H( )Γ 3 / 2 + H( ) 	 (48)	
and	the	asymptotic	expression:	

FH λ( ) = FH ∞( )− H +1/ 2( )2
−2H

λ2H + ... 	 	(49)	

[Lovejoy et al., 2015].		For	any	system	that	has	quasi-Gaussian	statistics	and	scaling	
fluctuations	 with	 -1/2<H<0	 the	 theoretical	 skill,	 eq.	 46	 represents	 a	 stochastic	
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predictability	 limit,	 of	 similar	 fundamental	 significance	 to	 the	 usual	 deterministic	
predictability	 limits	 arising	 from	 sensitive	 dependence	 on	 initial	 conditions.	 	 In	
section	4.2,	we	show	that	CMIP5	GCMs	can	indeed	be	predicted	to	nearly	this	limit	
using	the	MS	approach	outlined	here.	

Although	the	MSSS	is	commonly	used	for	evaluating	forecasts,	the	correlation	
coefficient	between	the	hindcast	and	the	temperature	is	occasionally	used:	

 

ρ T ,T t,τ( ) =

Tτ t( )Tτ t( ) −


Tτ t( ) Tτ t( )


Tτ t( )2

1/2
Tτ t( )2

1/2

	 	 (50)

	

Since	<T>	=	0,	the	upper	right	cross	term	vanishes	and	using	orthogonality
Tτ t( )


Tτ t( ) =


Tτ t( )2 	we	obtain:	

ρ T ,T t, τ( ) = Sk t, τ( )1/2 	 (51)	
Therefore,	MS	forecast	skill	can	equivalently	be	quantified	using	either	correlations	
or	MSSS.	
	

	
Fig.	 11a:	 Forecast	 skill	 for	 nondimensional	 forecast	 horizons	 λ	 =	
(horizon/resolution)	=	1,2	4,	8,…64	(left	to	right)	as	functions	of	H.	 	For	reference,	
the	rough	empirical	values	for	land,	ocean	and	the	entire	globe	(the	value	used	here,	
see	 below)	 are	 indicated	 by	 dashed	 vertical	 lines.	 	 The	 horizontal	 lines	 show	 the	
fraction	of	 the	variance	explained	 (the	 skill,	Sk,	 eq.	46)	 in	 the	 case	of	 a	 forecast	of	
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resolution	τ	data	at	a	forecast	horizon	t	= τ	(λ	=	1;	corresponding	to	forecasting	the	
anomaly	fluctuation	one	time	unit	ahead).	
		

	
Fig.	 11a	 shows	 the	 theoretical	 skill	 as	 a	 function	 of	H	 for	 different	 forecast	

horizons.			To	underscore	the	huge	memory	implied	by	the	power	law	kernel	Mγ,	we	
can	compare	the	fGn	kernel	with	that	of	the	exponential	kernels	that	arise	in	auto-
regressive	 (AR)	 type	 processes.	 	 This	 is	 relevant	 here	 since	 the	 main	 existing	
stochastic	macroweather	forecasts	techniques	(“Linear	Inverse	Modelling,	LIM,	see	
the	next	subsection)	are	vector	AR	processes	that	reduce	to	scalar	AR	processes	in	
an	appropriately	(diagonalized)	frame.		If	for	simplicity,	we	consider	only	forecasts	
one	 time	 step	 into	 the	 future	 (i.e.	 horizon	 τ,	 for	 a	 process	 resolution	 τ),	 then	 the	
fraction	 f(λ)	 of	 the	 predictor	 variance	 that	 is	 due	 to	 innovations	 at	 times	 λτ 	 or	
further	in	the	past,		can	be	written	in	the	same	form	as	for	fGn:	

f λ( ) =
I λ( )
I 0( )

; I λ( ) = g s( )− g s−1( )( )2 ds
−∞

−λ

∫ 	 (52)	

where	 g s( ) = −s( )1/2+H 	for	 fGn	 (for	 SLIMM	 predictions)	 and	 g s( ) = es 	for	 AR	
processes.	 	The	comparison	 is	shown	 in	 fig.	11b,	 it	 can	be	seen	 that	almost	all	 the	
information	needed	to	forecast	an	AR	process	is	in	the	most	recent	3	steps,	whereas	
for	 SLIMM,	 with	 H	 =-0.1	 (appropriate	 for	 forecasting	 the	 globally	 averaged	
temperature),	 roughly	 20%	 comes	 from	 innovations	more	 than	 1000	 steps	 in	 the	
past.		Significantly,	we	will	see	that	this	does	not	mean	that	we	need	such	long	series	
to	make	good	forecast;	this	is	because	even	relatively	short	series	with	H	=	-0.1	have	
information	from	the	distant	past;	this	is	discussed	below.	
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Fig.11b:	 	The	 fraction	of	 the	prediction	variance	of	a	 forecast	one	 time	step	ahead	
that	is	due	to	innovations	further	in	the	past	than	λ	time	units	(one	unit=	resolution	
τ).	 	 	The	right	 four	curves	are	 for	SLIMM	(H	=	 -0.1,	 -0.2,	 -0.3,	 -0.4),	and	the	 far	 left	
curve	 is	 for	 an	 autoregressive	process	F	 =	 f(λ)=	Fraction	of	 total	memory	used	 in	
forecasts	one	step	into	the	future.	

3.3	SLIMM	prediction	skill	and	alternative	stochastic	macroweather	prediction	
systems	

Following	[Hasselmann, 1976]	who	proposed	the	use	of	stochastic	differential	
equations	to	understand	low	frequency	weather	(i.e.	macroweather),	attempts	have	
been	made	to	use	this	for	monthly,	Seasonal	to	Interannual	forecasts.		The	basic	idea	
is	 to	model	 the	 atmosphere	 as	 an	Ornstein-Uhlenbeck	 process,	 i.e.	 the	 solution	 of	
dT
dt

+T / τ = γ t( ) 	where	τ is	 the	basic	 time	scale	and	γ	 is	a	white	noise	 forcing.	 	The	

idea	is	that	the	weather	acts	essentially	as	a	random	white	noise	perturbation	to	the	
temperature	T.	 	Fourier	analysis	shows	that	 the	spectrum	is	E ω( )∝1/ ω2 + τ−2( ) 	so	
that	 at	 high	 frequencies,	E ω( )∝ω−2 	whereas	 at	 low	 frequencies,	 E(ω)≈	 constant.		
The	 process	 is	 thus	 an	 (unpredictable)	 white	 noise;	 this	 can	 be	 seen	 directly	 by	
taking	the	low	frequency	limit	dT/dt	≈0		in	the	equation.				From	an	empirical	point	
of	view,	there	are	two	scaling	regimes	(exponents	β	=	0,	2),	corresponding	to	H	=	(β-
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1)/2	=	 -1/2	and	H=	½,	respectively	but	neither	are	realistic:	 for	example,	 the	 true	
values	 for	 the	 temperature	 are	 closer	 to	 ≈	 -0.1,	 ≈	 0.4	 for	macroweather,	weather	
respectively	with	the	former	showing	significant	spatial	variations,	see	fig.	10.			The	
key	 point	 is	 that	 models	 based	 on	 integer	 order	 differential	 equations	 implicitly	
assume	 that	 the	 low	 frequencies	 are	 unpredictable	 whereas	 on	 the	 contrary,	 the	
temporal	scaling	implies	long	range	dependencies,	a	large	memory.		From	the	point	
of	view	of	differential	equations,	we	thus	require	terms	of	fractional	order	(see	eq.	
22).	

Over	 the	 decades,	 the	 Hasselman	 inspired	 approach	 has	 been	 significantly	
developed,	 in	 the	 framework	 of	 “Linear	 Inverse	Modelling”	 (LIM),	 sometimes	 also	
called	 the	“Stochastic	Linear	Framework”	(SLF),	although	 the	 latter	 is	somewhat	a	
misnomer	 since	 it	 restrictively	 excludes	 fractional	 ordered	 (but	 still	 linear)	 terms	
(for	 LIM,	 SLF	 see	 e.g.	 [Penland, 1996; Penland and Sardeshmuhk, 1995; 
Sardeshmukh et al., 2000],	 [Newman, 2013]).	 	 	 The	 essential	 development	 is	 the	
extension	 of	 scalar	 Ornstein-Uhlenbeck	 processes	 to	 vector	 processes	 with	 each	
component	 being	 a	 significant	 macroweather	 variable	 (e.g.	 an	 El	 Nino	 index,	 an	
ocean	temperature	at	a	particular	grid	point	etc.).		Typical	implementations	such	as	
described	 in	 [Newman, 2013]	 involve	 20	 components	 (implying	 hundreds	 of	
empirical	 parameters).	 	 When	 diagonalized,	 the	 system	 reduces	 to	 decoupled	
Ornstein-Uhlenbeck	processes	whose	longest	characteristic	times	are	about	1	year,	
and	beyond	this,	the	system	has	little	skill,	see	fig.	12a.		

Because	 its	 theoretical	 basis	 is	 weak	 and	 it	 involves	 a	 large	 number	 of	
empirical	 parameters,	 LIM	 is	 an	 example	 of	 what	 is	 commonly	 termed	 an	
“empirically	based”	approach.		Other	such	approaches	have	been	proposed,	notably	
by	[Suckling et al., 2016]	and	they	have	had	some	success	by	using	carefully	chosen	
climate	 indices	 that	are	 linearly	related	 to	macroweather	variables	of	 interest	and	
using	 empirically	 determined	 time	 delays.	 	 In	 contrast,	 SLIMM	 is	 based	 on	
fundamental	 space-time	 scale	 symmetries	 that	 we	 argue	 are	 respected	 by	 the	
dynamical	equations.	

In	 order	 to	 use	 SLIMM	 for	 forecasts,	 it	 is	 important	 to	 first	 remove	 the	 low	
frequency	responses	to	anthropogenic	forcings,	failure	to	do	so	([Baillie and Chung, 
2002])	leads	to	poor	results.		For	annually,	globally	averaged	temperatures,	it	turns	
out	 that	 reasonable	 results	 can	 be	 obtained	 using	 the	 CO2	 radiative	 forcing	
(proportional	 to	 logCO2	 concentration)	 as	 a	 linear	 surrogate	 for	 all	 anthropogenic	
forcings	(fig.	12b).		SLIMM	then	forecasts	the	internal	variability:	the	residuals.	The	
reason	 that	 this	 works	 so	 well	 is	 presumably	 that	 all	 anthropogenic	 effects	 are	
linked	 through	 the	economy	and	 the	economy	 is	well	 characterized	by	energy	use	
and	hence	by	CO2	emissions.		

When	SLIMM	hindcasts	are	made	for	hemispheric	and	global	scales,	 [Lovejoy 
et al., 2015],	 they	 are	 generally	 better	 than	 LIM	 and	GCM	 forecasts	 (fig.	 12a).	 	 In	
addition,	[Lovejoy, 2015b]	made	global	scale	SLIMM	forecasts	and	showed	that	they	
could	accurately	(to	within	about	±0.05oC	for	three	year	anomalies)	forecast	the	so-
called	 “pause”	 in	 the	 warming	 (1998-present).	 	 In	 comparison,	 CMIP3	 GCM	
predictions	were	about	0.2oC	too	high.		While	the	cause	of	the	GCM	over-prediction	
is	currently	debated	(e.g.	 [Schmidt et al., 2014],	 [Guemas et al., 2013],	 [Steinman 
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et al., 2015]),	 the	 SLIMM	 prediction	 was	 successful	 largely	 because	 as	 fig.	 12b	
shows,	 the	 pause	was	 simply	 a	 natural	 cooling	 event	 that	 followed	 the	 enormous	
“pre-pause”	 1992-1998	 warming,	 with	 all	 of	 this	 superposed	 on	 a	 rising	
anthropogenic	warming	trend.				

The	forecast	solution	adopted	in	these	publications	showed	that	the	fGn	model	
was	worth	pursuing.		However,	the	technique	they	used	was	based	on	Mγ,	i.e.	finding	
the	optimum	predictor	using	the	innovations	γ(s)	directly	(obtained	by	numerically	
inverting	eq.	22)	and	assuming	that	the	available	data	extended	into	the	infinite	past.		
It	is	much	more	convenient	to	use	the	past	data	T(s)	and	to	take	into	account	the	fact	
that	the	past	data	are	only	finite	in	extent.		Since	an	fGn	process	at	resolution	τ	is	the	
average	of	 the	 increments	of	an	 fBm,	process,	 it	 suffices	 to	 forecast	 fBm	so	 that	 in	
the	operational	version	of	SLIMM	described	below,	we	therefore	availed	ourselves	
of	the	mathematical	solution	of	the	prediction	problem	of	finding	the	kernel	MT(t,s)	
in	 eq.	 39)	 for	 both	 finite	 and	 infinite	 past	 data.	 	 [Gripenberg and Norros, 1996]		
mathematically	 solved	 the	 fBm	 solution	 with	 ½<H’<1	 and	 this	 was	 numerically	
investigated	by	[Hirchoren and D’attellis, 1998].			

	
Fig.	 12a:	 	A	 comparison	of	Root	Mean	Square	Error	of	 hindcasts	 of	 various	 global	
annual	 temperatures	 for	 horizons	 of	 1	 to	 9	 years:	 the	 (GCMbased)	 ENSEMBLES	
experiment	 (from	 [Garcıa-Serrano and Doblas-Reyes, 2012],	 LIM	 [Newman, 
2013]	 and	 SLIMM	 [Lovejoy et al., 2015].	 The	 light	 lines	 are	 from	 individual	
members	of	the	ENSEMBLE	experiment;	the	heavy	line	is	the	multimodel	ensemble.	
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This	 shows	 the	 RMSE	 comparisons	 for	 the	 global	 mean	 surface	 temperatures	
compared	to	NCEP/NCAR	(2m	air	temperatures).	Horizontal	reference	lines	indicate	
the	 standard	 deviations	 of	 Tnat	 (bottom	 horizontal	 line,	 the	 RMS	 of	 the	 residuals	
after	removing	the	anthropogenic	forcing	using	the	CO2	as	a	linear	surrogate,	itself	
nearly	equivalent	to	the	pre-industrial	variability,	[Lovejoy, 2014a])	and	of	the	RMS	
of	 the	 residuals	 of	 the	 linearly	 detrended	 temperatures	 (top	horizontal	 line).	Also	
shown	are	the	RMSE	for	the	LIM	model	and	the	SLIMM.	Adapted	from	[Lovejoy et al., 
2015].	

	
Fig.	12b:		The	NASA	GISS	globally,	annually	averaged	temperature	series	from	1880-
2013	plotted	as	a	function	of	CO2	radiative	forcing.	 	The	regression	slope	indicated	
corresponds	 to	 2.33±0.22	 K/CO2	 doubling.	 	 The	 internal	 variability	 forecast	 by	
SLIMM	are	the	residuals	(see	fig.	12c).		Adapted	from	[Lovejoy, 2014b].		
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Fig.	 12c:	 Top:	 The	 residuals	 temperature	 of	 fig.	 12b	 after	 the	 low	 frequency	
anthropogenic	rise	has	been	removed	(blue)	with	the	hindcast	from	1998	(red).		
Bottom	left:	The	anomaly	defined	as	the	average	natural	temperature	(i.e.,	residual)		
over	the	hindcast	horizon	(blue),	red	is	the	hindcast.		
Bottom	right:	The	temperature	since	1998	(blue)	with	hindcast	(red),	a	blowup	of	
the	hindcast	part	of	the	top	right.		Adapted	from	[Lovejoy, 2015b].	

	

We	 saw	 that	 the	 (infinite	 past)	 innovation	 kernel	 Mγ	 (eq.	 42)	 gave	 a	 strong	
(even	singular)	weight	to	the	recent	past,	forecasting	AR	processes	has	an	analogous	
strong	weighting	of	the	recent	data.		However,	[Gripenberg	and	Norros,	1996]		found	
something	 radically	new	 in	 the	 case	of	 finite	data:	 the	most	 ancient	 available	data	
also	 had	 a	 singular	 weighting!	 	 In	 their	 words,	 this	 was	 because	 “the	 closest	
witnesses	 to	 the	unobserved	past	have	special	weight”,	 see	 fig.	12d	 for	a	graphical	
example.	
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Fig.	 12d:	 	 This	 shows	 the	 kernel	MT(t,s)	 (eq.	 39,	 the	 discrete	 case)	when	 the	 data	
extends	to	s0	=	τ0	in	the	past	with	parameter	H	=	-0.1.		Note	the	strong	weighting	on	
both	the	most	recent	(right)	and	the	most	ancient	available	data	(left).		Reproduced	
from	[Del Rio Amador, 2017].	

4.	Stochastic	predictability	limits	and	forecast	skill		

4.1	Stochastic	predictability	limits:	StocSIPS	hindcasting	skill	demonstrated	on	
CMIP5	control	runs	
	

We	 are	 used	 to	 the	 deterministic	 predictability	 limits	 that	 arise	 from	 the	
“butterfly	effect”	 -	sensitive	dependence	on	 initial	conditions	 -	we	argued	that	 this	
limit	 (the	 inverse	Lyapunov	exponent	of	 the	 largest	structures)	was	roughly	given	
by	the	lifetime	of	planetary	structures:	τw	=ε-1/3L2/3	[Schertzer and Lovejoy, 2004].			
However,	we	also	argued	that	when	taken	way	beyond	this	limit,	that	both	the	GCMs	
and	 the	 atmosphere	 should	 be	 considered	 stochastic.	 	 More	 precisely,	 we	 argued	
that	fGn	provides	a	good	approximation	for	the	temporal	variability,	and	that	due	to	
SSTF,	that	attempting	to	use	spatial	correlations	for	co-predictors	may	not	lead	to	an	
improvement	when	compared	to	direct	predictions	that	exploit	the	huge	memory	of	
the	system.		However,	SSTF	does	not	necessarily	extend	from	temperatures	to	other	
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series	such	as	climate	 indices.	 	 It	 is	possible	 that	use	of	 the	 latter	as	co-predictors	
may	yield	larger	skills.			

Since	 fGn	has	 stochastic	 predictability	 limits	 that	 determine	 its	 skill,	 	 eq.	 46,		
these	 should	 therefore	 be	 relevant	 in	 both	 GCMs	 and	 in	 real	 macroweather.			
However,	the	latter	and	in	externally	forced	GCM’s,	as	discussed	in	section	4.2	there	
are	 low	 frequency	 responses	 to	 climate	 forcings,	 and	 these	 must	 be	 forecast	
separately	 (using	 linearity	 eq.	 11)	 from	 the	 internal	 macroweather	 variability	
modelled	by	fGn	processes.		This	means	that	the	best	place	to	test	our	predictors	is	
on	unforced	GCM’s	i.e.	on	control	runs.		 	 	For	this	purpose	we	used	36	globally	and	
monthly	 averaged	 CMIP5	 models	 control.	 	 	 For	 each,	 we	 estimated	 the	 relevant	
exponent	 H	 by	 determining	 the	 value	 that	 made	 the	 predictor	 best	 satisfy	 the	
orthogonality	condition	(eq.	41);	 this	was	slightly	more	accurate	 than	using	either	
spectra	or	Haar	fluctuation	analysis	([Del Rio Amador, 2017]).	 	 	While	each	model	
had	 somewhat	 different	 exponents,	we	 found	 a	mean	H	 =-0.11±0.09	 theoretically	
implying	 a	 huge	 memory	 (see	 e.g.	 fig.	 11a,b).	 	 We	 used	 the	 discrete	 MT	 kernel	
(following	 [Hirchoren and Arantes, 1998])	 and	 produced	 12	 month	 hindcasts	
comparing	both	the	theoretical	skill	and	the	actual	hindcast	skill,	see	figs.	13a.		Fig.	
13b	shows	that	the	control	runs	were	hindcast	very	nearly	to	their	theoretical	limits.			
It	 is	 thus	 quite	 plausible	 that	 the	 theoretical	 stochastic	 predictability	 limit	 eq.	 46	
really	is	an	upper	bound	on	the	skill	of	macroweather	forecasts.	
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Fig.	13a:	The	MSSS	for	hindcasting	36	CMIP5	GCM	control	runs,	each	at	 least	2400	
months	 long.	 	 Each	GCM	had	 a	 slightly	different	H	 and	hence	different	 theoretical	
predictability.		The	graph	shows	that	both	the	means	and	the	spreads	of	theory	and	
practice	 (SLIMM	hindcasts)	 agree	 very	well.	 	 Reproduced	 from	 [Del Rio Amador, 
2017].	
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Fig.	13b:	The	ratio	of	the	actual	MSSS	hindcast	skill	to	theortical	MSSS	skill	evaluated	
for	 the	 CMIP5	 control	 runs	 used	 in	 fig.	 13a.	 	 Reproduced	 from	 [Del Rio Amador, 
2017].	

4.2	Regional	forecasting	
In	 the	previous	 section,	we	saw	 that	without	external	 forcings,	we	can	make	

global	scale	macroweather	forecasts	that	nearly	attain	their	theoretical	limits,	and	in	
section	 3.3	 (the	 pause),	 we	 already	 indicated	 that	 by	 appropriately	 removing	 the	
low	 frequencies	 (in	 that	 case,	 the	 anthropogenic	 forcings),	 we	 could	 also	 make	
accurate	global	scale	real	world	forecasts.			Due	to	SSTF,	we	argued	that	if	at	a	given	
location	 long	 series	 were	 available,	 they	 could	 be	 forecast	 directly,	 that	 using	
information	at	other	locations	as	co-predictors	would	not	increase	the	overall	skill.		
In	 this	 section,	 we	 therefore	 discuss	 regional	 forecasts	 at	 5o	 resolution.	 	 This	
resolution	was	chosen	because	it	the	smallest	that	is	available	from	both	historical	
data	and	reanalysis	data	sets	that	we	used.		

The	various	steps	in	the	forecast	are	illustrated	in	fig.	14	using	the	pixel	over	
Montreal	as	an	example.		The	first	step	is	to	remove	the	low	frequencies	that	are	not	
due	to	internal	macroweather	variability;	failure	to	remove	them	will	lead	to	serious	
biases	 since	 the	 SLIMM	 forecast	 assumes	 a	 long	 term	 mean	 equal	 to	 0	 and	 the	
ensemble	 forecast	 is	 always	 towards	 this	mean.	 The	 low	 frequencies	 have	 both	 a	
mean	 component	 (mostly	 anthropogenic	 in	 origin	 but	 also	 one	 due	 to	 internal	
variability),	but	also	a	strong	annual	cycle	that	slowly	evolves	from	one	year	to	the	
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next.		Using	the	knowledge	(fig.	5d)	that	the	scaling	is	broken	at	decadal	scales,	we	
can	 use	 a	 high	 pass	 filter	 to	 separate	 out	 these	 from	 the	 internal	 variability.		
Similarly,	 the	annual	cycle	can	be	forecast	by	using	the	past	thirty	years	of	data	 in	
order	to	make	running	estimates	of	the	relevant	Fourier	coefficients	(only	keeping	
those	for	the	annual	cycle	and	6,	4,	and	3	month	harmonics).			The	various	steps	are	
shown	in	fig.	14.		Finally	the	anomalies	(lower	right)	were	forecast	using	SLIMM.			

	

	
	
Fig.	 14:	 An	 example	 of	 forecasting	 the	 temperature	 at	 Montreal	 using	 the	

National	 Centers	 for	 Environmental	 Prediction	 (NCEP)	 reanalysis	 (at	 5oX5o	
resolution?).	 	The	 top	 left	 shows	 the	 raw	monthly	data,	 the	bottom	 left	 shows	 the	
mean	 annual	 cycle	 as	 deduced	 using	 a	 (causal)	 thirty	 year	 running	 estimate,	 the	
upper	 right	 shows	 the	 low	 frequency	 (a	 causal	 thirty	year	 running	average)	 trend	
and	 the	bottom	right	 shows	 the	resulting	anomalies	 that	were	 forecast	by	SLIMM.		
Reproduced	from	[Del Rio Amador, 2017].	

	
The	regional	variation	of	the	skill	of	the	resulting	StocSIPS	hindcasts	is	shown	

in	fig.	15,	we	can	see	that	it	is	close	to	the	theoretical	maximum.	
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Fig.	 15:	 	 Theoretical	 (top)	 versus	 empirical	 (bottom)	 hindcast	 skill	 for	 1	 month	
hindcasts	 using	 Period	 Sep,	 1980	 -	 Dec,	 2015.	 Reference:	 NCEP	 Reanalysis.	 The	
theory	and	practice	are	very	close.		Reproduced	from	[Del Rio Amador, 2017].			
4.3	StocSIPS-CanSIPS	comparison	

The	 previous	 section	 reminded	 us	 that	 real	 world	 forecasts	 must	 estimate,	
remove	and	separately	 forecast	 the	nonmacroweather	 low	 frequencies,	 the	higher	
frequency	 internal	 fGn-like	 component.	 	 The	 overall	 model,	 including	 this	 “pre-
processing”	 is	 called	 the	 Stochastic	 Seasonal	 to	 Interannual	 Prediction	 System	
(StocSIPS,	 see	 the	 website:	 http://www.physics.mcgill.ca/StocSIPS/),	 it	 is	
comparable	 in	 scope	 to	 the	 Canadian	 Seasonal	 to	 Interannual	 Prediction	 System	
(CanSIPS,	 [Merryfield et al., 2011])	 and	 the	 European	 Seasonal	 to	 Interannual	
Prediction	System	(EuroSIPS,	http://www.ecmwf.int/en/forecasts/documentation-
and-support/long-range/seasonal-forecast-documentation/eurosip-user-
guide/multi-model),	 but	 of	 course	 is	 based	 directly	 on	 a	 stochastic	 rather	 than	 a	
deterministic-stochastic	 (GCM)	 model.	 	 Indeed,	 according	 to	 the	 World	
Meteorological	 Organization	 (WMO)	 site	
(http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php),	 there	 are	 twelve	
international	 “producing”	 centres;	 StocSIPS	 based	 at	 McGill	 would	 be	 the	 13th.		
Although	 completely	 unfunded,	 since	 April	 2016,	 it	 has	 provided	 operational	
monthly,	seasonal	and	annual	temperature	forecasts	at	5o	resolution.				
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As	 the	 previous	 section	 showed,	 SLIMM	 can	 forecast	 GCM	 control	 runs	 to	
nearly	their	theoretical	stochastic	predictability	limits.		However,	we	must	evaluate	
the	 full	 StocSIPS	 system	 (preprocessing	 plus	 SLIMM)	 and	 compare	 it	 with	
conventional	 approaches.	 	 We	 singled	 out	 CanSIPS,	 which	 since	 2010	 is	 the	
institutional	 product	 of	 Environment	 Canada,	 for	 particularly	 close	 comparisons.			
Every	 month,	 CanSIPS	 makes	 monthly	 through	 annual	 temperature	 and	
precipitation	forecasts;	the	publically	available	maps	are	only	over	Canada,	but	we	
accessed	 the	 global	 products	 and	 made	 global	 hindcast	 comparisons	 since	 1980.			
The	 CanSIPS	 products	 are	 based	 on	 “multimodel	 ensemble”	 consisting	 of	 10	
realizations	of	the	CanCM3	and	10	realizations	of	the	CanCM4	GCM.		

Before	 continuing,	 recall	 the	 method	 by	 which	 GCM’s	 currently	 produce	
macroweather	 forecasts.	 	 The	 first	 step	 is	 the	 initialisation;	 when	 CanSIPS	 is	
initialized	it	uses	reanalyses	from	the	European	Centre	for	Medium-range	Weather	
Forecasts	 (ECMWF)	 and	 these	 are	 data-model	 “hybrids”	 obtained	 by	 assimilating	
meteorological	observations	 into	 the	ECMWF	GCM.	 	 	The	problem	 is	 that	both	 the	
reanalyses	 and	 CanSIPS	 have	 their	 own	 different	 climatologies	 so	 that	 the	 latter	
cannot	 directly	 ingest	 the	 ECMWF	 reanalyses,	 instead,	 the	 ECMWF	 initial	 values	
must	be	converted	into	ECMWF	anomalies.		These	anomalies	are	used	to	determine	
the	CanSIPS	initial	values,	the	“actuals”.		The	process	can	be	symbolically	written	as:	

TCanSIPS r,t( ) =T i t( ),CanSIPS r( )+ ʹTCanSIPS r,t( )
TECMWF r,t( ) =T i t( ),ECMWF r( )+ ʹTECMWF r,t( )

	 (53)	

where	the	overbar	represents	the	climatological	temperature	T i r( ) 	at	position	r,	for	
the	month	number	 i	 =	1,	2,	…12	and	 the	primes	 indicate	 the	anomalies	which	are	
functions	of	both	position	and	time	(i(t)	denotes	the	month	number	of	time	t).			The	
conventional	way	to	define	T i r( ) 	is	to	use	the	averages	over	the	previous	thirty	 ith	
months	 (at	 each	 location/pixel	 r).	 	 	 Aside	 from	 the	 annual	 cycle	 (that	 was	
deliberately	ignored	in	section	2.2),	the	anomalies	differ	from	the	internal	variability	
because	 they	are	based	on	 temporal	 rather	 than	ensemble	averages.	 	A	significant	
consequence	 is	 that	 the	 anomalies	 have	 contributions	 from	 both	 internal	 and	
externally	forced	variability.			

CanSIPS	is	thus	initialized	TCanSIPS r,0( ) 	using	the	ECMWF	anomaly	at	time	t	=	0:	
	

TCanSIPS r,0( ) =T i 0( ),CanSIPS r( )+ ʹTECMWF r,0( ) 	 (54)	
	
The	 forecasts	 T

!CanSIPS r,t( ) 		 (at	 t>0,	 indicated	 with	 circonflex)	 are	 then	made	
using	the	20	member	CanSIPS	ensemble	followed	by	complex	(and	time	consuming)	
post-processing	 that	 primarily	 correct	 for	 the	 “model	 drift”	 and	 poor	 climate	
sensitivity.	 	 “Model	 drift”	 refers	 to	 the	 tendency	 of	 model	 temperatures	 (even	 in	
control	runs)	to	display	low	frequency	variations	that	are	usually	attributed	to	slow	
(mostly	ocean)	processes,	artefacts	that	are	not	fully	“balanced”	when	the	model	is	
initialized.	 	Since	the	model	does	not	have	perfect	representation	of	the	sensitivity	
to	 anthropogenic	 effects,	 the	 corresponding	 systematic	 errors	 also	 contribute	 a	
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further	 low	 frequency	 “drift”.	 	Both	are	 removed	(to	some	extent)	using	hindcasts	
over	 the	previous	5	 year	period	 in	 an	attempt	 to	 estimate	 (and	 remove)	 spurious	
linear	 trends	 ([Merryfield et al., 2011]).	 	 	 Unfortunately,	 five	 years	 is	 too	 short	 to	
properly	estimate	the	trend	(the	true	trends	are	buried	in	the	macroweather	noise	
until	a	decade	or	so	in	scale,	see	fig.	5d)	so	that	the	internal	5	year	variability	is	thus	
spuriously	removed	in	the	post-processing.	

		
Fig.	15:	 	The	MSSS,	shown	for	the	actuals	and	estimated	from	hindcasts	 from	

six	of	the	12	“producing	centres”,	adapted	from	the	WMO	web	site	(accessed	in	April	
2016).	 	To	aid	in	the	interpretation,	an	example	is	given	by	the	black	arrow:	when	
the	MSSS	=	-5,	the	Mean	Square	Error	(MSE)	is	5	times	the	amplitude	of	the	anomaly	
variance.		It	can	be	seen	that	actuals’	error	variances	are	typically	several	times	the	
anomaly	 variances	 leading	 to	 significant	 negative	 skill	 over	 most	 of	 the	 earth.		
Reproduced	from	[Del Rio Amador, 2017].	
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Fig.	16:		The	differences	in	MSSS	for	CanSIPS	and	StocSIPS	anomaly	hindcasts	

over	the	period	1980-2010	for	lead	times	of	1,	2,	6,	9	months,	red	indicates	regions	
over	which	StocSIPS	has	higher	skill.		It	may	be	seen	that	for	two	months	and	longer,	
this	 is	 over	most	 of	 the	 globe.	 	 StocSIPS’	 increased	 skill	 is	 particularly	 noticeable	
over	 land,	probably	due	to	 the	 fact	 that	 the	CanSIPS	ocean	model	 is	still	within	 its	
deterministic	predictability	limit	of	1	-2	years.		Reproduced	from	[Del Rio Amador, 
2017].	
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Fig.17:	A	comparison	of	 the	MSSS	 for	StocSIPS	at	2	year	 lead	 times	(top	 left)	

and	CanSIPS	at	6	months	(bottom	left).			The	map	of	their	differences	(top	right)	and	
histogram	of	the	differences	lower	right	using	both	the	ECMWF	interim	reanalyses	
(ERA-I,	 red)	and	NCEP	reanalyses	 (blue)	show	that	 the	2	year	StocSIPS	 forecast	 is	
somewhat	better	 than	 the	CanSIPS	six	month	 forecast.	 	Reproduced	 from	 [Del Rio 
Amador, 2017].	
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Fig.	 18:	The	 relative	 skill	 of	 StocSIPS	and	CanSIPS	anomaly	hindcasts	 (1980-

2010)	over	the	globe	and	over	land	only	showing	that	StocSIPS’	relative	advantage	
increase	 systematically	with	 lead	 time	 and	 is	 particularly	 strong	 over	 the	 oceans.		
Reproduced	from	[Del Rio Amador, 2017].	

	

In	spite	of	these	manipulations,	the	final	result		 T
!CanSIPS r,t( ) -	i.e.	an	“actual”	-		is	

seriously	 in	 error	 as	 can	 be	 seen	 in	 fig.	 15:	 which	 shows	 that	 the	 actuals’	 error	
variance	is	typically	several	times	larger	than	the	anomaly	variance.		Due	to	this,	the	
publically	 available	 macroweather	 forecasts	 are	 of	 the	 anomalies	

 ʹT
!CanSIPS r,t( ) =T!CanSIPS r,t( )−T i t( ),CanSIPS r,t( ) .		For	these	anomalies,	the	comparison	with	
StocSIPS	is	much	closer,	see	fig.	16.		The	figure	shows	that	even	for	anomalies	over	
most	of	 the	globe,	 for	 two	months	and	 longer,	StocSIPS	has	higher	skill.	 	StocSIPS’	
increased	skill	is	particularly	noticeable	over	land,	probably	due	to	the	fact	that	the	
CanSIPS	ocean	model	is	still	within	its	deterministic	predictability	limit	of	1	-	2	years	
making	its	ocean	forecast	reasonably	accurate.		This	impression	in	bolstered	by	fig.	
17	 which	 compares	 CanSIPS	 at	 6	 months	 and	 StocSIPS	 at	 2	 years	 (the	 skill	 are	
comparable),	and	also	by	fig.	18	that	shows	that	StocSIPS’	relative	advantage	grows	
with	lead	time	and	is	particularly	strong	over	land.			

Although	we	have	not	discussed	 it	 in	 this	 review,	 StocSIPS	 actually	provides	
forecasts	the	probability	distributions	(both	mean,	discussed	up	until	now,	and	the	
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standard	 deviation	 about	 the	 mean).	 	 This	 can	 be	 used	 for	 various	 probabilistic	
forecasts.		For	example,	fig.	19a,b	show	a	typical	seasonal	forecast	and	its	validation.		
In	 fig.	 19a	 we	 see	 that	 the	 StocSIPS	 anomaly	 forecasts	 generally	 follow	 the	 data	
better	 than	 CanSIPS.	 	 In	 fig.	 19b,	 we	 see	 that	 for	 this	 location	 and	 date,	 that	 the	
StocSIPS	 forecast	 was	 both	 more	 accurate	 and	 less	 uncertain	 than	 the	 CanSIPS	
forecast.	 	 This	was	 true	 for	both	 the	 actuals	 and	 the	 anomalies.	 	 This	 can	be	 seen	
since	 not	 only	 is	 the	 dashed	 red	 StocSIPS	 mean	 closer	 to	 the	 NCEP	 validation	
(dashed	black)	than	the	CanSIPS	dashed	blue	but	the	uncertainties	(the	spreads	in	
the	 probability	 densities)	 was	 narrower	 for	 the	 StochSIPS	 forecast.	 	 Other	
probabilistic	 forecasts	 that	 can	 readily	 be	 produced	 by	 StocSIPS	 include	 tercile	
forecasts:	 i.e.	 the	 probabilities	 of	 the	 forecast	 temperature	 being	 below,	 above	 or	
equal	to	the	local	climatology;	see	the	StocSIPS	site	for	examples.			

	

	
Fig.	 19a:	 	 StocSIPS	 (top,	 red)	 and	 CanSIPS	 (bottom,	 blue)	 seasonal	 forecasts,	 2	
seasons	 ahead	 for	 temperature	 anomalies	 at	97.5W,	 77.5N	 (see	 blue	 point	 on	 the	
map	 at	 right).	 	 	 	The	 forecasts	 are	 compared	with	 the	NCEP	 reanalysis	 anomalies	
(black)	that	are	calculated	with	respect	to	the	period	1980-2010.		It	can	be	seen	that	

	StocSIPS	is	much	closer	to	the	data	(see	also	fig.	19b).
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Fig.	19b:	 	The	histograms	of	 seasonal	 forecasts,	 two	seasons	ahead	 for	DJF	 (2009-
2010)	using	data	up	to	t	=	0	=	JJA	2009,	location	the	same	as	in	fig.	19a	(top	actuals,	
bottom,	 anomalies,	 StocSIPS	 in	 red,	 CanSIPS	 in	 blue,	 NCEP	 data	 in	 black).	 	 	 The	
dashed	 black	 lines	 are	 the	 NCEP	 validation	 data	 for	 DJF,	 the	 black	 probability	
density	curves	show	the	spread	of	the	climatological	variations	based	on	past	NCEP	
reanalyses	 (1981-2010),	 the	 variability	 is	 thus	 placed	 around	 the	 observed	 DJF	
temperature.	 	 The	 StocSIPS	 and	 CanSIPS	 dashed	 lines	 (red	 and	 blue)	 are	 their	
respective	forecasts	for	DJF,	the	curves	represent	the	estimated	uncertainties	in	the	
forecast.	 	 	 	 For	both	actuals	 and	anomalies	 StocSIPSs	 forecasts	 are	 sharper	 -	 their	
probability	density	functions,	(PDFs)	are	narrower	and	more	peaked;	they	are	also	
more	 accurate	 since	 the	 red	 dashed	 lines	 (the	 StocSIPS	 forecasts)	 are	 closer	 to	
validation	data	(the	black	dashed	lines).	

5.	Conclusions:	
Over	the	last	decades,	it	has	become	increasingly	clear	that	at	weather	scales,	

atmospheric	 dynamics	 are	 governed	 by	 both	 deterministic	 laws	 of	 continuum	
mechanics	and	by	stochastic	turbulence	laws.	 	Although	the	GCM	equations	do	not	
acknowledge	the	existence	of	atoms	or	molecules,	they	are	nevertheless	compatible	
with	 statistical	mechanics.	 	 Similarly	 they	 are	 also	believed	 to	be	 compatible	with	
the	turbulence	laws	obeying	them	quite	accurately.			Over	the	same	period,	the	GCM	
approach	 has	 -	 with	 the	 development	 of	 ensemble	 forecasting	 and	 stochastic	
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parametrisations	-	 itself	evolved	into	a	stochastic	one,	making	it	 tempting	to	make	
weather	 forecasts	 directly	 using	 the	 turbulence	 laws.	 	 However	 in	 the	 weather	
regime	 the	 latter	 are	 highly	 intermittent,	 involving	 vector	 multifractal	 processes,	
and	the	corresponding	mathematical	prediction	 	problem	has	yet	to	be	solved:	the	
GCM	approach	to	weather	prediction	is	thus	the	only	one	currently	available.			

The	situation	is	radically	different	at	time	scales	beyond	the	GCM	deterministic	
predictability	 limit	 -	 in	macroweather.	 	 	On	 the	one	hand	GCM’s	have	 large	errors	
associated	with	unrealistic	model	climatologies,	especially	poor	representations	of	
the	 annual	 cycle,	 and	 they	 also	 display	model	 drift	 and	 unrealistic	 sensitivities	 to	
anthropogenic	 effects.	 	 On	 the	 other	 hand,	 macroweather	 “turbulence”	 (the	
extension	 of	 turbulence	 models	 to	 the	 macroweather	 regime),	 have	 low	
intermittency	 so	 that	Gaussian	models	 are	useable	approximations.	 	 In	addition,	 a	
new	symmetry:	statistical	space-time	factorization	essentially	decouples	space	and	
time	 so	 that	 mean	 square	 predictions	 can	 conveniently	 be	 made	 for	 each	 spatial	
location	 independently.	 	 	 Physically	 this	 means	 that	 even	 though	 strong	 spatial	
correlations	exist	(including	“teleconnections”),	if	one	has	a	long	enough	history	at	a	
given	 point,	 this	 spatial	 information	 is	 also	 in	 the	 series	 and	 using	 data	 at	 other	
spatial	 locations	 as	 co-predictors	does	not	necessarily	 improve	 the	 forecast.	 	 	 The	
factorisation	 is	 not	 exact	 and	 does	 not	 necessarily	 apply	 to	 other	 series	 such	 as	
climate	 indices	 so	 that	 there	 may	 be	 future	 scope	 for	 finding	 co-predictors	 and	
improve	the	skill.				

The	ideal	testing	ground	for	this	approach	is	in	GCM	control	runs	since	this	is	
closest	to	pure	fGn.		We	found	that	the	ScaLIng	Macroweather	Model	(SLIMM)	based	
on	 a	 fractional	 Gaussian	 noise	 (fGn)	 model	 applied	 to	 temperatures	 from	 GCM	
control	runs	(i.e.	pure	macroweather	processes,	no	changes	in	external	forcings)	is	
nearly	 able	 to	 attain	 the	 maximum	 theoretical	 stochastic	 predictability	 limit,	
verifying	that	GCM’s	well	obey	the	macroweather	laws	upon	which	SLIMM	is	based	
and	 raising	 the	 possibility	 that	 these	 stochastic	 predictability	 limits	 are	 true	GCM	
limits.		With	respect	to	usual	stochastic	forecasts	based	on	exponential	correlations	
(AutoRegressive,	Linear	 Inverse	Modelling),	 the	 radically	new	 feature	of	 SLIMM	 is	
its	exploitation	of	the	huge	long	range	memory.		The	SLIMM	prediction	kernel	thus	
has	singular	weighting	to	both	the	most	recent	data	as	well	as	the	most	ancient	data	
since	the	latter	contain	the	maximum	information	of	the	distant	past.				

Applying	 SLIMM	 to	 real	 data	 requires	 preprocessing	 to	 remove	 non-
macroweather	processes	 in	particular	 low	frequency	anthropogenic	effects	as	well	
as	 –	 for	 regional	 forecasts	 -	 the	 annual	 cycle.	 	 The	 overall	 resulting	 system	
(preprocessing	 plus	 SLIMM)	 is	 the	 STOChastic	 Seasonal	 to	 Interannual	 Prediction	
System	 (StocSIPS).	 	 We	 compared	 StocSIPS	 with	 one	 of	 the	 leading	 GCM	
macroweather	products:	CanSIPS.	 	Even	without	any	co-predictors	or	other	use	of	
spatial	 correlations,	 we	 showed	 that	 StocSIPS	 was	 much	 superior	 to	 CanSIPS	 for	
forecasting	 “actuals”:	 this	 was	 due	 to	 StocSIPS	 ability	 to	 essentially	 forecast	 the	
climatology	 (especially	 the	 annual	 cycle).	 	 	 However,	 even	 for	 anomaly	 forecasts,	
StoSIPS	 was	 superior	 to	 CanSIPS	 for	 lead	 times	 of	 two	 month	 or	 longer	 and	 its	
relative	 advantage	 grew	 with	 lead	 time,	 it	 was	 particularly	 important	 over	 land	
where	for	two	months	and	longer	it	was	superior	over	≈80%	or	more	of	the	earth’s	
land	surface.		
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Aside	from	its	increased	skill,	StocSIPS	has	other	advantages.		For	example,	at	
the	moment,	seasonal	 forecasts	 for	the	city	of	Montreal	(or	other	 localized	region)	
are	highly	 indirect.	 	 First	data	 from	all	 atmospheric	 fields	 from	all	 over	 the	world	
must	be	assimilated.		Then	the	model	-	on	grids	typically	several	hundred	kilometers	
across	 -	 	 is	 integrated	 forward	 in	 time.	 	 Anomalies	 are	 calculated,	 and	 post-
processing	 is	 performed	 to	 make	 low	 frequency	 corrections	 for	 known	 biases.		
Finally,	the	Montreal	temperature	anomaly	is	estimated	by	“downscaling”	from	the	
large	pixel	scale	to	the	local	city	scale.	 	This	can	be	done	either	using	sophisticated	
(but	 complex)	 nested	 regional	 models	 (of	 GCM	 type),	 or	 via	 ad	 hoc	 statistical	
methods	based	on	local	climatology.		In	contrast,	if	long	enough	(preferably	several	
decades)	of	monthly	or	seasonal	data	are	available,	 then	StocSIPS	simply	removes	
the	low	frequencies	(including	the	annual	cycle),	separately	forecasts	the	anomalies	
and	low	frequencies,	and	adds	them	to	produce	the	forecast.	 	The	overall	saving	in	
computational	 speed	 is	 estimated	 to	 be	 of	 the	 order	 of	 107	 (about	 105	 to	 106	 for	
global	forecasts	on	5oX5o	grids).			Finally,	StocSIPS	directly	forecasts	the	conditional	
ensemble	 average,	 i.e.	 effectively	 the	 results	 of	 an	 infinite	 ensemble	 whereas	
CanSIPS	uses	only	20	members.	

StocSIPS	can	be	directly	extended	to	other	fields	such	as	wind	or	precipitation	
which	 instead	 are	 known	 to	 have	 macroweather	 statistics	 roughly	 satisfying	 the	
SLIMM	 requirements	 (low	 intermittency	 temporal	 macroweather	 scaling	 with	 -
1/2<H<0	 and	 space	 time	 statistical	 factorization	 (SSTF),	 [Lovejoy and de Lima, 
2015]	 and	 fig.	 9a).	 	 But	 StocSIPS	 main	 advantage	 may	 be	 its	 ability	 to	 directly	
forecast	 other	 fields,	 such	 as	 insolation,	 wind	 power	 or	 degree-days,	 that	 can	
currently	 only	 be	 very	 indirectly	 forecast	 by	 GCM’s.	 	 	 Other	 future	 extensions	 of	
StocSIPS	could	include	drought	indices	and	the	prediction	of	extremes.	
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